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Real curves on real Hirzebruch surfaces
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1 Hirzebruch surfaces

We call
Zy = P(Opt ® Op:(n))

the n-th Hirzebruch surface (n > 0) ([4], p.141). T, is a ruled surface over P!. The
converse assertion is also true. Every ruled surface over P! is birationally equivalent
to P! x P!, and hence, rational. For example, we have £y = P! x P! and ¥; is P? blown
up in one point. (The preimage of this point is C; defined below.) For n > 1 we set
Cp := P(Op:1(n)) C X, and call it the ezceptional section. We have C, - C, = —n.
For the details of Hirzebruch surfaces, see [4] or [9)].

By a real structure on a complex manifold Y, we mean an anti-holomorphic involu-
tion on Y. The number of isomorphism classes of real structures on a rational surface

Y is as follows ([6], p.63).

Y number | real part of Y
P2 1 RP?
P! x P! (= %) 4 torus if hyperboloid,

@ if (usual, spin) or (spin, spin), and
S? if ellipsoid.

¥, with n > 2 even 2 torus or 0

¥, with n odd 1 Klein bottle

Here usual means the real structure of P! given by the usual complex conjugation,
and spin is given by (2o : 21) — (21 : —Z) in Pl. The real structure (usual, usual) is
called hyperboloid.

Some Hirzebruch surface appears as the quotient space Y := X/7 of some K3
surface with a non-symplectic involution (X,7) with their fixed point set A := X7
non-empty (see §2). Then A is a nonsingular curve on the surface Y. This is our
motive for studying curves on Hirzebruch surfaces. ’
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2 Real K3 surfaces with non-symplectic involu-
tions

In [22], V.V. Nikulin and the author enumerated up the connected components
of moduli of real K3 surfaces with non-symplectic involution of all type (S,6) with
tk S < 2, where S is a fixed lattice and 6 is an involution on S, and applied it to
topological classifications of real curves on some real rational surfaces and topological
interpretations of invariants of integral involutions. ‘

Let us introduce some definitions. Here we say a nonsingular compact connected
complex surface X is a K8 surface if X has a nowhere vanishing holomorphic 2-form
wy, equivalently, Kx = 0, and X is simply-connected (see [4], [5], [29]). We say
a smooth involution 7 on a K3 surface X is non-symplectic (or anti-symplectic) if
(wx) = —wx. For an algebraic K3 surface X with a non-symplectic holomorphic
involution 7, the fixed point set, denoted by A := X7, is empty or a non-singular
complex curve on X, and the quotient space Y := X/7 is a nonsingular surface.
Moreover, if A = @, then Y is a Enriques surface, and if A # @, then Y is a rational
surface and A € |—2Ky| and gy = 0 (see Nikulin {19], [21]). Let S be the isomorphism
class of the fixed part L™ := {z € L | 7.(z) = 2} of 7. in L := Hy(X,Z). Then S is
a primitive (i.e. L/S is free), 2-elementary and hyperbolic sublattice of L, where we
say a lattice M is 2-elementary if M*/M & (Z/2Z)*™) for some integer a(M) > 0,
and hyperbolic if its signature is (1,_y(M)) for some integer #(_y(M) > 0. We call
such a pair (X,7) a K& surface with non-symplectic involution of type S (see also
Yoshikawa [30], [31] for the details).

We can additionally fix a half-cone (the light-cone) V*+(S) of the cone V(S) =
{z € S®R | z* > 0}. We can also fix a fundamental chamber M C V*(S) for
the group W(-2(S) generated by reflections in all elements with square (—2) in S.
This is equivalent to fixing a fundamental subdivision A(S) = A(S)4+U—A(S)4 of all
elements with square —2 in S. The M and A(S)4 define each other by the condition
(M, A;) > 0. These additional structures M C V*(S) of the hyperbolic lattice S
are defined uniquely up to the action of the group {+1}W{2(S).

We can restrict considering K3 surfaces with non-symplectic involutions (X,7)
such that V+(S) contains a hyperplane section of X and the set A(S)+ contains only
classes of effective curves with square —2 in X. Namely, V*(S) and the fundamental
subdivision A(S), are prescribed by the geometry of the K3 surface X.

If a pair (X,7) is general, then S is the Picard lattice N(X) of X and M gives
the nef cone (or Kéhlerian cone) of X. The weakest condition of degeneration (i.e.,
giving the most reach discriminant) is the following condition: ’



(D): We say that (X, 7) of type S is degenerate if there exists h € M such that h
is not nef for X. This is equivalent (see [21]) to the existence of an exceptional curve
with square —2 on the quotient Y = X/{1,7}. This is also equivalent to having an
element § € N(X) with 62 = —2 such that § = (0; + d,)/2 where 6; € S, &, € S,Jg.(x)
and 6? = 62 = —4. Remark that (§;,5) =0 mod 2 and (63, 5) =0 mod 2. Le., 6
and &, are roots with square —4 for lattices S and S* respectively.

Now we restrict ourselves to the case rk S < 2. Then we have :
(1) If tk S = 1, then S =2 (2), X/7 2 P2, all X are non-degenerate, and A are curves
of degree 6 on P2.
(2) If rk S = 2, then the lattice S is isomorphic to U(2), (2) ® (—2) or U.
(i) If S = U(2), then non-degenerate K3 surfaces (X,7) give X/r = P! x P!(=
%) and A are curves of bidegree (4,4) on P! x P!; and degenerate K3 surfaces
(X, ) give X/7 = 5.
(ii) If S = (2) ® (—2), then X/7 = ¥, and all X are non-degenerate. The image
of A in IP? is a curve of degree 6 with one non-degenerate double point.
(iii) If S = U, then X/7 = %, and all X are non-degenerate.

Now we endow a K3 surface with non-symplectic involution (X,7) with a real
structure. Let 8 be an involution on S satisfying the following properties: 8(V+(S)) =
—V+(S) and 6(A(S);) = —A(S)4. It follows that the lattice S, := S? is negative
definite and it has no elements with square —2. Moreover, the linear subspace S_ ®R
where S_ := S, must intersect the interior of the nef cone M. For the fixed type
(S, ), we consider a K3 surface X with a non-symplectic involution 7 of type S and
an anti-holomorphic involution ¢ such that ¢(S) = S (This implies that Top = por)
and ¢|S = 6. Such triplets (X, 1, ¢) are called real K8 surfaces with non-symplectic
involutions of type (S, 0).

