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Abstract: Prom the point of view that the neighborhood plays a key role in
information (signal) transmission of a cellular automaton, we define and analyze
the neighborhood in terms of algebra and elementary number theory. Among
others we treat the problem whether a neighborhood fills the cellular space or
not. We distinguish the neighborhood from the generators of the group that
defines a space. Definitions, analysis and results are given. Decision problems
concerning the fullness are also investigated. As a very simple but instructive
example of the neighborhood, we consider the horse of chess which can move to
eight directions and fills the chess board, finite or infinite. We show that even
when its move is limited to less, say three, directions, it fills the 2-dimensi0nal
Euclidean space, but a horse limited to any two directions does not. Also we
define a generalized horse and discuss the condition in order that it fills the
space.

1 Definitions

1.1 Cellular space

A cellular automaton (CA) is defined on a cellular space $S$ , which is regularly
structured. An element of $S$ is called a cell or a point A possible regular structure
of $S$ will be the Cayley graph of a finitely generated discrete gro.u$\mathrm{p}$. Such a group
is usually presented by finite generators and finite number of relations between
words of them [4] [11] [9]. Generally, for a subset $G$ of a group $S$ , $\langle G\rangle$ means
1 An extended abstract. The full paper will appear elsewhere.
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the subgroup of $S$ which is generated by $G$ or the smallest subgroup of $S$ that
contains G. $G$ is called a generator set of $\langle$G$\rangle$ .

1.2 Neighborhood and neighbors

We define a neighborhood (index) $N$ as an arbitrary nonempty subset of a cellular
space $S$ and consider that it specifies the extent where the information directly
comes from. A CA is uniform also in the sense that $N$ is applied to any point of
$S$ . Suppose that $p$ is a cell in $S$ . The cells $p+N$ are defined to be 1-neighbors of $p$

and denoted as $pN^{1}$ . The information of a cell of 1-neighbor of $p$ is considered to
reach $p$ in one unit of time (1 step). In other words the neighborhood $N$ becomes
1-neighbor of $p$ when applied to a cell $p$ .

$m$-neighbors: The set of cells which directly send information to $p+N$ is defined
to be $(p+N)+N$. Since their information reaches $p$ in two steps, they are called
2-neighbors of $p$ and denoted as $pN^{2}$ . Inductively we define the $m$-neighbors of
$p$ as follows. By definition $p$ is 0-neighbor of $p$ or $pN^{0}=p.$

$||$

$pN^{m+1}=pN^{m}+N$, $m\geq 0.$ (1)

We interpret $pN^{m}$ as a notation of the property that information of a cell in
$pN^{m}$ can reach $p$ in $m$ steps.

The following lemmas are trivial consequences of the definition of m-neighbor
by Equation (1).

Lemma 1 transitivity. If $q\in pN^{m}$ and $r\in qN^{m’}$ then $r\in pN^{m+m’}$

Lemma 2 additivity. If $q\in pN^{m}$ then for any $a\in S,$ $q+a\in(p+a)N^{m}$ .

Particularly, if $q\in pN1,$ then $q-p\in$ 0Nm.

Definition 3 neighbors. We define the transitive closure of $N$ by

$pN^{\infty}=\cup m=0\infty pN^{m}$ . (2)

If $q\in pN^{\infty}$ , then $q$ is called a neighbor of $p$ . We interpret this relation as an
indication that the information of cell $q$ reaches cell $p$ at some time. $0N^{m}$ and
$\mathrm{O}N^{\infty}$ will be shortly denoted by $N^{m}$ and $N^{\infty}$ , respectively. We call $N^{m}$ and
$N^{\infty}$ the $m$-neighbors and the neighbors of (the origin of ) a $\mathrm{C}\mathrm{A}$ , respectively.
We notice that $N^{\infty}$ is generally a semi-group $(N^{\infty}, +, 0)$ generated by $N$ with
relations.



Problems: (1) Estimate the size of $N^{m}$ ; It is not easy to estimate the size
of $N^{m}$ for general neighborhoods and spaces, since more than one semi-group
words presents an identical element of $N^{\infty}$ .
(2) Define the intrinsic $m$-neighbors $[\mathrm{V}m]$ as such cells that can reach the origin
in exactly $m$ steps. Obviously, we see

$[N^{m}]=N^{m}\backslash N^{m-1}$

and
$N^{\infty}=\cup[N^{m}]m=0\infty$ .

The notion of intrinsic $m$-neighbors is particularly important when we consider
the speed of information processing in CAs. Now we pose another problem: Find
a simple algorithm to compute the intrinsic $m$-neighbors for any $m\geq 1.$ Estimate
the size of them.

1.3 Symmetric and one-way neighborhoods

If $N=-N$, then $N$ is called symmetric. In a CA space with symmetric neigh-
borhood, the information flow is bidirectional. If $N$ is symmetric, then evidently
$N^{\infty}$ is a group. If $(N\cap-N)$ $)$ $0=\emptyset$ , then $N$ is called one-way, since then the
information flows in one direction. If $N$ is not one-way and there is a $p\in N$ such
that $-p\not\in N,$ then $N$ is called partially one-way.

