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Fuzzy rough sets, gradual decision rules and approximate reasoning
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Abstract: We have proposed a fuzzy rough set approach without using any fuzzy logical connectives to
extract gradual decision rules from decision tables. In this paper, we discuss the use of these gradual decision
rules within modus ponens and modus tollens inference patterns. We show that these patterns are very similar
and, moreover, we generalize them to formalize approximate reasoning based on the extracted gradual
decision rules. We demonstrate that approximate reasoning can be performed by manipulation of modifier
functions associated with the gradual decision rules.
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1. Introduction

Rough set theory deals mainly with the ambiguity of information caused by granular description of objects,
while fuzzy set theory treats mainly the uncertainty of concepts and linguistic categories. Because of the
difference in the treatment of uncertainty, fuzzy set theory and rough set theory are complementary and their
various combinations have been studied by many researchers (see for example Cattaneo 1998, Dubois, Prade
1992b, Greco, Matarazzo, Slowinski 1999, 2000a,b, Inuiguchi, Tanino 2003, Nakamura, Gao 1991, Polkowski
2002, Slowinski 1995, Slowinski, Stefanowski 1996, Yao 1997). Most of them involved some fuzzy logical
connectives (t-norm, t-conorm, fuzzy implication) to define fuzzy set operations. It is known, however, that
selection of the “right” fuzzy logical connectives is not an easy task and that the results of fuzzy rough set
analysis are sensitive to this selection. The authors (Greco, Inuiguchi, Slowinski 2003a) have proposed fuzzy
rough sets without using any fuzzy logical connectives to extract gradual decision rules from decision tables.
Within this approach, lower and upper approximations, are defined using modifier functions following from a
given decision table.

This paper presents results of a fundamental study concerning utilization of knowledge obtained by the fuzzy
rough set approach proposed in (Greco, Inuiguchi, Slowinski 2003a). Since the obtained knowledge is
represented by gradual decision rules, we discuss inference patterns (modus ponens and modus tollens) for
gradual decision rules. We show that the modus ponens and modus tollens are very similar in our approach.
Moreover, we discuss inference patterns of the generalized modus ponens as a basis for approximate reasoning.
The results demonstrate that approximate reasoning can be performed by manipulation of modifier functions
associated with the extracted gradual decision rules.

In the next section, we review gradual decision rules extracted from a decision table and underlying fuzzy
rough sets. We describe fuzzy-rough modus ponens and modus tollens with respect to the extracted gradual
decision rules in Section 3. We show the high similarity between fuzzy-rough modus ponens and modus tollens.
In Section 4, we generalize the modus ponens and modus tollens in order to make inference using different fuzzy
sets in the gradual decision rules. We demonstrate that all inference can be done by manipulation of modifier
functions. Finally, we give concluding remarks in Section 5.

2. Gradual decision rules extracted from a decision table

In a given decision table, we may found some gradual decision rules of the following types (Greco, Inuiguchi,
Slowinski 2003a):
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* lower-approximation rules with positive relationship (LP-rule): "if condition X has credibility C(X)za,
then decision Y has credibility C(Y)= fyx'(2)";

* lower-approximation rules with negative relationship (LN-rule): "if condition X has credibility C(X)<a,
then decision Y has credibility C(Y)= fyx (2)";

* upper-approximation rule with positive relationship (UP-rule): "if condition X has credibility C(X)<a,
then decision Y could have credibility C(Y)s gyx *(@)";