We consider the following real analogy for real K3 surfaces with non-symplectic
involutions of type (S, 8) of the degeneration (D) above. An element h € S is called
real if §(h) = —h, i.e. h € S_. For a general real X we have S = N(X), and all real
nef elements are elements of S_ N M.

(DR): A real K3 surface (X, 7, y) with a non-symplectic involution of type (S, 6)
is called degenerate if there exists a real element h € S_ N M which is not nef for
X. This is equivalent to having an element § € N(X) with 6> = —2 such that
& = (81 + 02)/2 where &1 € S, 8, € Sy(x) and 6 = 62 = —4 (i.e., (X, 0) is degenerate
in the sense of (D) as a complex surface). Additionally, §; must be orthogonal to an
element h € S_ Nint(M) with h2 > 0. Here int(M) denote the interior part of M,
i.e., the polyhedron M without its faces.
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The condition (DR) for (X, 7, ¢) implies the condition D for (X, 7). Thus, condition
(DR) is stronger for (X, 7) than (D). It is easy to see that (D) implies (DR) for all
lattices S of rk S < 2 above and all possible 8 for these lattices. But to formulate
a result about connected components of moduli of non-degenerate real K3 surfaces
with non-symplectic involutions (Theorem 3) in general (for arbitrary S), we have to
consider the condition (DR) of degeneration.

We use the same symbol 6 for the anti-holomorphic involution ¢ meq r 00 Y := X/7.
g gives a real structure on Y, and we have 6(A4) = A. We have :
(1) If S = (2), then § = —1 on S, and A is a real nonsingular curve of degree 6 on
P2. The rigid isotopic classification of such curves is known ([18]).
(2) If S = U(2) and (X, ) is non-degenerate, then Y := X/7 = P! x P!, and (i)
§ = —1on S or (ii) Sy = (—4) and S_ = (4). If (i) (called “H case”), then Y(R) is
hyperboloid or spin. If (ii), then Y (R) is ellipsoid.
B)IfS=(2)®(-2),thenf=—-1onS.
(4)IfS=U,thenf=-1onS.

In this article we mention only (2)-(i) case, i.e., H case (hyperboloid or spin) and
(3) case (, then X/7 = ¥,). See §7 for H case, and §8 for ¥, case.

3 Integral involutions with conditions

Let L be the K3 lattice, i.e., even unimodular lattice of signature (3,19). Fix a
primitive embedding of 2-elementary hyperbolic lattice S in L. It is unique up to
automorphisms of L (For the details, see [31], §1). Let A(S,L)(=* be the set of all
elements &; in S such that 62 = —4 and there exists d; € St such that (8;)? = —4
and 6 = (8, + 8,)/2 € L. Then 6% = —2. All elements 6, € A(S, L)=* are roots of
S since —4 = (&;)? divides 2(4;, S) because (6:,5) C 2Z. Let W=4(S, L) C O(S) be
the group generated by reflections in all roots from A(S,L)(~%, and W{4(S, L) m
the stabilizer subgroup of M in W(4(S,L). The set A(S,L){~* is invariant with
respect to W(=2)(S). It follows that the W(=*(S, L) is generated by reflections s;,
in 8, € A(S, L)% such that the the hyperplane (6;)s ® R in S ® R intersects the
interior of M.

The “real” analogy of the group W(=4 (8, L) is the subgroup G defined below.
Let 6 be an involuion of S. We set G (C W(=4(S, L)) to be the subgroup generated
by all reflections ss, in elements §; € A(S, L)~ which are contained either in S, or
in S_ (i.e., s5, should commute with ) and such that ss (M) = M.



We consider an integral involution (L, p,S) with condition (S,8) ([20]) which sat-
isfies:

(RSK3) L is even unimodular of signature (3,19) and the lattice L¥ is hyperbolic
(of signature (1,t_y)).

Remark that a real K3 surface (X, ¢) with a non-symplectic involution 7 of type
(S, 0) corresponds to an integral involution (L, ¢, S} with condition (S, #), where we
set L := Hy(X;Z) and ¢ is the action of ¢ on L. Then the integral involution (L, ¢, S)
satisfies (RSK3) (e.g. see [15] or Sect. 3.10 in [20]).

Definition 1 Two integral involutions (L, ¢, S) and (L', ¢', S) with condition (S, 6)
to be isomorphic with respect to the group G if there exists an isomorphism £ : L — L'
of lattices such that £ = ¢'¢ and £|S belongs to the group G above.

Let In(S, 8, G) denote the set of isomorphism classes (with respect to the group G)
of integral involutions (L, ¢, S) with condition (S, 8) satisfying (RSK3).

4 Moduli of (DR)-non-degenerate real K3 surfaces
with non-symplectic involutions

Definition 2 Two real K3 surfaces (X,7,¢) and (X',7',¢') with non-symplectic
involutions of type (S, 6) are isomorphic with respect to the group G (see §3), if there
exists an isomorphism f : X — X’ such that fr=7'f, fo=¢'f and f.|S € G.

By monodromy consideration, two real K3 surfaces (X, ¢, 7) and (X', ¢',7') with
non-symplectic involutions of type (S, 8) which belong to one connected component
of moduli give isomorphic integral involutions with condition (S,6). Thus, we have
the natural map from the set of connected components of moduli of triplets (X, ¢,7)
to the set In(S, 6, G).

Using Global Torelli Theorem for K3 surfaces [23] and epimorphicity of Torelli map
for K3 surfaces [16], we can prove the following main theorem.

Theorem 3 ([22]) The natural map above gives the one to one correspondence be-
tween the connected components of moduli of (DR )-non-degenerate real K3 surfaces
(X, T, ) with non-symplectic involutions of type (S,0) and the set In(S,0,G).

This result is similar to Theorem 3.10.1 in [18] about moduli of real polarized K3
surfaces. Such statements reduce the problem of description of connected components
of moduli of real algebraic varieties to a purely arithmetic problem.
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Definition 4 (DPN pairs and DPN surfaces [19], [21], [1], [2], [6]) f Y is a
non-singular surface, A € | — 2Ky| a non-singular curve, and gy = 0, then the double
covering of Y ramified along A gives a K3 surface X with a non-symplectic involution
(the covering transformation). A pair (Y, A) with these properties is called a right
DPN pair, and the surface Y is called a right DPN-surface.

