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0 Introduction

The goals of this short article are to introduce various kinds of tangent
distributions on manifolds, for those Gray type theorems hold. Especially
we introduce a recent result by the author ([A1]) on a generalization of
the Gray theorem.

Global stabilities of various kinds of distributions on manifolds are
important and interesting issues. For example, the well-known Gray the-
orem (see [Gr]) states that a deformation of a contact structure, through
contact structures, on a compact manifold is represented by a family of
global diffeomorphisms. We observe in this article some theorems of this
type for various kinds of distributions. We consider sufficient conditions
under which such distributions are globally stable, that is, the defor-
mations can be represented by families of global diffeomorphisms of the
underlying manifolds.

We observe the following results concerning the stability of tangent
distributions. A tangent distribution (or distribution for short) $D$ of rank
$k$ on an $n$-dimensional manifold $M$ is a distribution of fc-dimensional
subspaces $D_{x}\subset T_{x}M$ of a tangent space at each point $x\in M,$ in a strict
sense. In other words, it is a subbundle of the tangent bundle.

important and interesting issues. For example, the well-known Gray the-
orem (see [Gr]) states that a deformation of acontact structure, through
contact structures, on acompact manifold is represented by afamily of
global diffeomorphisms. We observe in this article some theorems of this
type for various kinds of distributions. We consider sufficient conditions
under which such distributions are globally stable, that is, the defor-
mations can be represented by families of global diffeomorphisms of the
underlying manifolds.

We observe the following results concerning the stability of tangent
distributions. Atangent distribution (or distribution for short) $D$ of rank
$k$ on an $n$-dimensional manifold $M$ is adistribution of fc-dimensional
subspaces $D_{x}\subset T_{x}M$ of atangent space at each point $x\in M,$ in astrict
sense. $\ln$ other words, it is asubbundle of the tangent bundle.

In Section 2, we review the original Gray theorem ([Gr]). It is a global
stability theorem where the deformed distributions are contact structures.
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A contact structure is a distribution of corank one on an odd-dimensional
manifold which is completely non-integrable. The Gray Theorem claims
that deformations of a contact structure on a compact manifolds are
represented by global isotopies (see [Gr]). There is no obstruction for
representing a family of contact structures with a family of global dif-
feomorphisms. In the following, we introduce some studies of this type
for some distributions on manifolds, which observe obstructions for the
representation by global isotopies.

In Section 3 we introduce results due to R. Montgomery and M. ZhitO-
$\mathrm{m}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{k}\mathrm{i}\dot{1}$ in [MZh]. They studied in [MZh] Goursat flags. A Goursat flag is
a sequence of derived distributions rank of each of those is different by one
from the next one (see Section 1 for precise definition). In subsection 3.1,
we observe the case of distributions of corank one. A generalization of
the Gray theorem is obtained here. A notion of Cauchy characteristic
distribution (see Section 1 for definition) plays an important role. It is
proved that a deformation of such a distribution preserving the Cauchy
characteristic distribution is represented by a family of global diffeomor-
phisms. In subsection 3.2, we observe a Gray type theorem for Goursat
flags. It is proved that a deformation of Goursat flag preserving the
Cauchy characteristic distribution of the derived distribution of corank
one is represented by a family of global diffeomorphisms. A Goursat flag
of length 2 is, especially, called an Engel structure. In other words, an
Engel structure is a distribution of rank 2 on a 4-dimensional manifold
which is maximally non-integrable. Engel structures had been studied by
F. Engel, E. Goursat, E. Cartan, and many other mathematicians for a
long time. R. Montgomery and A. Golubev proved that Engel structures
are globally stable under some condition about a certain line field (see
[Mo], [Go] $)$ . A result due to R. Montgomery and M. $\mathrm{Z}\mathrm{h}\mathrm{i}\mathrm{t}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{k}\mathrm{i}\dot{1}$ can be
considered as an extension of this result.

In Section 4, we introduce a result in [A1] about global stability of
distributions of higher coranks of derived length one. A subdistribution
$K(D)\subset D$ of a distribution $D$ is defined here. It is known that distri-
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butions with integrable $K(D)$ whose derived distribution is the tangent
bundle has unique local normal form (see [KR]). It is proved that a
deformation of such a distribution preserving the subdistribution $K$ is
represented by a family of global diffeomorphisms.