2 Analysis of neighborhoods

The first analysis of neighborhoods addresses the problem whether a neighbor
fills a CA space or not. A neighborhood $N$ is said to fill a CA space $S$ if and only
there is a nonnegative integer $m$ such that $q\in pN^{m}$ for any $p$ , $q\in S.$ Formally,
we define it by,

Definition 4 fill. Assume a CA space $S=$ $(S, +, -, 0)$ . $N\subseteq S$ is said to fill $S$,
if and only if for any $p,q\in S$ , $q\in pN^{\infty}$ .
Note on the terminology: As is shown later our notion of fill is different from
generate which is usually used in algebra. In order to avoid $\mathrm{a}$. confusion between
the generators of the space $\mathrm{a}\mathrm{n}\mathrm{d},\mathrm{t}\mathrm{h}\mathrm{e}$ neighborhood, we dare use the term fill for
the neighborhood 3. We also refrain from using the term complete, which has
been used with different meanings for many theories of the computer science
including our study of information dynamics of $\mathrm{C}\mathrm{A}$ , see Section 5 of $[7\mathrm{J}$ .
3
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Theorem 5. $N$ fills $S$ , if and only if for any $p\in S,$ $p\in N^{\infty}$ .

Theorem 6. If $N$ is a symmetric neighborhood, then for any $p$ , $q\in S$ and non-
negative integer $m$,

$p\in qN^{m}\Leftrightarrow q\in pN^{m}$ . (3)

Corollary 7. If $N$ is a symmetric neighborhood, the$n$ for any $p$ , $q\in S$

$p\in qN^{\infty}\Leftrightarrow q\in pN^{\infty}$ . (4)

Theorem 8. $(N)\supseteq N^{\infty}$ .

TheOrem9. There are $Ns$ such that $(N\rangle\supset\neq N^{\infty}$ .

Theorem 10. If $N$ is symmetric, then $(N)=N^{\infty}$ , but not vise versa.

3 Horse power problem

The horse 4 of the chess can move to 8 directions (points) on the chess board,
which is a finite 8 $\mathrm{x}8$ grid. Here we formulate and investigate the movement of a
horse in an infinite cellular space $S=\mathbb{Z}^{2}$ with a neighborhood $N_{H}$ as was shown
in the previous section. The motion of a horse is interpreted as the information
flow in the reverse direction; if it goes to a point $q$ from point $p$ in ra-moves,
then the information of cell $q$ reaches cell $p$ in $m$-time steps. Therefore, if a horse
can go to every point of $S$ from the origin, then the neighborhood $N_{H}$ fills $S$ . It
will be shown that even when the horse’s move is limited to properly selected 3
directions, it fills $S$ , but if it is limited to any 2 directions, it does not. We shall
call such a study the horse power problem.

3.1 3-h0rse

First we note the following proposition which has been known to every body.

Proposition 11. A horse can reach any point of $\mathbb{Z}^{2}$ from its origin $(0, 0)$ .
A horse which is restricted to 3 moves $(2, 1)$ , (3) 1) and $(1,$ $-2)$ is called a9 horse
and its neighborhood is denoted by $N_{3H}$ . Note that $N_{3H}=\{(2,1), (-2,1), (1, -2)\}$

is asymmetric.

Theorem 12. A $S$-horse can reach any point of $\mathbb{Z}^{2}$ ffom its origin $(0, 0)$ . For-
mally,

$N_{3H}^{\infty}=\mathbb{Z}^{2}=(N_{3H}\rangle$ .
4 Usually it is called the knight in the chess terminology. But, we dare use the term

horse here.



Proof. The point $(X, \mathrm{Y})$ which the 3-horse reaches after $x$-steps of $(2, 1)$ move,
$y$-steps of $(1,$ $-2)$ move and $\mathrm{s}$-steps of $(-\mathrm{a}, 1)$ move is expressed by

$X=2x+y-2z\mathrm{Y}=x-2y+z\}$ (5)

Note that $x$ , $y$ and $z$ are the number of steps of 3-horse and therefore should be
positive integers. It is necessary and sufficient to prove that the 3-horse can reach
5 points $(0, 0)$ , $(1, 0)$ , $(0,$ $-1)$ , $(1, 0)$ and $(0, 1)$ , the von Neumann neighborhood,
from the origin $(0, 0)$ .

By solving the above indeterminate system of equations (5) for each of those
5 points, we obtain the following solutions which give the smallest number of
steps for the 3-horse to move.

-($X$, Y) $=(0,0)$ : $x=3,y=4$, $z=5.$ total number of steps $=12.$

-($X$, Y) $=(1,0)$ : $x=y=z$ $=1.$ total number of steps $=3.$

-( $\mathrm{X}$ , Y) $=(0, -1)$ : $x=1,y=2$, $\mathrm{z}$ $=2.$ total number of steps $=5.$

$-(X, \mathrm{Y})=$ $(1, 0)$ : $x=2$ , $y=3$ , $z=4.$ total number of steps $=9$ .