* upper-approximation rule with negative relationship (UN-rule): "if condition X has credibility C(X)=c,
then decision Y could have credibility C(Y)s gyx ()",

where X is a given condition (premise), Y is a given decision (conclusion) and fyx":{0,1]—[0,1],
frx:[0,1]->[0,1], gnx":[0,1]—>[0,1] and gy :[0,1]—+[0,1] are functions relating the credibility of X with the
credibility of ¥ in lower- and upper-approximation rules, respectively. Those functions can be seen as modifier
functions (see, for example, Inuiguchi, Greco, Slowinski, Tanino 2003). An LP-rule can be regarded as a gradual
decision rule (Dubois, Prade 1992a); it can be interpreted as: "the more object x is X, the more it is Y. In this
case, the relationship between credibility of premise and conclusion is positive and certain, LN-rule can be
interpreted in turn as: "the less object x is X, the more it is Y, so the relationship is negative and certain. On the
other hand, the UP-rule can be interpreted as: "the more object x is X, the more it could be Y", so the relationship
is positive and possible. Finally, UN-rule can be interpreted as: "the less object x is X, the more it could be Y™,
so the relationship is negative and possible.

Table 1. A decision maker’s evaluation of sample cars
Car: A|B| C DI|EIF| G |[H}| I J
mileage (km/1) | 12 | 12| 13 | 14 |15 9 | 11 | 8 | 14 | 13
Hgas saving car | 0.5 10.5/0.67/083]| 1 | 0 {033 0 |0.830.67
acceptability 10.6105| 06 | 0.8 |09{03] 05 (03] 08| 0.6

Example 1. Let us consider a decision table about hypothetical car selection problem in which the mileage is
used for evaluation of cars. We may define a fuzzy set X of gas_saving_cars by the following membership
function:

0 if mileage(x) <9
Hgas_saving car®)= { (mileage(x)}9)/6 if 9 < mileage(x) <15.
1 if mileage(x) 215

From Table 1, we may find the following gradual decision rules:

* LP-rule: "if x is gas_saving_car with credibility Lgos saving car(mileage(x))za, then x is acceptable_car
with credibility taccopabie_car(¥)2fyx *(a)";
* UP-rule: "if x is gas_saving_car with credibility Lgas saving car(mileage(x))sa, then x is acceptable_car
with credibility facceprasie_car(¥)sgx *(@)", ‘
where fyx* and gy *are defined by
(0 fa=0 (0.3 ifa=0
03 if0<a<033 05 if0<a=<033
05 if0.33<sa<0.67 06 if0.33<a=<0.67
0.6 if0.67sa<0.83 0.8 if0.67<a=<0.83

0.8 if0.83sa<1 09 if0.83<ax<l
.0'9 ifa=1 1 fa=1

fﬁx(a)'* and 8;|x(a)'J
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In Example 1, we consider a fuzzy set of gas saving cars as condition of rules but if we would consider a
fuzzy set of gas guzzler cars as condition of rules, we would obtain LN- and UN-rules. As illustrated in this
example, the condition X and decision Y can be represented by fuzzy sets.

The functions fyx*("), fux ("), gux'(") and gyx'(-) are related to specific definitions of lower and upper
approximations considered within rough set theory (Pawlak 1991). Suppose that we want to approximate
knowledge contained in Y using knowledge about X. Let us also adopt the hypothesis that X is positively related
to Y. Then, we can define the lower approximation 4pp*(X,Y), and upper approximation :4; *(X,Y) of Y by the
following membership functions:

{uy(2)}, if ux(x)>0,

inf
HADPD* XY)x) = Loy @eny (3) )
2 otherwise,

sup {ur (@)}, if py(x)<l,

Wl AP *(XY)x] = {zazm,ms,.,m
1, otherwise.

Similarly, if we adopt the hypothesis that X is negatively related to Y, then we can define the lower

approximation App~(X,Y), and upper approximation E; “(X,Y) of Y by the following membership functions:
(2} if ug(x)<1