We mention that a ‘general’, not necessarily ‘right’, DPN-pair is a pair (Y, A) where Y
is a non-singular surface with gy = 0, A € |~ 2Ky| and A has only ADE-singularities;
then the surface Y is called a DPN-surface.

Like K3 surfaces with non-symplectic involutions, we call a right DPN-pair (Y, 4)
(D )-degenerate if the corresponding K3 surface with non-symplectic involution (X, 7)
is (D)-degenerate.

By a real right DPN-pair (Y, A, 0) we mean (Y, 0) is a non-singular projective alge-
braic surface with an anti-holomorphic involution 6, and A € |-2Ky| is a non-singular
curve such that 6(A) = (A). We call a real right DPN-pair (Y, A, ) (DR )-degenerate
if the corresponding real K3 surface with non-symplectic involution (X, 7, ¢) is (DR)-
degenerate.

There exist two real double coverings of Y ramified along A, which are two real K3
surfaces with non-symplectic involutions (X, 7, ) and (X, 7, §) where @ := 7 = 7.
They both define the same real right DPN-pair (Y := X/7, A:= X", 6 := © mod r)-

Definition 5 (related real K3 surfaces, positive real right DPN-pair) We say
these two real K3 surfaces with non-symplectic involutions (X, 7, ¢) and (X, 7, p) are
related. A real right DPN-pair (Y, A, 8) together with a choice of one (between two)
real K3 surface with non-symplectic involution (X, 7, ) such that its quotient by
gives (Y, A, 8) is called a positive real right DPN-pair.

We denote a positive real right DPN-pair by (Y, A,60)*". Then the related positive
real right DPN-pair will be denoted by (Y, 8, A)~. If (Y, A,6)* is given by (X, 1, p),
then the related positive DPN-pair is given by (X, 7, $). We can define positive real
right DPN-pairs of type (S,0) and an isomorphism of positive real right DPN-pairs
with respect to the group G defined by (S,6). Obviously, an isomorphism of real K3
surfaces with non-symplectic involutions (X, T, ) and (X', 7, ') defines the corre-
sponding isomorphism of the related real K3 surfaces with non-symplectic involutions
(X, 7,%) and (X', 7, ¢"). Moreover, the type (S,6) and the group G don’t change for '
related real K3 surfaces with non-symplectic involutions. Moreover, we can see related -
positive real right DPN-pairs are (DR)-degenerate simultaneously.

We formulate an equivalent theorem from Theorem 3:



Theorem 6 ([22]) The natural map gives the one to one correspondence between
connected components of moduli of (DR )-non-degenerate positive real right DPN-pairs
(Y,6,A)* of type (S,0) and the set In(S,0,G).

The integral involutions (L, ¢, S) and (L, , S) corresponding to related positive
real right DPN-pairs (Y, 4,0)" and (Y, A,6)~ are related as & = 7y. Recall that
7 acts as +1 on S and as —1 on S;. Thus, we say naturally integral involutions
(L,9,S) and (L, 3, S) are related. From Theorem 6 we get
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Theorem 7 (moduli of (DR)-non-degenerate real right DPN-pairs, [22]) The

natural map gives the one to one correspondence between connected components of
moduli of (DR )-non-degenerate real right DPN-pairs (Y, A, 8) of type (S,0) and the
set In(S,0,G)/{1,7} of pairs {(L,»,S),(L,5,S)} of isomorphism classes (with re-
spect to G) of related integral involutions.

5 Invariants of integral involutions with conditions

Let S be a 2-elementary and hyperbolic (of signature (1,%-)(S))), even lattice
having a primitive embedding S C L to the K3 lattice L and such that there exists
an involution 7 of L with L™ = S. (The last property is equivalent for S to be
2-elementary.) By [18],Th.3.6.2, the isomorphism class of S is determined by the
triplet of invariants (r(S), a(S), (S)), where 7(S) = 1+ty(S) is the rank of S, a(S)
is defined by S*/S = (Z/2Z)%5), and 6(S) (= 0,1) is the parity of the discriminant
form of S, namely, 6(S) = 0 if and only if (z*)? € Z for any z* € S*. All possible
triplets (r, a,d) = (r(S),a(S), 8(S)) are presented in Figure 2 in [21].

Let (X,7) be a K3 surface with a non-symplectic involution of type S, and X~
be the fixed point set of 7. Then, we have the following interesting results ([19] and

[21]).
0 (and Y is Enriques) if (r(9),a(S),48(S)) = (10,10, 0);
X'=1C+C if (r(S),a(S),4(8)) = (10,8,0); (5.1)
Coys)y+E1+--- + Ek(s) otherwise;

where g(S) = (22 —r(S) —a(5))/2, k(S) = (r(S)—a(S))/2 and C, denote a curve
of genus g and E; & P1. We have

X" ~0 (mod 2)in Hp(X,Z) ifand onlyif &(S)=0. (5.2)
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The dimension of moduli of pairs (X, 7) and the corresponding DPN-pairs (Y; A) is
equal to 20 — r(95).

We now consider the type (5, 8) of a real K3 surface with a non-symplectic involu-
tion (X, 7, ). Any 8 for which S? is negative definite and does not contain elements
z € S? with 2 = —2 can be taken as a type. See [6] about some results in this di-
rection. In this article we shall consider lattices S with r(S) < 2. Then the problem
of finding possible types (S, 8) is very simple.

Assume that the type (S, 8) is fixed. We denote S, = S® and S_ = S;. We shall
use invariants

s=rkS, p=rkS, (5.3)

Then S has the signature (s(4), s(-)) = (1,5—1) and S, has the signature (p(y), p(-)) =
(0,p).

We say two integral involutions (L, ¢, S) and (L', ¢, S) of type (S, 8) have the same
genus with respect to the group G if there exists an automorphism £ : § — S from
G which can be continued to an isomorphism (L,¢,S) @ R — (L', ¢, S) ® R over
R, and an isomorphism (L, ¢, S) ® Z, — (L', ¢, S) ® Z, over the ring Z, of p-adic
integers for any prime p. All the genus invariants (for an arbitrary even lattice S with
an involution §) were found in [20] together with necessary and sufficient conditions
of existence. In many cases a genus has only one isomorphism class. Then the genus
invariants give isomorphism invariants.

