Alternative Randomization for Valuing American Options*

北海道大学・経済学研究科 木村 俊一 (Toshikazu Kimura)
Graduate School of Economics
Hokkaido University

1 Introduction

European-style options, which can only be exercised at its maturity, have closed-form formulas for their values in the standard model pioneered by Black and Scholes [1] and Merton [8]. Although a vast majority of traded options are of American-style optimally exercised before the maturity, there are no closed-form formulas for their values even in the standard model. The principal difficulty in analyzing American options may be the absence of an explicit expression for the *early exercise boundary*, which is an optimal level of critical asset value where early exercise occurs.

Due to the lack of closed-form formulas for American option values, many approximate and/or numerical solutions have been developed so far. Broadie and Detemple [2] numerically evaluated recent methods for computing American option values. From those numerical experiments, it comes out that a numerical procedure developed by Carr [3] is fast and accurate among existing methods. Carr's procedure is based on valuing an American option with a randomized maturity, so that it is called the *randomization* approach. The purpose of this paper is to improve Carr's randomization approach by introducing alternative randomization based on an order statistic from an exponential population.

2 Free Boundary Problem

Let $(S_t)_{t\geq 0}$ be the stock price governed by the risk-neutralized diffusion process

$$\frac{dS_t}{S_t} = (r - \delta)dt + \sigma dW_t, \qquad t \ge 0, \tag{2.1}$$

where r > 0 is the risk-free interest rate, $\delta \geq 0$ is a continuous dividend rate, $\sigma > 0$ is a volatility of the asset returns, and $(W_t)_{t\geq 0}$ is a standard Wiener process on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$. We consider an American *put* option written on $(S_t)_{t\geq 0}$, which has maturity date T and strike price K. Let

$$P \equiv P(t, S_t) = P(t, S_t; K, r, \delta), \qquad 0 \le t \le T,$$

denote the value of the American put option at time t. See Remark 1 below for the call value.

^{*}This paper is an abbreviated version of Kimura [5].

McKean [7] showed that the alive American put value P and an early exercise boundary $(B_t)_{t \in [0,T]}$ can be jointly obtained by solving a free boundary problem, which is specified by the Black-Scholes-Merton PDE

$$\frac{1}{2}\sigma^2 S^2 P_{SS} + (r - \delta)SP_S - rP + P_t = 0, \qquad S > B_t,$$
 (2.2)

together with the boundary conditions

$$\lim_{S \uparrow \infty} P(t, S) = 0, \tag{2.3}$$

$$\lim_{S \mid B_t} P(t, S) = K - B_t, \tag{2.4}$$

$$\lim_{S \mid B_{t}} P_{S}(t, S) = -1, \tag{2.5}$$

and the terminal condition

$$P(T,S) = (K-S)^{+}. (2.6)$$

The condition (2.4) is often called the *value-matching condition* and (2.5) is called the *smooth-pasting* or *high-contact condition*.

It is sometimes convenient to work with the equations where the current time t is replaced by the remaining time until maturity $s \equiv T - t$. From (2.2)–(2.6), the put price for the reversed process $\hat{P}(s, S_s) \equiv P(T - s, S_{T-s})$ satisfies the PDE

$$\frac{1}{2}\sigma^2 S^2 \hat{P}_{SS} + (r - \delta)S \hat{P}_S - r\hat{P} - \hat{P}_s = 0, \qquad S > \hat{B}_s, \tag{2.7}$$

with the boundary conditions

$$\lim_{S\uparrow\infty} \hat{P}(s,S) = 0, \tag{2.8}$$

$$\lim_{S \downarrow \hat{B}_s} \hat{P}(s, S) = K - \hat{B}_s, \tag{2.9}$$

$$\lim_{S \downarrow \hat{B}_s} \hat{P}_S(s, S) = -1, \tag{2.10}$$

and the initial condition

$$\hat{P}(0,S) = (K-S)^{+}. (2.11)$$

Remark 1 Let $C(0, S; K, r, \delta)$ denote the initial value of the associated American call option with the same parameters as those in the put option. McDonald and Schroder [6] proved the parity relation

$$C(0, S; K, r, \delta) = P(0, K; S, \delta, r).$$
 (2.12)

Let $B_t^P \equiv B_t^P(K, r, \delta)$ and $B_t^C \equiv B_t^C(K, r, \delta)$ denote the early exercise boundaries of the American put and call options, respectively. Carr and Chesney [4] showed symmetry relation

$$B_t^C(K, r, \delta) = \frac{K^2}{B_t^P(K, \delta, r)}.$$
 (2.13)

Due to the parity/symmetry relations, the results for the American call option can be derived from the associated put option.

