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1 Introduction

European-style options, which can only be exercised at its maturity, have closed-form
formulas for their values in the standard model pioneered by Black and Scholes [1] and
Merton [8]. Although a vast majority of traded options are of American-style optimally
exercised before the maturity, there are no closed-form formulas for their values even in
the standard model. The principal difficulty in analyzing American options may be the
absence of an explicit expression for the early ezxercise boundary, which is an optimal level
of critical asset value where early exercise occurs.

Due to the lack of closed-form formulas for American option values, many approxi-
mate and/or numerical solutions have been developed so far. Broadie and Detemple [2]
numerically evaluated recent methods for computing American option values. From those
numerical experiments, it comes out that a numerical procedure developed by Carr [3] is
fast and accurate among existing methods. Carr’s procedure is based on valuing an Amer-
ican option with a randomized maturity, so that it is called the randomization approach.
The purpose of this paper is to improve Carr’s randomization approach by introducing
alternative randomization based on an order statistic from an exponential population.

2 Free Boundary Problem

Let (S;):>0 be the stock price governed by the risk-neutralized diffusion process

ds,

g = (r=8di+odW, 120, (2.1)

where r > 0 is the risk-free interest rate, § > 0 is a continuous dividend rate, ¢ > 0 is
a volatility of the asset returns, and (W;):>o is a standard Wiener process on a filtered
probability space (2, F, (F)i>0,P). We consider an American put option written on
(St)t>0, which has maturity date T" and strike price K. Let

P=P(t,S) = P(t,S; K,r,6), 0<t<T,

denote the value of the American put option at time ¢. See Remark 1 below for the call
value.

*This paper is an abbreviated version of Kimura [5].



McKean [7] showed that the alive American put value P and an early exercise boundary
(Bt)tepo,r) can be jointly obtained by solving a free boundary problem, which is specified
by the Black-Scholes-Merton PDE

%02S2P55+(T’—é)SPS—T‘P-i-})t:O, S > By, (22)

together with the boundary conditions
lim P(t,S) =0, (2.3)

SToo
éllrgt P(t,S) = K — B, (2.4)
lim Ps(t,S) = —1, | (2.5)

and the terminal condition -

P(T,S) = (K- 8)". (2.6)

The condition (2.4) is often called the value-matching condition and (2.5) is called the
smooth-pasting or high-contact condition.

It is sometimes convenient to work with the equations where the current time ¢ is
replaced by the remaining time until maturity s = T — ¢t. From (2.2)-(2.6), the put price
for the reversed process P(s, S,) = P(T — s, St_,) satisifies the PDE

102S?Pss + (r —8)SPs—rP - P,=0, S> B, (2.7)
with the boundary conditions
g& P(s,S) =0, (2.8)
lim P(s,S) = K — B,, (2.9)
S|B,
lim Ps(s, ) = —1, - (2.10)
S1B,
and the initial condition :
P(0,8) = (K - 8)*. (2.11)

Remark 1 Let C(0,S; K,r,d) denote the initial value of the associated American call
option with the same parameters as those in the put option. McDonald and Schroder [6]
proved the parity relation

C(0,S8;K,r,8) = P(0,K;S,6,r). (2.12)

Let B = BFP(K,r,6) and B = BP(K,r,8) denote the early exercise boundaries of
the American put and call options, respectively. Carr and Chesney [4] showed symmetry

relation
K2

Bf(K,é,r)
Due to the parity/symmetry relations, the results for the American call option can be

BE(K,r,0) = (2.13)

derived from the associated put option.
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3 Randomization Approach

Carr [3] developed a valuing method for the American put. Carr’s randomization approach
consists of the following steps:

1. Randomize the maturity date by an erponentially distributed random variable T

o~

with mean E[T] = A~! = T in order to value the so-called Canadian option.

2. Extend the result to the case that 7T is distributed as the n-stage Erlangian distri-
bution with the same mean E[T] = T.

3. Take the limit of the randomized option value by letting n — oo to obtain the
underlying American option value.

To understand the meaning of the step 3 above, Figure 1 illustrates the convergence of
the n-stage Erlangian distribution to Dirac’s delta function concentrated at the mean
A7l =1,

Figure 1: n-stage Erlangian pdf (A\"! =1, n = 1,2,4,8, 16, 32)

Actually, the idea of Carr’s randomization is not new. In the theory of integral trans-
forms, this idea goes by the name of the Post-Widder inversion formula [9]: For a contin-
uous function g(t) (¢ > 0), define

00 n—-1
a(T) = /0 g(t) (—T(Z—Z/_Tj-——)l—)?% e /Ty, (3.1)
Then, we have :
lim g2(T) = ¢(T), (3.2)

which is the essential point of Carr’s randomization method.
For A > 0, let

P*=P*()\,8) = / e~ P(s, S)ds (3.3)
0
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be the Laplace-Carson transform (LCT) of P(s,S). Then, from (2.7)-(2.11), P*(),S)

satisfies the ODE

16252Pss + (r — 6)SP; — (A\+7)P* + A(K — §)* =0,

together with the boundary conditions

lim P*(), S) = 0,
SToo

lim P*(\,S) =K — L*,
S|L*

;11% P;(\,8)=-1.