Ul App™(X,Y)x] = 32U "x( Jaux(x) ,
0 otherwise

sup {/‘Y (z )} if py (x)>0

ul App “(X,Y)x] = {2 (el (5) _
1 otherwise

The lower and upper approximations defined above can serve to induce certain and approximate decision
rules in the following way. Let us remark that inferring lower and upper credibility rules is equivalent to finding

modifiers fyr * ("), fyx (), 8vx *(*) and gyx ().
These functions can be defined as follows: for each a€[0,1]

fax*(@= sup {y'AL XY),x} xa,“‘ip( sa(ﬂj Fxl?f)z”x I‘Y(Z)) if a>0

#x (x)sa 1fa-0

fix (@) = sup {uL_dg}_z (x Y),xl} g x);a(zeu “;lzf)s“(x)#y(z)) if a >0.’
0 if a=0

wp ,,Y(z)) i <l

gm*(a)=,pxigm{u[7pﬁ‘(x,¥).x]} = zani,ﬂ,f(xha(zekax(z uxe) o
| a=

8vx (a)‘ inf { [App X Y),x]} = zel]:i;ﬁf(x)sa[zal:yj‘(lzg:ux(x)”Y(Z)) fa<i
0 if a=1

We may define a fuzzy rough set by a pair of lower and upper approximations. Some properties of fuzzy rough
sets have been investigated in (Greco, Inuiguchi, Slowinski 2003a).
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3. Fuzzy-rough modus ponens and modus tollens

Given a decision table, we may induce gradual decision rules from X to Y expressed by functions fyy *(*) and
gwx () or by functions fyr (") and gyx (). Remark that we may also induce gradual decision rules from Y to X
in the same way. For example, when we have a rule "if the speed of a truck is high, then its damage in a crash is
big", we may obtain a rule "if the damage of a truck is big, then its speed had been high before the crash” at the
same time. .

Such invertibility often occurs when X and ¥ strongly coincide each other; in other words, ¥ can be explained
by X almost completely. In order to clarify the differences between gradual decision rules from X to Y and from
Y to X, we are using the following notation. By fyx" ("), frix (), vix () and gyx (), we denote modifier functions
corresponding to gradual decision rules from X to Y. Analogously, by fuy' ("), fuir (), gxr'() and gxy (), we
denote modifier functions corresponding to gradual decision rules from Y to X. The first four modifiers are
defined on the basis of rough approximations 4pp*(X,Y), A_p}; *(x,Y), App™(X,Y) and 1—4}_7; “(X,Y), respectively,
while the last four modifiers are defined analogously on the basis of rough approximations 4pp*(Y,X),
App "(Y.X), App™(Y.X) and App “(V.X).

While the previous sections concentrated on the issues of representation, rough approximation and gradual
decision rule extraction, this section is devoted to inference with a generalized modus ponens (MP) and a
generalized modus tollens (MT).

Classically, MP has the following form,

if X->Y is true
and X is true
then Y is true

MP has the following interpretation: assuming an implication X — Y (true decision rule) and a fact X
(premise), we obtain another fact ¥ (conclusion). If we replace the classical decision rule above by our four kinds
of gradual decision rules, then we obtain the following four fuzzy-rough MP:

(LP-MP) if Hx(x)za = py(x)2fyr* (@) (LN-MP)  if tr(x)sa—ux)zfyx ()

and ux(x)z=a’ and wx(x)sa’
then  ur(x)= fyx *(@’) then  ur(x)zfyxr (a’)
(UP-MP) if pxx)sa — ukx)<gyx’(a) (UN-MP) if w(x)za = puy(x)s gyx (@)
and ux(x)sa’ and ux(x)=a’
then  prle)s gye () then  prlr)s gnx (@)

In the classical MP, the inference pattern is applicable only when the given fact X is same as the premise X of the
rule X — Y, in fuzzy-rough MP, however, the inference pattern is applicable when the given fact has the same
form of the inequality relation as the premise of the rule. Moreover, in the real world, we may apply these
inference patterns to get the information about zx(x) of a new object x due to rules we obtained from a given
decision table and due to an observed value of u(x). This means that the above reasoning is a kind of
extrapolation. Therefore, we assume x€U and U D U.

On the other hand, the classical MT has the following form,

if X—Y is true
and Y is false

then X is false
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In the same way as we did in fuzzy-rough MP, we would like to obtain fuzzy-rough MT such as

CP-MD) i uxza— ui®)afed(a)
and  u)<p )

then  uxx)<¢(B)

We should find a proper function ¢:[0,1]-+[0,1] which validates (1). The following theorem gives answers to
this problem.