We assume that the integral involution (L, y, S) satisfies the condition (RSK3)
above. Then the only real invariant of (L, ¢, S) is

r=1kL® =1+t (5.4)

Below we describe the genus invariants of the integral involution (L, ¢, S) of type
(S, 6). To simplify notations, we temporarily denote L, = L? and L_ = L,.
Since L is unimodular, we have

Ay, =Ly'/Le L)L, ®L_) (Z/zzy* (5.5)

where a > 0 is an integer. It is one of the most important genus invariants.
We also have another genus invariants

; (5.6)

= 0 if (z,0(z)) =0 mod2VzxelL
71 1 otherwise
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and

0 if (z,¢(z)) = (z,s,) mod2VzelL
Ops = for some element s, in S . (5.7)
1 otherwise

If 0,5 = 0, then the element s, occurring in the definition of d,s is uniquely defined
modulo 2S. It is called the characteristic element of the involution .
For convenience, we often divide (L, ¢, S) into the following 3 types.

Type0: d,s =0 and 6, =0;
Typela: 6,5 =0 and d, = 1;
Typelb: b5 =1.

For z. € S we put

{0 if (z4,L:)=0 mod 2,
0z, =

5.8
1 otherwise. (58)

Equivalently, 6., = 0 iff ;x4 € 2L3.
Then we have the function 64 : Sy — Z/2Z where 4. +— d,,. We set
Hy = 5;1(0)/2Si - Si/2Si.
These subgroups are equivalent to the invariants J;,. We have a more exact range
for the subgroups H.:
1 . 1
', = (25)3:/251 CH: C 2(Si* N ("Q'S:h))/QS:h & (Si n (ESi))/Si = A.(S?i): C Asi.

Here (25). are the orthogonal projections of 25 C S, & S_. to Sy respectively. This
projections also give the graph I' of the isomorphism < of the groups I'y and I'_. The
Ag_f denote the subgroup of Ag, generated by all elements of order two. Let

H:=H,®,H :=H;oH.)/T.
For simplicity we identify Hy = Hy mod I' C H.
Since L is unimodular,
5,, =0 37, € Ly : %(zi +ah) €L (5.9)
The elements z/, are defined by the elements z, uniquely modulo 2L; this enables

us, for elements z,. € S; and z_ € S_ for which 6,, = d;_ = 0, to define the invariant

%(x+,x'_) mod 2 = —%(x;,x_) mod 2 (€ Z/2Z).
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We can define a finite quadratic form g, : H = 1Z/2Z by

1

1 1
al(zs,z2)] = q5+(§a:+) + -2-(x+,a:’_) - qs_(é-:v_) for z. € Hy.

Moreover (see [20]), when d,5 = 0, we define the characteristic element v by
vi=s, € H=H,®,H. C (S, ®85-)/2S.

The element v should be characteristic for the quadratic form g,, namely, g,(z,v) =
g,(z,z) (mod 1) for any z € H. The element v is zero if §, = 0, and v is not zero if
6¢ =1 and 69,3 = 0.

Finally, we have the following very useful theorems:

Theorem 8 ([20]) Two integral involutions with condition (S, 6) have the same genus
with respect to G if and only if the corresponding two lists of genus invariants

(Ta a; H+, H—,qp;5w9 6¢Sav)~ (510)
are conjugate by the group G of the condition (S,0).

Theorem 9 ([20]) The invariants (5.10) give complete genus invariants of integral
involutions (L, ¢, S) of type (S,0) in the set In(S,0,G). Conditions 1.8.1 and
1.8.2 in [20] are necessary and sufficient for the eristence of an integral involution
in In(S, 8, G) with the genus invariants.

Now we discuss related involutions. We denote by

(r(), a(0); H()+, H(9) -, Go(p); s S5 () (5.11)

the genus invariants (5.10) for ¢.

Theorem 10 ([22]) We have the following relations between genus invariants of the
related involutions (L,p,S) and (L,3 = 7¢,S) (for undefined symbols below, see

(22]).
(o) + r(re) = 22 — 5 + 2p,

a(Tp) — a(p) = a(S) — 2am(,) + 21k p(p),
Sp+ 8rp =89 €S mod 2L,

where tk p means the rank of the matriz which gives p in some bases of Hy and H_
over the field Z/2Z, and sy € S is the characteristic element of (S,0) defined by the



property 2(z,0(z)) = (z,s) mod 2 for any © € S* (the sy is defined mod 2S). In
particular,
dps = O(rp)s-

The H(p)+ and H(Tp)+ are orthogonal with respect to the discriminant bilinear
form bg, on Ag, respectively.
Moreover, we have

I(As,) + a(p) — 2an(,), = (As_) + a(Tp) — 2ap(ry). -

Theorem 10 permits to choose one from two related involutions by some conditions
on their invariants. It helps the classification of the pairs of related involutions, which
is important for the classification of the corresponding DPN-pairs.

Possible types of (5,6) with rk.S < 2. By classification in [18] and also in [19],
[21], there are the following and only the following possibilities for S with r(S) =
rk S < 2. We have

(r(8),a(8),4(S)) =(1,1,1), (2,2,0), (2,2,1), (2,0,0).

We consider all possible 6 for these cases.

The case: (r(S),a(S),d(S)) = (1,1,1). Then S = (2). Since S_ should be hyper-
bolic, S_ = S and # = —1 on S. Then S, = {0}. For this case Y = X/{1,7} = P2.

The case (r(S),a(S),6(S)) = (2,2,0). Then S 2 U(2). We have Y = P! x P! in
the non-degenerate case. Let us consider possible . Dividing form of S by 2, we get
the unimodular lattice U. It follows that if rk S_ = 1, then S_ = (4) and S = (—4).
If rkS_ =2, then 8 = —1 on S. Thus, we get two cases

The case S = U(2), the involution 6 is —1 on S. We consider this case in §7. Then
Y = X/{1,7} = P! x P! in the non-degenerate case. Moreover, Y = X/{1,7} =
P! x P! over R is a hyperboloid, if Y (R) # 0.

The case S & U(2), S_ = (4), S, = (—4). For this case, Y = X/{1,7} =P x P!
and Y over R is an ellipsoid. Really, if Y = X5, then any anti-holomorphic involution
of Y acts as —1 in H*(Y,R) = R? and then§ = -1in S®R.

