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The Quiet Accumulation Game on a Linear Graph

— A Special Case —
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Abstract. A quiet accumulation game on a linear graph is formulated as
a two-person zero-sum game. Upper and lower bounds for the value of the
game are given as well as pure strategies which assure those bounds by mixing
them. Numerical examples are solved when the number of nodes is small.
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1. The Model.

The type of search game in this paper models a gaine-theoretic situation between an organi-
zation and the law enforcement agency. For example, a polluter attempts to illegally conceal
a quantity of waste, and an enforcement agency tries to uncover this attempt. Another
example is : An illicit organization, such as terrorist organization, attempts to accumulate
a certain minimum amount of material and a law enforcement agency attempts to prevent
this by means of a limited number of inspections.

Now, there are two players, called the hider and the seeker. There is a linear graph (N, E)
where N = {1,..,n} is a finite set of nodes and E = {(1,2),...,(n —1,n)} is the set of arcs. At
each turn the hider chooses only one of the empty nodes in V, and hides an (immobile) object
there, and then the secker examines only one node, without knowing the hider’s choice. The
object hidden is left there unless either the game ends or the seeker finds it. The seeker will
find an object with certainty and remove it if it is at a node examined. At the beginning,
all nodes are empty and the seeker is at Node 1, and the hider knows the seeker’s initial
location. At each turn the seeker can either move to one of the adjacent nodes along an arc
and examine it or stay there and examine the node at which the seeker stays. The hider
knows a node examined at each turn only when the seeker finds an object there. The hider
can use this information to choose nodes on the following turns. The game ends and the
hider wins (payoff 1) if at the end of any turn there are k objects remaining in & nodes (i.e.,
one object at each of & nodes). The hider loses (payoff 0) if after ¢ turns the hider has failed to
accumulate k objects. By definition, k < min{n,t}. The seeker is the minimizer of the hider’s
payoff. This game is called the quiet accumulation game on a linear graph (abbreviated as
QAGLG) with n nodes, k locations and ¢ turns.

In this paper we analyse the case of

k=t (1.1)
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This assumption implies that the game ends as soon as the seeker finds an object. We give
upper and lower bounds for the value of the game as well as special pure strategies which
assure those bounds by mixing them. We solve numerical examples when ks are small, in
which mixes of special pure strategies are optimal. For the reader the following diagram is
helpful to understand the game clearly.

Kikuta/Ruckle[3] is the first of the study on accumulation games by these authors. It
treats the noisy case, i.e., the case that the hider can know a node examined at every turn.
Ruckle/kikuta [9] studies special cases of the quiet accumulation games. Ruckle [7] is a good
survey on accumulation games. In the discrete case in [3], [5], [8] and [9], we can regard the
games are on complete graphs. So this paper is the first on the games on special graphs by
the authors.

Proposition 1.1. If n > 2t + 1, the hider wins by choosing Nodes n,n - 1,..,n —t 1 in this
order. If n =t¢, the seeker wins by examining any node at each turn.

From Proposition 1.1, it suffices to consider the case of

t+1<n<2t (1.2)

2. Payoff-Matrix and Pure Strategies.

In this section we define pure strategies of both players, give elementary properties of them.
and then pay attention to undominated strategies.

By the assumption (1.1), the game ends once the seeker finds an object. So cach player
does not know previous choices of the opposite player. Hence for each player it suffices to
consider the choices of his(her) own in the previous turns. Consequently, pure strategies of
both players can be expressed as maps h and s from T = {1,...,t} to N. So let h(z) and s(z) be
the choices of the hider and the seeker at the 2-th turn respectively. As usual, for any TV C T,
we let A(T") = {h(z) : z € T'} and s(T") = {s(z) : z € T'}. These are images of the functions
h and s restricted to T’ respectively, and means sets of previous choices in the turns in 7".
Frequently we express as b= (h(1),...,h(t)) and s = (s(1),...,s(t)). Denote by H and S the sets
of pure strategies of the hider and the seeker respectively. For y € N, let