Theorem. The following assertions are true:

1) Knowing rule ux(x)za — uy(x)2fyx (@) and uyx)<p, we get ux(x)<gxy’ ().

2) Knowing rule ux(x)sa — uy(x)zfyx (@) and ur(x)<g, we get ux(x)>fxy (6).

3) Knowing rule ux(x)sa — uy(x)sgyx'(a) and uy(x)>p, we get ux(x)>fry’ (6)-

4) Knowing rule ux(x)=c — ur(x)sgyr (@) and puyx)>B, we get ux(x)<gxy (B).

5) Knowing rule ux(x)za — ur(x)zfyx'(a) and ur(x)sp, we get px(x)sinf{gxy' (v)|v>B}.
6) Knowing rule ux(x)sa—ur(x)2fnx (@) and uy(x)sp, we get ux(x)zsup{fyy (v)| v>B}.
7) Knowing rule ux(x)sa —> uy(x)sgyx'(a) and uy(x)=p, we get ux(x)zsup{fxy’ (v)| y<p}.
8) Knowing rule ux(x)za — p(x)sgyr (a) and ()2, we get ju(x)sint{gy (1)l v<B).

Assertions 1) to 4) of the Theorem imply the following four fuzzy-rough MT:

@p-M1) if mx)za — pux)zfyx'(a) (IN-MT) if mx(x)sa = prx)2fux (@)
and  urx)<p and  px)<p

then  ux(x)<gur*(B) - then  ux(x)>fxy (B)

UP-MD) if  m¥)se—m@)sgm'(@)  (UN-MI) i e — pix)sgm (@)
and w(x)>p and u(x)>p

then  ux(x)>fyr*(B) then  ux(x)<gxy ()

Thus, for (LP-MT) in (1), we have @) = gxy *(f). As we obtain a conclusion ux(x)<gxy *(f) from a fact
Hy(x)<p, we may remark that (LP-MT) is very similar to (UP-MP), with the exchange between X and Y, i.e.,

UP-MP)  psa— ut)sgar’(@)
and  pyx)<p

then  px)sgar*(H)

In this sense, rule ux(x)=a — ur(x)zfyx’(a) is very similar to rule ur(x)sa —> ux(x)sgxy*(a), however, from the
fact uy(x)sp, we do not obtain the same conclusion. The difference is shown in Assertion 5). When gxy* (") is
lower semi-continuous, it is the same as inf{gxy'(v)| y>B}. However, gxy"(-) is not upper semi-continuous, as can
be seen in Example 1, where it is only lower semi-continuous. The difference can occur only in extreme points
of segments of gyy'(*). By the same reasoning, (LN-MT), (UP-MT) and (UN-MT) are very similar to (LN-MP),
(LP-MP) and (UN-MP) with the exchange between X and Y, respectively. Then, rules ux(x)sa — ur(x)zfyx (),
txx)sa — ur(x)<gyx'(Q) and ux(x)za — uy(x)sgyx (a) are very similar to rules uy(x)sa — wx)=fxy (a),
ufx)sa — ur(x)<gxy'(a) and u(x)za — ux(x)sgxy (), respectively. Therefore, the generalized fuzzy-rough
MT is very similar to the generalized fuzzy-rough MP with an exchange between the premise and the conclusion.
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4. Generalized fuzzy-rough modus ponens for approximate reasoning

Generalized modus ponens is formalized as

if X—->Y is true
and D¢ : is true
then Y’ is true

Namely, the fact X’ is not always the same as the premise X of rule X — Y. Such an inference we might often
apply in the real life. For example, we may infer "the tomato is very ripe" from a fact "the tomato is very red",
using our knowledge represented by the rule "if a tomato is red then it is ripe". Such an inference has been
treated in fuzzy reasoning (Zadeh, 1973). In this section, we propose to formalize this generalization using our
fuzzy-rough MP and MT. (LP-MP) and (LP-MT) can be generalized as follows:

(LP-LP-MP) if ux(x)za = prx)zfyx’(e)  (LP-LP-MT) if px(x)2a — pix)fux’ ()
and  up(x)za’ and upy-(x)<a’

then  pr(afur’(a) then  pr()<gny (@)

(LP-LP-MP) generalizes (LP-MP) by replacing X and Y with X’ and Y”, respectively, while (LP-LP-MT)
generalizes (LP-MT) by replacing X and Y with X and Y”, respectively. Remark that Y’ and X” are not given
here, but X” and Y” are. Therefore, our problem is to get to know Y’ and X”. Since it is often difficult to get an
explicit answer, we consider the following alternative inference patterns:
(LP-LP-MPw) if w(x)za = pdx)2fys’ (@)  (LP-LP-MTw) if wx)za = prx)2fyx’ ()
and  up(x)za’ and uy-(x)<a’

then  u(x)zy(a’) then  ux(x)<6(a’)

We assume that there is a relation between X and X’ in (LP-LP-MP) and a relation between Y and Y” in (LP-
LP-MT). Moreover, we suppose that these relations are known at least to some extent. For example, we may
have another decision table with object set U’GU which gives a relation between X and X’. Analogously, we
may have another decision table with object set U"CU which gives a relation between Y and Y”. We may then
represent the relation between X and X by gradual decision rules using functions fy*(*), fgx ("), 8xpe* (") and
gxx () derived from the decision table with object set U’CU . For example, consider the "red tomato" example.
Assume that we collected a set U’ of tomatoes with different shades of red. Then, to each tomato we may assign
a degree of membership to fuzzy set of "red tomatoes" and a degree of membership to fuzzy set of "very red
tomatoes”. Arranging that information into a table, we obtain a decision table with a decision attribute specifying
"the degree of very red" and a condition attribute specifying "the degree of red". Applying our rough-fuzzy
approach to this table, we obtain the modifier functions fer* (), fyx (), gxe* () and gxx-"(). In the same manner,
the relation between Y and Y~ is represented by gradual decision rules using functions Sar* (), (), 8yr-* ()
and gyy~"() derived from the decision table with object set U"C U .

To infer Y, we should obtain information of the type ux(x)z=a” from uy(x)=a’. This can be done through the
following (LP-MP) with respect to X’ and X:
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it pe@za— u)efc (@)

and wxx)za’

then  ux(x)zfyxr ()
Applying (LP-MP) with respect to X and Y to the inference result wux(x)zfyr'(a’), we obtain
wr(xX)2fue’ (fax* (). Thus, we get (@)= fux' (fx*(@’)) in (LP-LP-MPw), i.e.,
(LP-LP-MPw) if pux)za = pul(x)2fyx’ ()
and  ppx)=a’

then  pl(x)2fux’ (fax ().

The conclusion of this inference pattern is discussed below. When X and Y are defined through attribute values
a(x) and b(x), namely, px(x)=pm(a(x)) and uy(x)=py(b(x)), this inference pattern is useful to know the possible
range of attribute value b(x) from the information about attribute value a(x), as ym(a(x))z=a’. Actually, the

possible range can be obtained as {b(x) | uw(b())2frx’ fur* (@)}
To have inference pattern (LP-LP-MP), we should utilize the following equivalence:

o=fyx'(B) if and only if £ () =sup{ux(x) | ur(x)sc }2B and there exists yEU such that ux(y)=p. (2)

This implication is valid not only for relation between Y and X but also for relation between X and X°. The
conclusion is the same for two given facts ux(x)za’ and py(x)zhy(a’)=sup{ux(z) | ux(z)sa’, zEU}, since we
have fux*(a’)=fux* (hx(a’)). Moreover, Bzhy(a’) implies ky.(B) =inf{uy{(2)|ur(z)>B, zEU}>a’. Therefore,
we can draw the following chain of inferences: up(x)zfux’(fux'(”)) if and only if &y (uy (%)) 2fx* (@)
& xw (uy (x)) 2fr*(@’) is equivalent to £ 3y (uy () 2fiix” (hx(a). & xyy (4y (%)) 2fux*(hx(@”)) if and only if
8xx By (uy (%)) 2hx (). Finally, &y (& 3y (y (x))) 2hx(e’) implies k. (£ xyx (€ (uy (¥)))) >a’. Simce
fax'() is non-decreasing, we have fyiy(kyx (& xx (& xp (y (%)) = fyjx (@') . Hence, we obtain
(%) = Fiig G e @ (uy (), e