In Section 5 we introduce results due to B. Jakubczyk and M. Zhit-
$\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{k}\mathrm{i}\dot{1}$ in [JZh3]. They studied global stability of Pfaffian equations.
Pfaffian equations and tangent distributions of corank one have been stud-
ied for a long time. J. Martinet and M. $\mathrm{Z}\mathrm{h}\mathrm{i}\mathrm{t}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{k}\mathrm{i}\dot{1}$ studied their local
normal forms (see [Ma], [Zh2]). Recently, B. Jakubczyk and M. ZhitO-
$\mathrm{m}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{k}\mathrm{i}\dot{1}$ obtained some results on the classification of Pfaffian equations
(see [JZhl], [JZh2], [JZh3]). In the case of Pfaffian equations on odd-
dimensional manifolds, non-contact loci and certain characteristic line
fields on the loci played an important role for the classification. And,
in the case of Pfaffian equations on even-dimensional manifolds, certain
characteristic line fields played an important role for the classification.
They obtained a sufficient condition for global stability in terms of above
notions.

In Section 6, we introduce examples of distributions of rank 2 on 4-
manifolds with non-Engel locus. M. Zhitomirskiiobtained them in [Zhl]
as normal forms. We mention about results, in the forthcoming paper
[A2], about global stability of such distributions. Non-Engel loci and
characteristic line fields play an important role.

1 $\mathrm{P}\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{r}\dot{\mathrm{l}}\mathrm{e}\mathrm{s}$

In this section, we define some basic notions needed in the following
sections. Some notions needed in one of the sections is defined in each
section. Strong derived distr butions $D^{i}$ , $i=1,2$ , . . . , $k$ , of a distribution
$D$ are defined pointwise inductively as follows,

$\{\begin{array}{l}D^{1}=DD^{i+1}=D^{i}+[D^{i},D^{i}]\end{array}$
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Note that it is defined pointwise in terms of sheaves of vector fields which
are cross-section of the subbundle $D\subset TM.$ Therefore ranks of $D_{p}^{i}$ ,
$p\in M,$ might be different for each point $p\in M.$ We say a distribution $D$

to be Lie square regular if all $D^{i}$ are distributions of constant ranks. The
Cauchy characteristic distribution $L(D)$ of a distribution $D$ is defined
pointwise as follows,

$L(D)_{p}=$ {$X\in D_{p}|[X,$ $Y]\in D_{p}$ , for any $Y\in D_{p}$ },
$=$ { $X\in D_{p}|\mathrm{X}_{\lrcorner}$ckv $|_{D_{p}}=0,$ for any $\omega$ $\in$ $\mathrm{S}(\mathrm{D})$ }.

When $L(D)$ is a distribution of constant rank, the distribution $L(D)$

is integrable according to the Probenius theorem. Note that $L(D)$ is a
distribution of rank 0 when $D$ is a contact structure.

2 The original Gray theorem

In this section, we introduce the well-known Gray theorem proved in [Gr].
It is one of the most important Theorem for contact topology.

Theorem 2.1 (Gray). Let $D_{t}$ be a family of contact structures on $a$

compact orientable manifold M. Then there exists a family $\Phi_{t}$ : $Marrow M$

of global diffeomorphisms which satisfies $\varphi_{0}=$ id and $(\varphi_{t})_{*}D_{0}=D_{t}$ .

3 Lie square regular distributions and Goursat flags

In this section, we introduce some results due to R. Montgomery and
M. Ya. $\mathrm{Z}\mathrm{h}\mathrm{i}\mathrm{t}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{k}\mathrm{i}_{\dot{1}}([\mathrm{M}\mathrm{Z}\mathrm{h}])$ . They studied Goursat flags from the ge0-

metric view point. The first step of their inductive proof is a generaliza-
tion of the Gray theorem.

3.1 Lie square regular distributions of corank one.

The following is proved in [MZh].
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Theorem 3.1 $(\mathrm{M}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{g}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{y}- \mathrm{Z}\mathrm{h}\mathrm{i}\mathrm{t}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{k}\mathrm{i}_{\dot{1}})$. Let $D_{t}$ , t $\in[0,$ 1], be $a$

one-parameter family of distributions of corank k $=1$ on a compact $or\dot{\mathrm{v}}-$

entable manifold M. It is assumed that $D_{t}$ has the Cauchy characteristic
distribution $L(D_{t})\equiv L$ of constant rank for any $t\in[0,1]$ . Then, there
exists a family of global diffeomorphisms $\varphi_{t}$ : $M$ $arrow M_{i}t\in[0,1]$ , which

satisfies $\varphi_{0}=$ id and $(\varphi_{t})_{*}D_{0}=D_{t}$ for any $t\in[0,1]$ .