$-(X,\mathrm{Y})=(0,1)$ : $x=2,y=2,\mathrm{z}$ $=3.$ total number of steps $=7$.

Theorem 13. Any horse which has no more than 2 moves does not fill nor
generate $\mathbb{Z}^{2}$ .

$-(X, \mathrm{Y})=(0, -1)$ : $x=1,y=2$, $z$ $=2.$ total number of steps $=5.$

$-(X, \mathrm{Y})=(-1,0)$ : $x=2,y=3$, $z=4.$ total number of steps $=9$ .

$-(X, \mathrm{Y})=(0,1)$ : $x=2,y=2$, $z$ $=3.$ total number of steps $=7$.

TheOrem13. Any horse which has no more than 2moves does not fill nor
genemte $\mathbb{Z}^{2}$ .

3.2 Generalized horse

In this section, we consider the generalized horse which can move to 8 cells
$(\pm a, \pm b)$ and $(\pm b,\pm a)$ and a generalized 3-horse $Nq3H=\{(\mathrm{a}, b), (-a, b), (b, -a)\}$ ,
where $a$ and $b$ are positive integers. Particularly, we shall prove two theorems
showing that the generalized horse and a generalized 3-horse fill the space $\mathbb{Z}^{2}$ ,
when $a$ and $b$ satisfy certain simple conditions.

Theorem 14. A generalized horse fills $\mathbb{Z}^{2}$ , if and only if $gcd(a,b)=1,$ where
$a$ , $b>0$ .

Theorem 15. The generalized 3-horse $H_{G3H}=\{(a, b), (-a, b), (b, -a)\}$ fills $\mathrm{Z}^{2}$ ,
if and only if $gcd(a, b)=1$ and $a+b=1$ mod 2 ($i.e$. $a$ and $b$ have different
parities), where $a>b>0.$
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4 Decision problems

We pose some decision problems and solve them utilizing results which have
been established about the computational algebra and the word problem of semi-
groups

Theorem 16 (Generation problem). For an arbitrary neighborhood $N\subseteq S,$

the decision problem whether $(N\rangle c=\langle S, \cdot,- 1, 0)$ or not is P-complete.

Proof. Since the group $\langle S, \cdot,- 1, 1\rangle$ is an algebra, we can apply the decidability
result for the algebra generation established by Bergman and Slutzki, see [2]. It
proves that the decision problem whether a subset of $S$ generates the algebra is
P-complete.

If $N$ is symmetric, owing to Theorem (10), the following filling problem is equiv-
alent to the generation problem of groups which was proved to be P-complete
by Theorem 16. For asymmetric neighborhoods, however, we need a little device
for applying the same result on the universal algebra.

Theorem 17 (Filling problem). Assume that a cellular space $S$ is defined by
a finitely generated group $(G, R, \cdot,-1,1)$ and an arbitrary (asymmetric) neighbor-
hood is given as its subset $N\subseteq S$ . Then, the decision problem whether $N^{\infty}=S$

or not is $\mathrm{P}$ -complete and a fortiori decidable.

Remarks: V. Poupet proved in the appendix to his thesis [8], without using the
result of [2], that the filling problem is decidable for the case of $\mathbb{Z}^{d}$ .

Theorem 18 (Membership problem). Assume a space S. Then, for any $p\in$

$S$ , the decision problem whether $p\in\langle N\rangle_{SG}$ is P-complete.

Theorem 19 (Word problem). For any $p$ , $q\in S$ which are presented by words
of generators (neighborhood), the decision problem whether $p=q$ or not is un-
decidable.

Proof. This is because the word problem of semi-groups (associative systems) is
undecidable, as is proved by A. A. Markov [6].

Remarks: We proved the word problem owing to a very general theorem which
holds for an arbitrary semi-group. The decidability result could be different,
however, if we consider a restricted class of spaces and neighborhoods. There
are several classes of semi-groups where the word problem is computable in
polynomial time. Such an algorithmic investigation of groups and semi-groups
belongs to the computer algebra. Among others, we refer the reader to Adian and
his school for very important results as Makanin’s algorithm about equations in
words [1], See also a survey by Lothaire [5].



5 Concluding remarks

We formulated the neighbors relative to the space and analyzed its properties in
terms of algebraic notions. In short, the space is a group and the set of neighbors
is a semi-group relative to it. Once so formulated, many properties of cellular
spaces and neighborhoods were made clear by using relevant results known to
algebraists. However, we have left for further research to attack some problems
like the horse power problem on finite spaces and the problem concerning the
$m$-neighbors and the intrinsic m-neighbors.

The first author began this research during his stay at Faculty of Informatics,
University of Karlsruhe, September-October, 2003. R. Vollmar and T. Worsch
there had interest and made discussions with him on this topics. $\mathrm{V}6\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{q}\mathrm{u}\mathrm{e}$

Terrier in Caen sent him the ps files of her own and Poupet’s manuscripts [10]
[8]. T. Saito in Osaka was helpful in drawing figures. Many thanks are due to
them.
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