3 Randomization Approach

Carr [3] developed a valuing method for the American put. Carr's randomization approach consists of the following steps:

- 1. Randomize the maturity date by an exponentially distributed random variable \widetilde{T} with mean $E[\widetilde{T}] = \lambda^{-1} = T$ in order to value the so-called Canadian option.
- 2. Extend the result to the case that \widetilde{T} is distributed as the *n*-stage Erlangian distribution with the same mean $E[\widetilde{T}] = T$.
- 3. Take the limit of the randomized option value by letting $n \to \infty$ to obtain the underlying American option value.

To understand the meaning of the step 3 above, Figure 1 illustrates the convergence of the n-stage Erlangian distribution to Dirac's delta function concentrated at the mean $\lambda^{-1} = 1$.

Figure 1: n-stage Erlangian pdf ($\lambda^{-1}=1,\,n=1,2,4,8,16,32$)

Actually, the idea of Carr's randomization is *not* new. In the theory of integral transforms, this idea goes by the name of the Post-Widder inversion formula [9]: For a continuous function g(t) $(t \ge 0)$, define

$$g_n^*(T) = \int_0^\infty g(t) \, \frac{(nt/T)^{n-1}}{(n-1)!} \frac{n}{T} \, e^{-nt/T} dt. \tag{3.1}$$

Then, we have

$$\lim_{n \to \infty} g_n^*(T) = g(T), \tag{3.2}$$

which is the essential point of Carr's randomization method.

For $\lambda > 0$, let

$$P^* \equiv P^*(\lambda, S) = \int_0^\infty \lambda e^{-\lambda s} \hat{P}(s, S) ds$$
 (3.3)

be the Laplace-Carson transform (LCT) of $\hat{P}(s,S)$. Then, from (2.7)–(2.11), $P^*(\lambda,S)$ satisfies the ODE

$$\frac{1}{2}\sigma^2 S^2 P_{SS}^* + (r - \delta) S P_S^* - (\lambda + r) P^* + \lambda (K - S)^+ = 0, \qquad S > L^*, \tag{3.4}$$

together with the boundary conditions

$$\lim_{S \uparrow \infty} P^*(\lambda, S) = 0, \tag{3.5}$$

$$\lim_{S \mid L^*} P^*(\lambda, S) = K - L^*, \tag{3.6}$$

$$\lim_{S \downarrow L^*} P_S^*(\lambda, S) = -1. \tag{3.7}$$

The early exercise boundary $L^* \equiv L^*(\lambda)$ is given by the LCT of $\hat{B}_s = B_{T-s}$

$$L^*(\lambda) = \int_0^\infty \lambda e^{-\lambda s} \hat{B}_s ds, \qquad (3.8)$$

which is a constant due to the memoryless property of the exponential distribution.

Theorem 1

$$P^*(\lambda, S) = \begin{cases} K - S, & S \le L^* \\ \frac{\lambda}{\lambda + r} K - \frac{\lambda}{\lambda + \delta} S + c(S) + b(S) + d(S), & L^* < S < K \\ p(S) + b(S) + d(S), & S \ge K, \end{cases}$$
(3.9)

where

$$c(S) = \frac{1}{\theta_{+} - \theta_{-}} \frac{\lambda}{\lambda + \delta} \left(1 - \frac{r - \delta}{\lambda + r} \theta_{-} \right) K \left(\frac{S}{K} \right)^{\theta_{+}}, \tag{3.10}$$

$$p(S) = \frac{1}{\theta_{+} - \theta_{-}} \frac{\lambda}{\lambda + \delta} \left(1 - \frac{r - \delta}{\lambda + r} \theta_{+} \right) K \left(\frac{S}{K} \right)^{\theta_{-}}, \tag{3.11}$$

$$b(S) = -\frac{\theta_+}{\theta_-} c(L^*) \left(\frac{S}{L^*}\right)^{\theta_-}, \tag{3.12}$$