Distributions appeared in the theorem above is Lie square regular. TheO-
rem 3.1 is a generalization of the Gray theorem 2.1 since rank $L(D_{t})=0$

if $D_{t}$ are contact structures.

3.2 Goursat flags.

They also proved a Gray type theorem for Goursat flags. A Goursat flag
of length $s$ on a manifold $M$ is a sequence

(F) : $D_{s}\subset D_{s-1}\subset$ . . $\subset D_{1}\subset D_{0}=TM$ , $s\geq 2$

of distributions on $M$ which satisfies the following conditions:

$\{\begin{array}{l}\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}D_{i}=i,i=1,2,\ldots,sD_{i-1}=D_{i}^{2}=D_{i}+[D_{i},D_{i}],i=1,2,\ldots,s\end{array}$

The following is proved in [MZh].

Theorem 3.2 $(\mathrm{M}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{g}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{y}- \mathrm{Z}\mathrm{h}\mathrm{i}\mathrm{t}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{k}\mathrm{i}_{\dot{1}})$. Let (F) : $D_{s,t}\subset$ , . $\subset$

$D_{1,t}\subset TM,$ $t\in[0,1]$ be a family of Goursat flags of Length $s$ on a compact
orientable manifold M. Suppose that $L(D_{1,t})\equiv L(D_{1,0}$ for any $t\in[0,1]$ .

Then there exists a family $\varphi:Marrow M$ of diffeomorphisms which satisfies
$\varphi 0=$ id and $(\varphi_{t})_{*}(F_{t})=(F_{0})$ .

A distribution of rank 2 on a 4-manifold which construct a Goursat
flag of length 2 is called an Engel $st$ ucture. It is known that Engel
structures have a unique local normal form. A Gray type theorem for
Engel structure is studied independently (see [Go], [Mo]).
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Theorem 3.3 (Golubev, Montgomery). Let $D_{t}$ be a family of Engel
structures on a compact orientable 4-manifold M. Suppose that $L(D_{t}^{2})\equiv$

$L(D_{0}^{2})$ for any $t\in[0,1]$ . Then there exists a family $\varphi:Marrow M$ of
diffeomorphisms which satisfies $?\mathit{0}$ $=$ id and $(\varphi_{t})_{*}(D_{t})=(D_{0})$ .

Note that Theorem 3.2 can be considered as an extension of Theorem 3.3.

4 Lie square regular distributions of higher coranks

In this section, we introduce a result obtained in [A1], It is a Gray type
theorem for Lie square regular distributions those coranks are greater
than one.

First of all, we define a certain subdistribution $K(D)$ of a distribution
$D$ . It is defined in terms of the Pfaffian system $S(D)$ . We define a
covariant system associated to a Pfaffian system $S\subset T^{*}M$ according to
A. Kumpera and J. L. Rubin (see [KR]), as follows. The bundle map
$\delta:S$ $arrow\wedge^{2}(T^{*}M/S)$ defined on local sections of $S$ as $\delta(\omega)=d\omega$ (mod $S$ )
is called the Martinet structure tensor (see [Ma]). We define the polar
space $\mathrm{P}\mathrm{o}1(S)_{p}$ of $S$ at $p\in M$ as

$\mathrm{P}\mathrm{o}1(S)_{p}:=$ { $w\in T_{p}^{*}M/S_{p}|w\Lambda\delta(\omega)=0,$ for any $\omega$ $\in S$ }

When the polar space $\mathrm{P}\mathrm{o}1(S)_{p}$ has a constant rank on $M$ , we define the
covariant system $\hat{S}$ associated to $S$ as $\hat{S}:=q^{-1}$ (Pol(S)), where $q:T^{*}Marrow$

$T^{*}M/S$ is the quotient map. For a distribution $D\subset TM,$ let $K(D)$

denote the subdistribution of $D$ which is annihilated by the covariant
system $\hat{S}(D)$ associated to the Pfaffian system $S(D)$ .