Sy={seS:s@y)=yland H_,={heH:y¢hT)}

Let a(h, s) is the payoff to the hider, in which the hider and the seeker use h and s respectively.
Then the game is characterized by a payoff-(zero-one-)matrix A == (a(h, s)) of the hider. The
value of this game is denoted by v = »(n,k). Domination relations between pure strategies
can be considered, based on this payofanatrix. For s ¢ € 8, we say s (weakly) dominates s/
if and only if a(h, s) > a(h, ¢') for all h € H and there exists h € H such that a(h, s) > a(h,s"). A
strategy s € S is called undominated if it is not (weakly) dominated by any other strategy.
For se€ S and y € N, we let t,(y) = maz{z: s(z) = y} if y € s(T) and =0 if y ¢ s(T). t,(y) is the
latest seeking time of the node y under the pure strategy s. Since the function k is one-to-one
from T to N, the inverse h~! is well-defined, by letting ~=1(y) =t + 1 if y ¢ h(T).

Proposition 2.1. If n = 2, the value of the game is t/(t + 1). An optimal strategy for the
hider is to choose one of

(2t,2t.——1,...,t+2,y), 1_<.y$t+1,
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with probability 1/(¢+1). An optimal strategy for the seeker is to choose one in S, (say s,),
1 <y £t+1 with probability 1/(t + 1).

From Proposition 2.1 and the condition (1.2), it suffices to consider the case
f+1<n<2—1. (2.1)
By the assumption (1.1), we have straightforwardly, for heH and s € S,
a(h,s) = 1if and only if ¢,(y) < h~'(y) for all y € N. (2.2)

It is helpful for our analysis to express pure strategies for both players in a two-dimensional
plane. So, for s € S and h € H, we consider graphs of s and k in the turn-node plane (xy-
plane), that is, G(s) = {(z, s(z))|1 € x <t} and G(h) = {(z, h(x))|1 < z < t}. Here z means the
z-th turn. Then we let

D(s) = Ul{(x, stNl <z <t} = Ul{(m, v)lz < t,(y)}. (2.3)
t'= y=

If (z, h(z)) € D(s) for some z then h(z) = s(x’) for some 2’ > z, and s0 a(h, s) = 0. If (z, h(z)) ¢ D(s)
for all x, then t,(y) < h='(y) for all y, and so a(h,s) = 1. So we have, for he H and s€ S,

a(h, s) =1 if and only if D(s)nG(h) = 0. (2.4)

Lemma 2.2. For any pure strategy s € S of the seeker, there exists a pure strategy h € M of
the hider such that G(h) N D(s) = 0.

For a pure strategy s € § of the seeker we define a pure strategy h, € H of the hider by
Lemma 2.2.

3. Dominance Relations in Pure Strategies.

In this section we examine dominance relations in pure strategies for the seeker.

Proposition 3.1. For s,s7 € S, s (weakly) dominates s if and only if the set D(s’) strictly
includes the set D(s). »

Remark. For any s, s’ € S, a(hs,s) =1 > a(h,,s') and a(hy,s') =1 > a(hy, 8). So there is no
strict domination between pure strategies of the seeker.

Lemma 3.2. Suppose s € S is undominated. Then there exists a undominated strategy
s’ € S such that D(s) = D(s’) and

g0 #Asl+1)forall 1<é<k-1. 3.1)

Since the seeker moves to an adjacent node or stays at a node, it holds |s(j) — s(j —1)| <
1, for all 5= 2,...,t.. From this and Lemma 3.2, for the seeker it suffices to consider strategies
which satisfy :
|s(j)—s(i—-1)]=1, forall j=2,...,¢t (32)
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We give here extreme strategies which satisfy the condition (3.2). In Section 4.2, we will see
that a mixed combination of these extreme strategies will be an optimal strategy for the
seeker when n =¢+1 and = is small.
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(L2,...,1),
- {(1,2,...,?5—1,&—1—1,...,2,1), if ¢ is odd;
e

2
(2,3,...,£+1,%,...,21), if ¢ is even,
and for y=2,...,t -1, if t+y is even, ‘

4, f1<j<Be+y
G ={ (-1 -1, L ra<i<toytL; (33)
jty-t, ift-y+2<j<t,
and if ¢ +y is odd,
it+1, if1 <5< =l
S =S -1 -1, 1< i<t-y+1; (34)
ity-t ft-y+2<j<t,

(L2,..., 92 8y 1 y), ift+yiseven;
s¥2 = (3.5)

(2,3,... Hatd wyod ), if t+y s odd.