$$d(S) = -\frac{1}{\theta_{-}} \frac{\delta}{\lambda + \delta} L^* \left(\frac{S}{L^*}\right)^{\theta_{-}}, \tag{3.13}$$

and the parameters θ_{\pm} are two roots of the quadratic equation $\frac{1}{2}\sigma^2\theta^2 + (r - \delta - \frac{1}{2}\sigma^2)\theta - (\lambda + r) = 0$, *i.e.*,

$$\theta_{\pm} = \frac{1}{\sigma^2} \left\{ -(r - \delta - \frac{1}{2}\sigma^2) \pm \sqrt{(r - \delta - \frac{1}{2}\sigma^2)^2 + 2\sigma^2(\lambda + r)} \right\}.$$
 (3.14)

Remark 2 The function c(S) (p(S)) appeared in (3.9) can be interpreted as the randomized value of a European call (put) paying $(S - K)^+$ $((K - S)^+)$. Also, the function b(S) (d(S)) can be interpreted as the present value of interest (dividends) received below the early exercise boundary L^* .

Remark 3 Carr's result for b(S) (when $\delta = 0$) is *invalid*. The correct one is

$$b^{(1)}(S) = \left(\frac{S}{\underline{S}_1}\right)^{\gamma - \varepsilon} qK \left(RrT + \frac{1}{2\varepsilon p}\right) \left(\frac{\underline{S}_1}{K}\right)^{\gamma + \varepsilon}, \tag{3.15}$$

in terms of his notation; cf. [3, Equation (15)].

Theorem 2

(i) The early exercise boundary L^* of the Canadian-American put option satisfies the equation

$$\lambda \left(\frac{L^*}{K}\right)^{\theta_+} = r(\theta_+ - 1) - \delta\theta_+ \frac{L^*}{K}. \tag{3.16}$$

(ii) For the limiting case $\lambda \to 0$, we have

$$L^*(0) = \lim_{s \to \infty} \hat{B}_s = \frac{r(\theta_+^{\circ} - 1)}{\delta \theta_+^{\circ}} K = \frac{\theta_-^{\circ}}{\theta_-^{\circ} - 1} K, \tag{3.17}$$

where $\theta_{\pm}^{\circ} = \lim_{\lambda \to 0} \theta_{\pm}$. In particular, if $\delta = 0$, then

$$L^*(0) = \lim_{s \to \infty} \hat{B}_s = \frac{K}{1 + \frac{\sigma^2}{2r}}.$$
 (3.18)

(iii) For the limiting case $\lambda \to \infty$, we have

$$\lim_{\lambda \to \infty} L^*(\lambda) = \hat{B}_0 = B_T = \min\left(\frac{r}{\delta}, 1\right) K. \tag{3.19}$$

Proof. See Kimura [5].

4 New Randomization Based on an Order Statistic

Let X_1, \ldots, X_{n+m} be independent and exponentially distributed random variables with parameter α (> 0), and let $X_{(i)}$ denote the *i*-th smallest of these random variables ($i = 1, \ldots, n+m$). Then, the probability density function (pdf) of $X_{(n+1)}$ is

$$f(t) = \frac{(n+m)!}{n!(m-1)!} (1 - e^{-\alpha t})^n \alpha e^{-m\alpha t}, \qquad t \ge 0.$$
 (4.1)

The mean and variance of $X_{(n+1)}$ are given by

$$E[X_{(n+1)}] = \frac{1}{\alpha} \sum_{i=0}^{n} \frac{1}{m+i} \approx \frac{1}{\alpha} \ln \frac{2n+2m+1}{2m-1},$$
(4.2)

$$V[X_{(n+1)}] = \frac{1}{\alpha^2} \sum_{i=0}^{n} \frac{1}{(m+i)^2} \approx \frac{1}{\alpha^2} \ln \frac{2n+2}{(2m-1)(2n+2m+1)}.$$
 (4.3)

In addition, the modal value of $X_{(n+1)}$ is

$$M[X_{(n+1)}] \equiv \arg\max_{t} f(t) = \frac{1}{\alpha} \ln \frac{n+m}{m}.$$
 (4.4)

If we let either $E[X_{(n+1)}] = T$ or $M[X_{(n+1)}] = T$, then $X_{(n+1)}$ can be another candidate for the random maturity \widetilde{T} , because $\lim_{n,m\to\infty} V[X_{(n+1)}] = 0$. For computational convenience, we adopt the mode matching $M[X_{(n+1)}] = T$, so that α can be determined as

$$\alpha = \frac{1}{T} \ln \frac{n+m}{m}.\tag{4.5}$$

Figure 2 shows the differences between the mean and mode matchings in the order-statistic-based randomization. From the figures (a) and (b), we find almost no differences between these matchings for large values of n.