Example 4.1. We give an example of the polar space and the covariant
system for the standard distribution on $7^{1}(1, k)\cong \mathbb{R}^{2k+1}$ . Let $D_{0}=\{\omega_{1}=$

$0$ , $\ldots$ , $\omega_{k}=0$ }, where $\omega_{i}:=dx_{2i-1}+x_{2i}$dt, be a distribution on $\mathbb{R}^{2k+1}$ with
the standard coordinates $(x_{1}, \ldots, \mathrm{x}2\mathrm{k}, t)$ . When $k>1,$ the distribution of
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polar spaces of $S(D_{0})$ is obtained as follows:

$\mathrm{P}\mathrm{o}1(S(D_{0}))=\{w\in$ T*M/S $(D_{0})|$

$w\Lambda dx_{2i}\Lambda dt\equiv 0$ $(\mathrm{m}\mathrm{o}\mathrm{d} S(D_{0}))$ , $i=1,2$ , $\ldots$ , $k$}
$=\{dt\}$ .

Then the covariant system is obtained as follows:

$\hat{S}(D_{0})=\{\omega_{1}, . , \omega_{k}, dt\}=\{dx_{1}, dx_{3}, \ldots, dx_{2k-1}, dt\}$ .

Then we have $K(D_{0})=\langle\partial/\partial x_{2}, \partial/\partial x_{4}, \ldots, \partial/\partial x_{2k}\rangle$ . They are clearly
integrable. When $k=1$ , $D_{0}=\{dx_{1}-x_{2}dt=0\}$ is the standard con-
tact structure on $\mathbb{R}^{3}$ . Then we have $\mathrm{P}\mathrm{o}1(S(D_{0}))=\{dx_{2}, dt\}$ , $5(D_{0})$ $=$

$\{dx_{1}, dx_{2}, dt\}$ , and $K(D_{0})=\langle$0 $\rangle$ .

The main theorem in [A1] is the following.

Theorem 4.2. Let $D_{t}$ , $t\in$ $[0, 1]f$ be $a$ one-parameter family of distribu-
tions of corank $k\geq 1$ on a compact orientable manifold M. Suppose, for
any $t\in[0,1]$ :

(1) the first derived distributions coincide with the tangent bundle of $M$ :
$D_{t}^{2}=TM,$

(2) there exists a constant integrable subdistribution $K\subset D_{t}$ of corank
one.

Then, there exists a family $\varphi_{t}$ : $Marrow M$ , $t\in[0,1]f$ of global diffeomor-
phisms which satisfies $\varphi_{0}=$ id and $(\varphi_{t})_{*}D_{0}=D_{t}$ for any $t\in[0,1]$ .

Note that Theorem 4.2 is obtained from Theorem 3.1 when $k=1$ since
$L(D_{t})=K(D_{t})$ then and they are integrable from the definition of the
Cauchy characteristic distribution.

It is also proved in [KR] that such distributions as in Theorem 4.2 have
have a unique normal form as in Example 4.1.
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Proposition 4.3 (Kumpera-Rubin). Let $D$ be a distribution of corank
$k>1$ on a manifold $M$ whose derived distribution coincides with the
tangent bundle: $D^{2}=TM.$ If the distribution $K(D)$ is integrable, then
at each point $p\in M$ the distribution $D$ admits the following local normal
$fom$: $D=\{\omega_{1}=0, \ldots, \omega_{k}=0\}$ ,

$\omega_{1}=dx_{1}+X$ $i$ , w2 $=dx_{3}+$ x4dt, , $\omega_{k}=dx_{2k-1}+x_{2k}$dt,

where the coordinates Xi, t vanish at p $\in M$

5 Distributions of corank 1 with singularities

In this section, we introduce some results obtained by B. Jakubczyk and
M. $\mathrm{Z}\mathrm{h}\mathrm{i}\mathrm{t}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{k}\mathrm{i}\dot{1}$ in [JZh3]. They studied in [JZh3] global stability of dis-
tributions with degeneracy loci. The first typical example is the Martinet
normal form.

Example 5.1 (Martinet). Set $D=\{\alpha=dz-y^{2}dx=0\}$ on $\mathbb{R}^{3}$ with
coordinates $(x, y, z)$ . Then, we obtain the non-contact locus I as follows:

I $=$ { $p\in \mathbb{R}^{3}|$ (cr $\Lambda d\alpha)_{p}=(2ydx\Lambda dy\Lambda dz)_{p}=0$ } $=\{y=0\}$ .