4. A Special Case n=t+ 1.

In this section we analyse the case n = k+1 =t + 1. Without loss of generality, we assume
that undominated strategies of the seeker satisfiy the condition (3.1) in Lemma 3.2.

For y € N, we define a reduced game G, where the payoff-matrix of it is a submatrix of
A whose rows and columns are corresponding to H., and S, respectively. It is easy to see
that {Sy}yen and {H_,},en are partitions of S and H respectively. By Lemma 3.2,

a(h, 8) # 0 =3y € N such that (h,s) e H., x S,.
We can apply Lemma A.1 and we see that it suffices to solve the reduced games {G,},en-

4.1. Analysis of Reduced Games.
For y e N, let T C S, be a set of the seeker’s pure strategies which satisfies

(i) seT, = D(s)¢ D(s'),Vs €8S, @

{ (i) Vs, s eT,s#s, (D(s)UD(s))NG(h)#0,YheH_,,
(iif) |7 is the maximum among those of the sets satisfying (i) and (ii).

Lemma 4.1. Assume a set T C S, satisfies the condition (4.1). The value », of the game G,
is less than or equal to 3.
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Remark. The condition (4.1) implies that
Vs,s' € T,s# s, D(s)\ D(s") # 0 and D(s')\ D(s) # 0. (4.2)

Indeed, assume that 7 satisfies (4.1) and for s, s’ € T, it holds D(s") € D(s). Then D(s)nG(kh) =0
for all » € H. But, this is impossible because of Lemma 2.1.

Remark. The condition (i) in (4.1) is alternatively stated as

Vs, s’ € T,s #5361 < €< t]s(€) —s'(0)| >t—¢.

Lemma 4.2. Tor each y € N, assume a set T, C S, satisfies the condition (4.1). Then |T] > 2
for 2 <y <t-1. Furthermore, s! € T,,,s> € T;, and s*~! € T;.

Theorem 4.3. Assume ¢ > 2. The seeker can expect to hold the hider’s payoff to no more
than 1/(2t — 1) by using {s¥!,s¥2:2 <y <t — 1} U {s!, 52, s?*~1} with equal probability.

Now we define a class H* of pure strategies for the hider as follows:
For each h € He, there are positive integers ¢,,...,¢,, such that

either (I) 6=0, &=k or (II) 0<é < <ln=k,

and ) ‘
n+1-j lfISJSfl;
_ j—b, ife+1<3<ty;
hG)=Sn+1—t,+b—j ifbh+1<75<;

bo—€ +35—43, if€3+15£4;

In the case (II) this strategy h indicates that first the hider locates at each node from
h(1) = n to h(¢;) = n+ 1 — ¢, then locates from h{(é; +1) = 1 to h(fy) = €& — ¢, then locates
from h(€g + 1) = h(€;) — 1 to h(€3) = h{€y) — (€3 — €3), then locates from h(€z+ 1) =4£3 — €, +1 to
h(ly) = €y ~ €4 + £4 — €3, then - ...

Theorem 4.4. Assume k > 2. The hider can expect to hold his/her average payoff to no
less than 1/|H¢| by using all strategies in He with equal probability.

Remark. It is interesting to compare the bounds given in Theorems 4.3 and 4.4 with the
value 1/(k + 1)! of the game on the complete graph given in Ruckle/Kikuta [8]. It is easy to
see .

2k~ 1< Fhe value of QAGLC
There are big gaps between |He| and (k+ 1)! and between 2k —1 and |H#¢|. The former gap
depends on differences of underlying graphs.

< HE S (k+ 1)

4.2. Solutions to Games with Small Number of Nodes.

Theoreins 4.3 and 4.4 suggest us to consider somne strategies for the seeker and the hider,
as is illustrated in Table 1 and Example 1 below for £ = 6 and n = 7. Note that each strategy
is expressed as s = (s(1),...,s(k)) and k= (h(1),.... h(k)).
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Table 1.