The case (7(S),a(S),d(S)) = (2,2,1). Then S = (2) ® (—2). Assume that tkS_ =
1 Since the lattice S(27') = (1) & (~1) is unimodular and odd, it follows that

= (2) and S = (—2). Again the lattice S, has elements with square —2 which is
1mp0531b1e for . Thus, # = —1 on S and S, = {0}. We consider this case in §8. For
this case Y = X/{1,7} = L;.
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The case (r(S), a(S),d(S)) = (2,0,0). Then S = U where U = (1) (1) . Since

S_ is hyperbolic, tk. S_ = 1 or 2. Let rkS_ = 1. Since S is unimodular and even,
S_ 2 (2) and S;+ = (—2). Then S; has elements with square —2 which is impossible
for . Thus, rkS- =2 and 6 = —1 on S. Then S_ = S and S; = {0}. For this case,
Y =X/r =%,

6 Geometric interpretation of invariants of inte-
gral involutions

Here we discuss the geometric interpretation of invariants. We first mention the
invariants (r(p), a(¢),6(¢)) = (r,a,6). We denote by S, an oriented surface of the
genus g. _

We have (see Theorem 3.10.6 in [18]) for the real part of X,(R) = X% of X with
the real structure defined by ¢ the same result as for the holomorphic non-symplectic
involution 7: '

) if (r, a, ) = (10, 10, 0);
X,(R)=<{T,UTy if (r,a,6) = (10,8,0); (6.1)
T, (Ty)* otherwise;
where g=(22—r—a)/2, k=(r-a)/2 and

Xo(R) ~ s, (mod 2)in Hy(X,Z). (6.2)

Now we have the following interpretation of the invariant J,_.

Theorem 11 ([28],[22]) Let X be a compact Kihler surface with an anti-holomorphic
involution ¢, and X (R) be the fized point set of ¢. We assume that H\(X;Z) = 0
and X(R) # 0. We set L = Hy(X;Z) and L, = {z € L | ps(z) = —z}. Let C be a
1-dimensional compler submanifold of X with ¢(C) = C, and C(R) be the fized point
set of ¢ on C. Let [C] (€ L,) denote the homology classes represented by C. Then
we have:

[C]-z2=0 (mod 2)Vz € L, if and only if [C(R)] =0 in Hi(X(R);Z/2Z).

Remark 12 Following (5.8), we have djc; = 0 iff [C] -z =0 (mod 2)Vz € L.



Proof of Theorem 11. Suppose that [C(R)] # 0 in H1(X (R);Z/2Z). Then there
exists an embedded circle D on X (R) such that [C(R)] - [D] # 0, where [C(R)] - [D]
means the Z/2Z-intersection number in X (R). Weset E_ = {z € H%(X;Z) | ¢*(z) =
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—z}. E_ is the Poincaré dual to L,. By Théoréme 2.4 in [17], there exists a surjective -

canonical morphism
ox:E_— Hl(X(R);Z/QZ)
such that
(x(7),0x()) =Q(1,7) (mod 2) Vv,7 € E_,

where (, ) and @ are the forms induced by the cup products on H!(X(R); Z/2Z)
and H?(X;Z). Moreover, by Théoréme 2.5 in [17], the following diagram commutes:

Pic(X)C R E.
al . ox 4
HY (X(R);Z/2Z) - H(X(R);Z/2),

where « is defined as in [17],p.562 (see also below), ¢; is the first Chern class map,
and i is the inclusion map. In the sequel, A” denotes the Poincaré dual element
to a (co)homology class A. Since px is surjective, there exists v (€ E_) such that
vx(7) = [D)F (e H(X(R);Z/2Z)). We consider the divisor class [C] in Pic(X)C.
Then, as is well known, its first Chern class ¢;([C]) is the Pomcare dual to z_. By
the definition (see [17]) of c, we see

o([C)) = 1(C) = [CR)])” (€ Hay(X(R); Z/2L)).
On the other hand, by the above commutative diagram, we see

a([C]) = ex(c([C]) = px ().

Hence, we have [C(R)]-[D] = ([C(R)}”, [D]?) = (¢x(z£), px(7)) = Q(zZ,7) (mod 2) -

= (x_,7F). Thus we have §,_ = 1. This completes the proof of the implication =.
The converse assertion can be proved by the same argument as the proof of Lemma
2 in [26]. Suppose that [C(R)] = 0 in H;(X(R); Z/2Z). Then X (R) and C(R) satisfy
the conditions a) and b) of Remark 2.2 in [14]. By that remark, Lemma 2.3 is appli-
cable to the involution ¢ : X — X and C. Hence, we see (Z_)mod 2 (€ H2(X;Z/2Z))
is orthogonal to Ima;. Since Hy(X;Z) = 0, as in the proof of Lemma 3.7 in [15], we
have Ima, = {z € HQ(X Z/2Z) | p«(z) = z}. Thus we have §;_ =0. O

By similar arguments as above, we also have:

Proposition 13 ([22]) Let (X, 7,¢) be a real K3 surface with a non-symplectic in-
volution of type (S,8) with non empty A= X7. Then, if A is dividing, then d,s = 0.
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Proof. Suppose that [A(R)] = 0 in Hy(A;Z/2Z). Then A(R) and A satisfy the
condition a) in Sect. 2.2 of [14]. Since A(R) is a disjoint union of circles, w;(A(R)) =
0, and the condition b) is also satisfied. Using the notation of [14], we obtain that
I(Pa)) realizes the nulls of the group Ha(Pa;Z/2Z). Since T¢ = ¢, we have
7(X(R)) = X(R), and A(R) = AN X(R).

The tangent bundle T'(4), which is real 2-dimensional, is isomorphic to the normal
bundle N(A) of A in X (because X is a K3 surface), and the tangent bundle T(A(R))
is isomorphic to the normal bundle N(A(R)) of A(R) in X (R). Since [(Pa)) realizes
the nulls of the group Ha(Pa,Z/2Z), by Lemma 1 in Sec. 2.3 of [14], the class
[X(R)] in Hy(X,Z/2Z) is orthogonal to Imay in Hy(X,Z/2Z) with respect to the
intersection pairing where o5 is the homomorphism in the Smith exact sequence for
(X, ) (see [14]). Since H;(X,Z) =0, as in the proof of Lemma 3.7 in [15], we have
Imay, = {z € Hy(X,Z/2Z) | 7.(z) = z}. It follows, d,5 =0. O

Applying Donaldson’s trick [7], like in [6], we can consider ¢ as a holomorphic
involution and 7 as an anti-holomorphic. Then the converse statement to Proposition
13 follows from Theorem 11. See also §9.