The results in [JZh3] is mentioned in two cases: $(1)\mathrm{t}\mathrm{h}\mathrm{e}$ case $\dim M=$

$2k$ , and (2) the case $\dim M--2k+1,$ where $M$ is an underlying manifold.
Case(l) Let $P=(\omega)$ be a Pfaffian equation on a manifold $M$ of dimen-
sion $n=2k,$ and $\omega$ a generator of $P$ . A characteristic vector field $X$

of $P$ is defined the relation $X_{\lrcorner}\omega=\omega\Lambda(d\omega)^{k-1}$ , where $\Omega$ is a volume
form. The line field $L(P)$ generated by a characteristic vector field $X$ is
called the character istic line field of $P$ . Let Sing(L) denote the set of
singular points of $L(P)$ . We introduce an important notion concerning
singular points of $L(P)$ . Let $I_{p}(X)$ be an ideal in the ring of function
germs at $p\in$ Sing(L), generated by the coefficients $a_{1}$ , . . ’

$a_{n}$ of a char-
acteristic vector field $X$ , with respect to some coordinate system around
$p$ . Set $d_{p}(P):=\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{t}\mathrm{h}I_{p}(X)$ . Then the following condition is introduced
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in [JZh3] :

(A) $d_{p}(P)\geq 3$ for any point $p\in$ Sing(L).

It is proved in [JZh3] that this condition is a genericity condition. The
statement of the result is the following:

Theorem 5.2 $(\mathrm{J}\mathrm{a}\mathrm{k}\mathrm{u}\mathrm{b}\mathrm{c}\mathrm{z}\mathrm{y}\mathrm{k}-\mathrm{Z}\mathrm{h}\mathrm{i}\mathrm{t}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{k}\mathrm{i}_{\dot{1}})$ . Let $P_{t}$ , $t\in[0,1]$ , be a fam-
$ily$ of Pfaffian equations on $M_{f}^{2k}k\geq 2_{f}$ which satisfies the following
conditions:

(1) all $P_{t}$ define the common characteristic line field $L=L(Pt)_{f}$

(2) all $P_{t}$ satisfy condition (A).

Then, there exists a family $I)_{t}$ : $Marrow M$ of diffeomorphisms sending $P_{t}$

to $P_{0}$ .

Case(2) As we observe in Example 5.1, there is a non-contact locus called
the Martinet hypersurface: $S=\{p\in M|(\omega\Lambda(d\omega)^{k})_{p}=0\}$ . In a similar
way to Case(l) above, the characteristic line field $L(P)$ on the Martinet
hypersurface $S$ , and the depth $d_{p}(P)$ at singular point $p\in$ Sing(L) are
defined. In this case we need further condition concerning the Martinet
hypersurface. Let $H$ be a function defined as $H=$ $\mathrm{i}$ $\Lambda(d\omega)^{k}/D$ , where
$\Omega$ is a volume form. $H$ determines the Martinet hypersurface $S$ as its
zero level. The ideal (H) is called the Martinet ideal The Martinet ideal
(H) is said to have the property of zeros if the ideal generated by the
germ $H_{p}$ of $H$ at $p\in S=\{H=0\}$ in the ring of all function germs
at $p$ coincides with the ideal consisting of function germs vanishing on
the germ at $p$ of $S$ in the same ring, for any $p\in S.$ We need one more
condition. Let $C^{\infty}(M)$ be the Frech\’e space of smooth functions on $M$ ,
and $C^{\infty}(M, 5)$ its closed subspace consists of functions which vanish on $S$ .
Set $C^{\infty}(S)=C^{\infty}(M)/C^{\infty}(M, \mathrm{S})$ . The Martinet hypersurface $S$ is said
to have the extension property if there exists a continuous linear operator
$\lambda:C^{\infty}(S)arrow C^{\infty}(M)$ which satisfy $\lambda(f)|s=f$ for all $f\in C^{\infty}(S)$ . The
statement of the result is the following:
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Theorem 5.3 (Jakubczyk-Zhitomirskii). Let $P_{t}$ , $t\in$ $[0, 1]$ , be a family

of Pfaffian equations on a compact orientable manifold $M^{2k+1}$ , $k\geq 1,$

which satisfies the following conditions:

(1) all 6 have the common Martinet hypersurface $S$ , which has the ex-
tension property, and the Martinet ideals have the property of zeros,

(2) all $P_{t}$ define the common characteristic line field $L=L(P_{t})$ ,

(3) all $P_{t}$ satisfy condition (A).