Figure 2: The pdf of the order statistic $X_{(n+1)}$ (n = m = 1, 2, 4, 8, 16, 32)

For a continuous function g(t) $(t \ge 0)$, define

$$g_{n,m}^*(T) = \frac{(n+m)!}{n!(m-1)!} \int_0^\infty g(t)(1-e^{-\alpha t})^n \alpha e^{-m\alpha t} dt.$$
 (4.6)

Then, we have

$$\lim_{n \to \infty} g_{n,m}^*(T) = g(T). \tag{4.7}$$

Theorem 3 The sequence $(g_{n,m}^*)_{n,m\geq 1}$ satisfies the recursion

$$g_{0,m}^{*}(T) = \int_{0}^{\infty} m\alpha e^{-m\alpha t} g(t) dt$$

$$g_{n,m}^{*}(T) = \frac{n+m}{n} g_{n-1,m}^{*}(T) - \frac{m}{n} g_{n-1,m+1}^{*}(T), \qquad n \ge 1.$$
(4.8)

Figure 3: American & European put values $(t=0, K=100, T=1, r=0.05, \delta=0, \sigma=0.2)$

Proof. See Kimura [5].

A simple and practical setting for the parameters n and m is n=m. For a set of the parameters $\{t, S, K, T, r, \delta, \sigma\}$, if we have a functional program for computing $P^*(\lambda, S)$ for any $\lambda \geq 0$, then the N-th randomized approximation $\pi_N \equiv g_{N,N}^* \approx P(t,S)$ $(N \geq 1)$ can be obtained by the following algorithm:

$$lpha=rac{1}{T-t}\ln 2$$
 for $m=N$ to $2N$ do $g_{0,m}^*=P^*(mlpha,S)$ next m for $n=1$ to N do for $m=N$ to $2N-n$ do $g_{n,m}^*=rac{n+m}{n}g_{n-1,m}^*-rac{m}{n}g_{n-1,m+1}^*$ next m next n $\pi_N=g_{N,N}^*$

In order to speed up the convergence of N-th randomized approximation π_N , Carr [3] suggested using the Richardson extrapolation scheme. In this paper, however, we use another extrapolation scheme defined below, from the error analysis of the N-th approximation π_N ; see Kimura [5] for details.

$$\begin{cases}
\pi_N^{(0)} = \pi_N, & N = 2^0, 2^1, 2^2, \dots \\
\pi_N^{(k)} = \frac{1}{2^k - 1} \left\{ 2^k \pi_N^{(k-1)} - \pi_{\frac{N}{2}}^{(k-1)} \right\}, & N = 2^k, 2^{k+1}, \dots, \quad k \ge 1.
\end{cases}$$
(4.9)

Figure 3 illustrates the curve of an American put and the associated European put values as a function of the present asset value S.

References

- [1] Black, F., and M. Scholes, "The pricing of options and corporate liabilities," *Journal of Political Economy*, **81** (1973) 637–654.
- [2] Broadie, M., and J. Detemple, "American option valuation: new bounds, approximations, and a comparison of existing methods," *Review of Financial Studies*, 9 (1996) 1211–1250.
- [3] Carr, P., "Randomization and the American put," Review of Financial Studies, 11 (1998) 597–626.
- [4] Carr, P., and M. Chesney, "American put call symmetry," working paper, Morgan Stanley, 1997.
- [5] Kimura, T., "Alternative randomization for valuing American options," working paper, Hokkaido University, 2004.
- [6] McDonald, R., and M. Schroder, "A parity result for American options," *Journal of Computational Finance*, 1 (1998) 5–13.
- [7] McKean, H.P., "Appendix: a free boundary problem for the heat equation arising from a problem in mathematical economics," *Industrial Management Review*, 6 (1965) 32-39.
- [8] Merton, R., "The theory of rational option pricing," Bell Journal of Economics and Management Science, 4 (1973) 141-183.
- [9] Widder, D.V., *The Laplace Transform*, Princeton University Press, Princeton, N.J., 1946.