7 Connected components of moduli of real non-
singular curves of bidegree (4,4) on H

Here we consider the case S 2 U(2) and@ = —1on S. Then Y = X/{1,7} = P1xP!
in the non-degenerate case. A = X7 is a non-singular curve of bidegree (4,4) in Y.

Let S = Ze;, + Ze, where €2 = €2 = 0 and (e;, e3) = 2. The generators e; and e; of
S are classes of preimages of pt x P! and P! x pt respectively.

If Y is a hyperboloid, namely, has (usual, usual) structure, then A is the zero set of
a real bi-homogeneous polynomial P(z : Z1; ¥o : y1) of bidegree (4,4). We call a pair
(A, ©) a positive curve. For (A, ), equivalently for A* = 7(X,(R)), we can choose
P by the condition that A = {P = 0} in P! x P! and A* = {P > 0} on RP' x RP'.
The polynomial P is defined up to Ry x ((PGL(2,R) x PGL(2,R)) x Z/2Z). Here
R, . denote all positive real numbers. Thus, classification of connected components
of moduli of positive curves A* on a hyperboloid is equivalent to the description of
connected components of '

((]R25 - Discr)/R++) / (PGL(2,R) x PGL(2,R)) x Z/2Z)
where the discriminant Discr is the set of all polynomials giving singular (over C)

curves. - The group (PGL(2,R) x PGL(2,R)) X Z/2Z has 8 connected components
and has dimension 6 over R.



If Y has one of spin structures, then Discr has codimension two. Hence the moduli
of positive curves and the moduli of curves are connected.

For (S,6) = (U(2),—1), we have G = {identity, g} = Z/2Z, where g(e,) = e and
g(ez) = e.

We have s = 2, p = 0. As_ := S*/S_ = S*/S is generated by e} = Ze, and
€5 = 1ey, and hence it is isomorphic to (Z/2Z)* and l(As_) = 2. We have As, =
0, H, =0and H = H. (C 5/29) is one of the following 5 subgroups;

0’ [61]7 [62]’ [h] = [el + 62]’ 5/28 = [elieZL

where we set h = e; + e, and consider e;, e; and A mod 2S. Since H, = 0, we have
9 = (—gs_)|H-.

From such considerations, we see that genus of an integral involutions (L, ¢, S)
of the type (U(2),—1) satisfying (RSK3) is determined by the data (r,a, H, d,s,v).
Moreover, in this case, each genus determines the unique isomorphism class (see [22]).

Using Theorem 9, we obtain all possible data

(r,a,H,é,s,v) (7.1)

are given in Figures () 1 and 2.

Since G = {identity, g}, the triplets (r,a, [e;]) and (r,a, [e2]) represent the same
isomorphism class for each Type (0, Ia and Ib). The other different triplets represent
different isomorphism classes.

The relations between related involutions are as follows. Since §(S) =0and 6 = —1
on S, then sy =0 mod 2L. Hence, by Theorem 10, we have:

() +7(10) = 20, an(y) +om@ry) =2 a(®) = an) = a(79) — tu@ry;  (7:2)

H(tp) = H(p)*t w. 1. t. bs_ on As_; 06,5 = 0rps; Sp = 8-, mod2L. (7.3)

Hence, involutions of Type 0 (resp. Type Ib) with H = 0 (11 (resp. 39) classes)
are related to involutions of Type 0 (resp. Type Ib) with H = §/2S. Involutions of
Type 0 (resp. Type Ia, Type Ib) with H = [h] (11 (resp. 12, 36) classes) are related
to involutions of Type 0 (resp. Type Ia, Type Ib) with H = [h]. (More precisely, the
class (r,a) is related to the class with (20 — 7, a), too.) Involutions of Type 0 (resp.
Type Ia, Type Ib) with H = [e;] (9 (resp. 11, 30) classes) are related to involutions
of Type 0 (resp. Type Ia, Type Ib) with H = [e;]. (More precisely, the class (r,a) is
related to the class (20 —r,qa).)
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H=S/25
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X 2: H: All possible (r,a,d,s,v) with H = [h] and H =[e;] (i =1 or 2)

Thus, there are 50(= 11 + 39) classes (i.e., connected components of moduli of
positives curves of bidegree (4, 4) with (S,6) = (U(2), —1)) with H =0 (or H = §/2S
respectively), 59(= 11 + 12 + 36) classes with H = [h], and 50(= 9 + 11 + 30) classes
with H = [6,'].

Moreover, if we identify related involutions, there are 50(= 11 + 39) classes (i.e.,
connected components of moduli of real non-singular curves of bidegree (4,4) with
(5,8) = (U(2),-1)) with H = 0 (or H = 5/25), 34(= 8 + 6 + 20) classes with
H = [h], and 32(= 7 + 8 + 17) classes with H = [e;].

If two positive curves are in one connected component of moduli or are related,
the real structure on Y stays the same. By (6.1) and (6.2), the A% is empty, if
and only if (r,a,d,) = (10,10,0). It follows that the component (r,a, H, d,s,d,) =
(10,10, [h], 0, 0) corresponds to the real structure (spin, spin), the component (10, 10,
[e5],0,0) corresponds to the real structure (usual, spin) (or (spin, usual)). And all the



(1{m) Un),
where (m,n) = (9,0), (5,4), (1,8), (8,0), (5,3), (4,4), (1,7);
orm>1, n>0andm+n<7.

my, |
where 0 <m < 9.

(1{1) U (1))

<ll + 1y, m, Iy + 1y, n),
where 0 <m<nand m+n<8.

(4(h + b))

<l1, m, l1, n),
where (m,n) = (0,8), (4,4), (0,7), (3,4);
or0<m<nand m+n<86.

(4(hh))

(2(l, + 213))

# 1: All isotopy types of real non-singular curves of bidegree (4, 4) on a hyperboloid.

remaining components correspond to the real structure (usual, usual) (namely, hy-
perboloid). The component (10, 10, 5/2S,0,0) consists of empty A1 on hyperboloid.

The isotopy classification of real non-singular curves of bidegree (4,4) on a hyper-
boloid was obtained by Gudkov [8]. Zvonilov [34] clarified all the complez schemes of
curves of bidegree (4,4) on hyperboloid and ellipsoid, where compler schemes mean
real schemes (i.e. real isotopy types) with dividingness and their complex orientations
(if dividing). The notions: torsion (s,t) (€ Z x Z) of a connected component of A(R),
oval or non-oval and odd (even) branch are well-known. See [8], [25], [26]. We quote
the isotopy classification of non-singular curves of bidegree (4, 4) on hyperboloid from
[34] in TABLE(#) 1 where we use notations due to Viro [32] and Zvonilov [34], and
l; and [l denote non-ovals with torsions (1,0) and (0, 1) respectively.