(LP-LP-MP)  if ux(x)za — urx)zfrr’(a)
and ur(x)=a’

then  friy (b (xpx By (y M) = frix (@)

The conclusion of this inference pattern is more ambiguous than that of (LP-LP-MPw) because the relation
between Bzhy(a’) and k x'(B) >’ is a one-way implication and we applied fyx *() which is not strictly
increasing. However, the inference pattern may be useful to know approximately how a conclusion fuzzy set Y is
modified when a premise fuzzy set X is modified to X°.

‘When deriving (LP-LP-MP), we obtained another inference pattern as follows:

(LP-LP-MPm) if wx)za = py(x)2fyx' (@)

and pp(x)za’

then  ky (@xpx (% (y (W))) >’ (which implies ky (8 xye (&3 (uy W) zar).

The conclusion of this inference pattern is more ambiguous than that of (LP-LP-MPw) but it is more specific
than that of (LP-LP-MP). This inference pattern is useful when we would like to know the image of a fuzzy set
X through the rule ux(x)=a — uy(x)zfyx'(a), given fuzzy sets X and Y.

Now, let us move to a discussion on (LP-LP-MT). Analogously, we obtain &(a’)= gxr* (gyr-*(2?), i.e.,
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(LP-LP-MTw) if pxx)za = urX)zfyx'(a)
and Uy (x)<a’

then  px-(x)<gxiy' (€yr-" ().
Similarly to (2), we obtain
a<gxy'(B) if and only if fY+l x (@) =inf{uy(x) | ux(x)>c }<p and there exists yEU such that uy(y)=8. (3)
At the first glance, we may think that similar results to (LP-LP-MP) will be obtained. However, we should notice

that it is not f;lx (a)<B in (3) but fﬁx (@) =B. By this difference, we cannot obtain (LP-LP-MT) but (LP-LP-
MTm) corresponding to (LP-LP-MPm). We obtain only the following inference patterns:

(LP-LP-MT’) if uxrx)za = pux)zfyx* ()
and up(x)<a’

then  gxy Gy (Fry (Fix (x ) s g3 (@),

(LP-LP-MTm’) if px(x)za = pr(x)zfux(a)
and Hy(x)<a’

then  hy( oy (Fix (ux ) < ',

where fﬁx (@) =inf{ur(x) | ux(x)2a } and hy.(B) = sup{uy(2)| py+(2) < B} . Since we have fﬁx (@)= f'ﬁx ()
for any o€[0,1]. The conclusions of those inference patterns are less ambiguous than the extended inference
patterns with respect to (UP-MP), whose conclusions are obtained as g},y(ﬁy..( fyvvly( f,,"' x (g () s gxp (@)

and hy(fy (Frix (x ) s @',
5. Conclusions and further research directions

In this paper we discussed fuzzy-rough inference patterns with gradual decision rules extracted from a decision
table. We showed that fuzzy-rough modus tollens is very similar to fuzzy-rough modus ponens and that all
inference can be done by proper manipulations of modifier functions. If in the premise of the gradual decision
rule fuzzy set X is defined with multiple attributes, the inference by manipulations of modifier functions are
much easier than the direct inference method which requires manipulations of multidimensional fuzzy sets.
Therefore, we plan to apply fuzzy-rough inference also to gradual decision rules defined with multiple attributes
(Greco, Inuiguchi, Slowinski 2003b). Moreover, we can apply the proposed fuzzy-rough inference to case based
reasoning problems. These would be the topics of our future studies. '
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