Then, there exists a family $I)_{t}$ : $Marrow M$ of diffeomorphisms sending $P_{t}$

to $P_{0}$ .

6 Distributions of corank 2 on 4-manifold with non-
Engel locus

In this section, we consider distributions of rank 2 on 4-manifold with
non-Engel loci. First, we define the notion of non-Engel loci. Let $D$ be
an Engel structure. Recall that the derived distributions $D^{2}$ , $D^{3}$ may not
be distributions in a strict sense. In fact, they may have a point where
the rank of distribution degenerates. We set

$\Sigma_{1}(D):=$ {$p$ $\in M|$ rank $D_{p}^{2}<3$}, $\Sigma_{2}(D):=$ {$p\in M|$ rank $D_{p}^{3}<4$},

and call them the first and the second non-Engel loci of $D$ respectively.
We call the union $\Sigma_{1}(D)\cup$ S2(D) $=:\Sigma(D)$ just the non-Engel locus of $D$ .

Example 6.1. We observe normal forms obtained by M. $\mathrm{Z}\mathrm{h}\mathrm{i}\mathrm{t}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{k}\mathrm{i}\dot{1}$ in
[Zhl]. We regard them distributions on $\mathbb{R}^{4}$ with coordinates $(x, y, z, w)$ .
(1) $D=\{\omega_{1}=dx+z^{2}dwz-0, \omega_{2}=dy+zwdw =0\}$

$=\langle\partial/\partial w-z^{2}\partial/\partial x-zw\partial/\partial y, \partial/\partial z\rangle$

In this case,

$D^{2}= \langle\frac{\partial}{\partial w}-z^{2}\frac{\partial}{\partial x}-zw\frac{\partial}{\partial y},\frac{\partial}{\partial z},2z\frac{\partial}{\partial x}+w\frac{\partial}{\partial y}\rangle)$

$D^{3}= \langle\frac{\partial}{\partial w}-z^{2}\frac{\partial}{\partial x}-zw\frac{\partial}{\partial y},\frac{\partial}{\partial z},2z\frac{\partial}{\partial x}+w\frac{\partial}{\partial y},\frac{\partial}{\partial x},\frac{\partial}{\partial y}\rangle$
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Therefore,

$\Sigma_{1}=\{\dim D_{p}^{2}<3\}=\{z=0, w=0\}$ , $\Sigma_{2}=\{\dim D_{p}^{3}<4\}=\emptyset$ .

(2) $D=\{\omega_{1}=dx+zdw=0, \omega_{2}=dy+z^{2}wdw=0\}$

$=\langle\partial/\partial w-z\partial/\partial x-z^{2}w\partial/\partial y, \partial/\partial z\rangle$

In this case,

$D^{2}= \langle\frac{\partial}{\partial w}-z\frac{\partial}{\partial x}-z^{2}w\frac{\partial}{\partial y}$ , $\frac{\partial}{\partial z})\frac{\partial}{\partial x}+2zw\frac{\partial}{\partial y}\rangle$ ,

$D^{3}= \langle\frac{\partial}{\partial w}-z\frac{\partial}{\partial x}-z^{2}w\frac{\partial}{\partial y}$ , $\frac{\partial}{\partial z}$ , $\frac{\partial}{\partial x}+2zw\frac{\partial}{\partial y}$ , $2w \frac{\partial}{\partial y})2z\frac{\partial}{\partial y}\rangle$$D^{3}= \langle\frac{\partial}{\partial w}-z\frac{\partial}{\partial x}-h\frac{\partial}{\partial y}$ , $\frac{\partial}{\partial z}$ , $\frac{\partial}{\partial x}$

Therefore,Therefore,

$\Sigma_{1}=\{\dim D_{p}^{2}<3\}=\emptyset$ , $\Sigma_{2}=\{\dim D_{p}^{3}<4\}=\{w=0, z=0\}$ .

In a similar way to Section 5, a characteristic line field for the derived
distribution $D^{2}$ can be defined. Non-Engel loci and the characteristic line
fields play an important role in the arguments on Gray type theorem for
distributions with non-Engel loci, in the forthcoming paper [A2].
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