Seeker Hider

s =(2,3,4,5,6,7) h' =(1,2,3,4,5,6)
el =(1,2,3.4,5,6) h? =(7,1,2,3,4,5)
s =(2,3,4,5,6,5) k3 =(7,1,2,3,4,6)
st=(1,1,2,3.4,5) ht = (7,6,1,2,3,4)
s° =(1,2,3,4,5,4) h® = (7,6,1,2,3,5)
8 =(1,1,1,2,3,4) h% = (7,6,5,1,2,3)
8" =(2,3,4,5.4,3) h" =(7,6,1,2,5,4)
£=(1,1,1,1,2,3) h® = (7,6,5,4,1,2)
39 (1,2,3,4,3,2) R® = (7.6,5,1,4,3)
s ._(1 1,1,1,1,2 R = (7,6,5,4,3,1)
s =(2,3,4,3,2,1) R = (7,6,5,4,3,2)

Example 1. Suppose k¥ = 6 and n = 7. An optimal strategy for the seeker is to use
8%, (1 <4< 11) in Table 1 with probability 1/11 each. An optimal strategy for the hider is to
use h,(1 <i < 11) in Table 1 with probability 1/11 each. The value of the game is 1/11.

The following Table 2 gives pure strategies used in optimal mixed strategies for k = 7. Some
pure strategies for the seeker in Table 2 are not represented by any of (3.3) - (3.5).

Table 2.

Seeker Hider
1=(2,3,4,5,6,7,8) h' =(1,2,3,4,5,6,7)
$2 =(1,2,3,4,5,6,7) h? = (8,1,2,3,4,5,6)
2 =(2,3,4,5,6,7,6) hd = (8,1,2,3,4,5,7)
51 =(1,1,2,3,4,5,6) hi=(8,7,1,2,3,4,5)
&5 =(1,2,3,4,5,6,5) hS = (8,7,1,2,3,4,6)
s8=(1,1,1,2,3,4,5) h® = (8,7,6,1,2,3,4)
8" =(2,3,4,5,6,5,4) h’ =(8,7,1,2,3,6,5)
£ =(1,1,1,1,2,3,4) h® = (8,7,6,5,1,2,3)
9:( ,3,4,5,4,3,4) h? = (8,7,6,1,2,5,3)

=(1,2,3,4,5,4,3) R = (8,7,6,1,2,5,4)

=(1,1,1,1,1,2,3) hil = (8,7,6,5,4,1,2)
2 —(2,3,4,5,4,3,2) h1? —(8,7,6,1,5,4,3)
B—-(1,1,1,1,1,1,2) . hB =(8,7,6,5,4,3,1)
¥ (1,1,1,1,2,3,2) h = (8,7,6,5,4,1,3)
s =(1,2,3,4,3,2,1) h5 = (8,7,6,5,4,3,2)

Every pure strategy for the hider in Tables 1 and 2 is in #° for k=6 and 7 respectively.

Example 2. Suppose ¥k = 7 and n = 8. An optimal strategy for the seeker is to use
s',(1 € i < 15) in Table 2 with probability 1/15 each. An optimal strategy for the hider is to
use ki, (1 < i < 15) in Table 2 with probability 1/15 each. The value of the :same is 1/15.

Example 3. When &£ =5 and n = 6, the value is 1/9. When k = 4 and » = 5, the value is 1/7.
When k = 3 and n = 4, the value is 1/5. For all of these cases, an optimal strategy for the
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seeker is to mix strategies in (3.3) — (3.5) with equal probability. Optimal strategies for both

players are to mix pure strategies listed in the table below.
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Appendix.

Lemma A.1. Let A = (azy) be a » x ¢ matrix. Lét R={1,...,r} and C = {1,...,c}. Assume
that {Ry,...,Rn} and {Ci,...,Cn} are partitions of R and C respectively, satisfying

4y # 0 == 3¢ such that (z,y) € R, x C;. (A1)

For every ¢, let A, be a |R,| x |C¢| submatrix of A whose rows and columns are R, and C;
respectively. For every ¢, let pf, ¢¢ and v, be optimal strategies and the value fot the matrix
game A,. Then

p=(a1p',...,anp™) and ¢= (a1q,...,amq™)

are optimal strategies and the value of the matrix game A is

1

v= ST
E=1 v,

where )

W = —=m 1 -
Ve emt e