Let A(R) be a curve on hyperboloid, and A* and A~ be the halfs of RP! x RP!\
AR). (If At = 7(X,(R)), then A~ = 7(X;4,(R)). ) When a curve A(R) on
hyperboloid has only ovals or A(R) =@, A* or A~ contains the outermost component.
Thus we divide isotopy types of positive curves A* into the following 4 cases: (i)
A(R) has only ovals or A(R) = @, and A* contains the outermost component. (In
this case we say A* is outer.) (ii) A(R) has only ovals or A(R) = @, and A* does
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not contain the outermost component. (In this case we say A* is inner.) (iii) A’(IR)V

has even branches. (iv) A(R) has odd branches.
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The subgroup H = H_ is determined by the invariants d.,, de, and 65. For the
geometric interpretation of the invariant d,_, we have Theorem 11. Thus, we have
H =0 if and only if A* is outer, H = §/2S if and only if A% is inner, H = [h] if and
only if A(R) has even branches, H = [e;] if and only if A(R) has odd branches with
odd s, and H = [e,] if and only if A(R) has odd branches with odd ¢.

When A is a dividing curve on hyperboloid with non-ovals, we define the number
[ (€ Z/2Z) as follows (see [24]): Fix a complex orientation of A(R). When the
number of non-ovals of A(R) is 2, we define [ = 0 if the complex orientations of the
2 non-ovals are different in RP! x RP?, [ = 1 if otherwise. When the number of non-
ovals of A(R) is 4, we fix a non-oval E and define [ = 0 if the number of non-ovals
whose complex orientations are the same as E in RP! x RP! is even, [ =1if odd.

The following proposition is a corollary of Proposition 13. But we can prove it
independently by some results in [24].

Proposition 14 ([27], [11], [22]) Let A be a non-singular real curve of bidegree
(4,4) on hyperboloid. If A is dividing, then the positive curves (A, ) satisfies 8,5 = 0.

Moreover, we have the following interpretation of v when A is a dividing curve with
non-ovals on hyperboloid:

v =0 if and only if { = 0,

v = h (mod 2S) if and only if A(R) has even branches and [=1,

v = e; (mod 2S) if and only if A(R) has odd branches with odd s and i=1,

v = ey (mod 2S) if and only if A(R) has odd branches with odd ¢ and [=1.

By the geometric interpretations above and Zvonilov’s classification [34], we see
that the complex scheme of A is unique for each value of the invariant (7.1), equiva-
lently, each connected component of moduli of positive curves A* on a hyperboloid.
Recall that A(R) is an empty curve on hyperboloid if H = S/2S and (r, a, dys, )
(10,10,0,0), Y has the (spin,spin) structure if H = [h] and (, a, d,s,v) = (10,10,0,0
and Y has the (usual,spin) (or (spin,usual)) structure if H = [e;] and (r,a, d,s,v)
(10, 10, 0, 0).

Moreover, there exists (due to Zvonilov [34]) a dividing curve on hyperboloid for ev-
ery connected component with d,s = 0. Hence, the opposite statement of Proposition
14 is true:

]

N—r’

b

Theorem 15 ([22]) Let A be a non-singular real curve of bidegree (4,4) on hyper-
boloid. Then, A is dividing or A(R) = 0, if and only if the positive curves (A, @) (or
A*) has 6,5 =0. O



It turns out that if d,¢ = 0 and H = [h], then (r,a) determines v. But when
dos = 0 and H = [e;], (r,a) does not always determine v. As stated above, when
05 =0, H = [e;] and (r,a,v) # (10,10,0), v =0 if and only if { = 0.

Thus, we finally get

Theorem 16 ([22]) A connected component of moduli of a positive real non-singular
curve At of bidegree (4,4) on hyperboloid is defined by the isotopy type of AT C
RP! x RP! (up to the action of (PGL(2,R) x PGL(2,R)) x Z/2Z), dividingness of
A(R) in A(C), and by the invariant [ mod 2 defined by the complex orientation (if
A(R) has odd branches and is dividing).

8 Connected components of moduli of real non-
singular curves in | — 2Ky, | on ¥,

Here we consider the case S = (2) @ (—2) and § = —1 on S. Then we have
Y = X/{1,7} = ;. For the exceptional section of ¥; with square —1, we denote by
e its preimage on X. Then e? = —2. We consider the contraction ¥; — P? of the
exceptional section and denote by h the preimage in X of a line [ C P2. Then h% = 2,
h-e=0. We have S = Zh + Ze. Since § = —1, we have S, = {0}, s =2, p =0 and
we see G is trivial. The group As_ is generated by h* = 1k and e* = —Ze, and hence
As_ = (Z/2Z)? and [(As_) = 2. The characteristic element of gs_ is h+ e (mod 2S5).
We have Ag, =0, H. =0. SinceI'_ =0, H = H_ (C 5/28) is one of the following
5 subgroups:

0, [h], [e], [h+e€], S/25 = [h,€],
where we consider i, e mod 2S. Since H, = 0, we have g, = (—gs_)|H_.

We see that the genus (hence, isomorphism class for ¥; case like H case) of an
integral involutions (L, ¢, S) of type ((2) & (—2), —1) satisfying (RSK3) is determined
by the data

(ri a, H, 6tpS: ’U), (81)
Using Theorem 9, we give all these possible data in Figures (X) 3 — 5.

By Theorem 10 about related involutions, we have
() +r(r9) = 20, a(p) - an(y) = a(T¥) — an(ry),
sy + arre) = 2, H(r¢) = H(p)* w.rt. bs_, (8.2)
0ps = 0(r¢)sy Sp +Srp =h-+e mod 2L.

1m
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B4 6: H = S/28 with (r,a,8,s,v) # (10,10,0,h + €) and = (10, 10,0,k + ¢).

Thus, integral involutions of Type 0 with H = 0 (12 classes) are related to involutions
of Type Ia with H = S/2S. Involutions of Type 0 with H = [h + €] (10 classes) are
related to involutions of Type la with H = [h + e]. Involutions of Type Ia with
H = [h] (13 classes) are related to involutions of Type Ia with H = [e]. Involutions
of Type Ib with H = 0 (39 classes) are related to involutions of Type Ib with H =
S/2S. Involutions of Type Ib with H = [h] (39 classes) are related to involutions
of Type Ib with H = [e]. Finally, the class (r,a, H = [h + €], TypeIb) is related to
(20 — r,a,H = [h + €], TypeIb). (There are 30 classes of Type Ib with H = [h + €].)