The early exercise boundary L* = L*(\) is given by the LCT of B, = Br_,

L*()\)=/ Ae 2 Bds,
0

(3.4)

(3.5)
(3.6)
(3.7

(3.8)

which is a constant due to the memoryless property of the exponential distribution.

Theorem 1
K-S,
A A
A+ Y +4
p(S) +b(S) + d(S),

P*(\,S) =

where

and the parameters 6, are two roots of the quadratic equation 106262 + (r — &

(A+7)=0, ie,

S+¢(S)+b(S)+d(S), L*<S<K

6+

o2

Proof. See Kimura [5).

! {—(r—é——%az)i (r—5~%02)2+202(/\+7')}-

(3.9)

(3.10)
(3.11)
(3.12)~
(3.13)

- %02)9 -

(3.14)

O
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Remark 2 The function ¢(S) (p(S)) appeared in (3.9) can be interpreted as the ran-
domized value of a European call (put) paying (S — K)* ((K — S)*). Also, the function
b(S) (d(S)) can be interpreted as the present value of interest (dividends) received below
the early exercise boundary L*.

Remark 3 Carr’s result for b(S) (when § = 0) is invalid. The correct one is

e 1 S\
b(8) = (g—) qK (RrT+ E) (-EI) : (3.15)

in terms of his notation; cf. [3, Equation (15)).

Theorem 2
(i) The early exercise boundary L* of the Canadian-American put option satisfies the
equation

*\ 0+ *
A (%) — (0, — 1)~ 66, i{ (3.16)

(ii) For the limiting case A — 0, we have

oy 1 A_T(Gf"_——l) 2
£(0) = lim By = K = i K (3.17)
where 03 = lim,_,o0+. In particular, if § = 0, then
L*(0) = lim B, = Kaz . (3.18)
1+ o
(iii) For the limiting case A — 0o, we have
. * _ B _ R r
,\IHEOL (A\) = By = Br = min (5,1) K. (3.19)
Proof. See Kimura [5]. O

4 New Randomization Based on an Order Statistic

Let Xi,..., X,+m be independent and exponentially distributed random variables with
parameter a (> 0), and let X(; denote the i-th smallest of these random variables (i =
1,...,n+m). Then, the probability density function (pdf) of X,14) is
(n 4+ m)!
t) =
f®) = im =

The mean and variance of X(,,1) are given by

(1 — e ) "qe ™, t>0. (4.1)

1w 1 1, 2n+2m+1
X)) = = 2; e R (4.2)
1 2n+ 2
VX 4.
[Xn+n)] = azg m+1)2 1 2m-1)(2n+2m+1) (43)
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In addition, the modal value of X,y is

1
M Xpin) = argmtaxf(t) =—1In n—+—m.

~ln— (4.4)

If we let either E[X(ny1y] = T or M[X(z41)] = T, then X(,41) can be another candidate for
the random maturity T, because limy, ;00 V[X (n+1)] = 0. For computational convenience,
we adopt the mode matching M[X 1)) = T, so that @ can be determined as

1 n+m
a=—In .

T m

Figure 2 shows the differences between the mean and mode matchings in the order-

statistic-based randomization. From the figures (a) and (b), we find almost no differences
between these matchings for large values of n.

(4.5)

2 2
1.5 1.5
1 1
0.5 0.5
- 1 2 3 A 1 2 3 ¢
(a) mean matching: E[X(p41)] =1 (b) mode matching: M (X4} =1

Figure 2: The pdf of the order statistic X(n+1) (n =m =1,2,4,8,16,32)

For a continuous function g(t) (¢t > 0), define

(n +m)! /oo —at -mat
* _—— —_ at\n m . 4.6
Inm(T) Am—1)1 J, g(t)(1 — e™* ) ae™™"dt (4.6)
Then, we have

lim gn o (T) = g(T)- (4.7)

Theorem 3 The sequence (g;,m)n,mzl satisfies the recursion

{o o]
Gom(T) = / mae—™g(¢)dt
0

n+m m
gn—l,m(T) - ?{ gn—l,m+l(T), n 2> 1

(4.8)

Inm(T) =
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Figure 3: American & European put values
(t=0,K=100,T =1,7=0.05, = 0,0 =0.2)

Proof. See Kimura [5)]. O

A simple and practical setting for the parameters n and m is n = m. For a set of the
parameters {t, S, K, T, r, 6,0}, if we have a functional program for computing P*(), S) for
any A > 0, then the N-th randomized approximation 7y = g5 y =~ P(t,S) (N > 1) can
be obtained by the following algorithm:

o=7-In2
for m =N to 2N do
Gom = P*(ma,S)
next m
forn=1to N do
for m = N to 2N —n do

* . n+m % m %
gn,m =~ gn—l,m - Hgn—l,m+1
next m
next n
%
™ = gnNN

In order to speed up the convergence of N-th randomized approximation 7y, Carr [3]
suggested using the Richardson extrapolation scheme. In this paper, however, we use
another extrapolation scheme defined below, from the error analysis of the N-th approx-
imation 7y; see Kimura [5] for details.

0 = 7, N=202t22 .

1 B ~ (4.9)
® = 27_1{2%,‘\’; D p 1’}, N=2koktl E>1

-_ 2

Figure 3 illustrates the curve of an American put and the associated European put values
as a function of the present asset value S.
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