Moreover, if we identify related involutions, there are 35(= 12 + 10 + 13) classes
with d,5 = 0 and 95(= 39 4 39 + 17) classes with d,s = 1.

Let us consider the geometric interpretation of the above calculations. We denote
by s the exceptional section of ¥; with s> = —1 and by c the fiber of the natural
fibration 7 : £; — P. The contraction of s (as an exceptional curve of the first kind)
gives the natural morphism p : £; — P2, and we denote P = p(s). A non-singular
curve A € | — 2Ky, | gives then a curve A; = p(A) of degree 6 in P? with only one
singular point P which is a quadratic singular point resolving by one blow-up. A
small deformation of A or A; (in the same connected component of moduli) makes P
non-degenerate. Using Bezoute theorem, one can easily draw all in principle possible
pictures of A;. For example, one can find these pictures in Figure 1 of [13]. Lifting
these pictures to ¥; and using (6.1), (6.2) and Theorem 11 applied to both positive
curves A* and A~, we get from Figures (&) 3 — 5 all pictures of A* on X, up to
isotopy. For example, see Figure () 6. The interval AA denotes s(R), the real
part of the exceptional section s, and the interval BB denotes the p~(I(R)) of a real
projective line ! C P2 which does not contain P. ‘

We have the following geometric interpretation of the invariants &, and d. (see
(5.8)) of A* if A* # 0. We have 8, = 0 (equivalently, h mod 2 € H), if and only
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if homotopically [(R) C A~ (i.e. some deformation of !(R) is contained in A7).
Similarly, 8. = 0, if and only if homotopically s(R) C A~. The invariants é, and 6,
for both positive curves AT and A~ are sufficient to find the group H.

Thus, we get the isotopy classification of real non-singular curves A € | —2K7x,|. In
this classification we don’t care about position of A(R) with respect to the real part
s(R) of the exceptional section (one can see that more delicate classification in [13]).

We have the following interpretation of the invariant d,s: one has dps = 0 if and
only if the curve A is dividing, i.e., A(R) = 0 in H,(A(C),Z/2), equivalently, A(R)
divides A(C) in two connected parts or A(R) = 0.

One direction follows from Proposition 13 like Proposition 14 for the hyperboloid.
For the opposite direction, it would be enough to construct a dividing curve A on %;
in each case when 6,5 = 0 because we know that invariants (8.1) define the connected
components of moduli. It should follow from known results about real curves of degree
6 (e.g., see [12] and [13)).

Thus, we finally get

Theorem 17 ([22]) A connected component of moduli of a positive real non-singular
curve A € | — 2Ky, | is defined by the isotopy type of AT C L;(R) and by the divid-
ingness of A(R) in A(C) (equivalently, by the invariant d,s). All these possibilities
are presented in Figures (X) 3 — 5 and in (8.2).

9 A vista —Hyperkahler structures of K3 surfaces—

Let X be a K3 surface and w be a nowhere vanishing holomorphic 2-form on X.
Let 7 be a holomorphic involution on X with 7w = —w (i.e., 7 is non-symplectic).
Let A be the fixed point set of 7 on X. We assume that A # . (A is a complex
1-dimensional submanifold of X.) We set L = Hy(X;Z), L, = {z € L | 7u(z) = —z}
and L™ = {z € L | 7.(z) = z}. Let ¢ be an anti-holomorphic involution on X with
¢*w = w. We assume ,(L7) = L”. Then we have 7¢ = ¢7 and p(A) = A. Let A(R)
be the fixed point set of ¢ on A. We assume A(R) # . Let X(R) be the fixed point
set of ¢ on X. Then X(R) is an orientable closed surface and 7(X (R)) = X(R). We
see T is orientation-reversing on X (R). Hence, the homology class [X (R)] represented
by X(R) in L belongs to L. , :

Under the assumptions above, we want to prove the following assertion by means
of Theorem 11 as we mentioned in the bottom of §6.

Assertion 18 Under the assumptions above,

[X(R)]-z=0 (mod 2)Vz € L, if and only if [A(R)]=0 in Hy(A;Z/2Z).



Remark 19 Let S be the isomorphism class of L™. We set 6 := ¢,|S. Then recall
that (S, 6) is the type of (X, 7, ). The conditon that [X(R)]-z =0 (mod 2)Vz in L,
is equivalent to the condition that d,s = 0. The condition [A(R)] = 0in H;(A;Z/2Z)
means A(R) is dividing. Thus Assertion 18 says that the invariant d,5 describes the
dividingness of A(R).

Outline of an argument to “prove” Assertion 18 We use some facts on
hyperkéhler manifolds. (See, for example, the lecture notes [10], p.3 and also [6].)
There exists a hyperkadhler metric g on X. Thus there exist three complex structures
I,J and K on X, such that g is Kahler with respect to all three of them and such
that K = JoJ = —JoI. Thus I is orthogonal with respect to g and the Kahler form
g(I( ), ) is closed (similarly for J and K). We set P = g(I( ), ),Q = g(J(), ), and
R =g(K(), ). The holomorphic 2-form on (X, I) can be given as @ + iR (For this,
[10] refers to a book written in 2003).

We want to check the following:

(*1) We may consider the K3 surface X in Assertion 18 has the complex structure J
above.
(*2) We may consider that

m™(P) =P, ™(Q) = -Q, ™(R) = —R,

¢*(P) = -P, ¢*(Q) = Q and ¢*(R) = —R.

Now we consider the K3 surface (X,J). Since 7*(Q) = —Q, we see that 7 is
anti-holomorphic on (X, J). (*2) also implies that ¢ is holomorphic on (X, J) and
non-symplectic. Hence the fixed point set X (R) of ¢ is a complex 1-dimensional
submanifold of (X, J) ([19], p.1424). The fixed point set of 7 on X (R) is A(R). Thus
we can apply Theorem 11 to the K3 surface (X, J), the anti-holomorphic involution
7 and the complex curve X(R) =: C. Thus we might be able to prove Assertion 18.
This idea is suggested by Professor K.-I. Yoshikawa. The author would like to thank
him.
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