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Automated Competitive Analysis of Online Problems
オンライン問題の競合比解析の自動化について
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Abstract

An online knapsack problem is an online problem where an online player receives a sequence of items
one by one and on every arrival of an item he must decide whether he takes it or not. In $*1\mathrm{J}1$ exchangeable
online knapsack problem (EOK), the player has two (or more) knapsacks of size 1. alld he is allowed 10
exchange (and also discard) items in his knapsacks. It is known that the competitive ratio of this $\mathrm{p}\iota 01$)$\downarrow \mathrm{e}\pi\iota$

has an upper bound 1.3333 and a lower bound 1.2808 when the number of knapsack $k$. is 2. Unfortunately,
the tight bound is not known. The di題 culty for obtaining those bounds is mainly caused by a large
number of possible cases to be considered in their proofs. In this paper, we propose a $\mathrm{c}\mathrm{o}\mathrm{m}$ puter aided
analysis on the competitive ratios of online problems, and show proofs of the upper bounds 1.3660 and
1.333 for 2-bin EOK. These results do not only give an another proof of the known bound, but also give
a basis for the tight bound.

An online knapsack problem is an online problem where an online player $\mathrm{r}\mathrm{e}\mathrm{c}.\mathrm{e}\mathrm{j}\mathrm{v}\mathrm{a}\mathrm{e}^{\neg}$ a $\mathrm{a}\mathrm{e}\mathrm{q}\iota \mathrm{l}\mathrm{e}\mathrm{u}\mathrm{c}.\mathrm{e}$ or $\mathrm{i}\iota \mathrm{e}1’ 1\mathrm{S}$

one by one and on every arrival of an item he $\mathrm{m}$ ust decide whether he takes it 01 not. $\ln$ *1J1 $\rho_{-}\alpha.\mathrm{c}.1_{1\aleph 11}\mathrm{g}\mathrm{e}\mathrm{a}\mathrm{t}$ )$1\mathrm{t}^{\backslash }$

online knapsack $\mathrm{p}_{10])}.1\mathrm{e}\mathrm{m}$ (EOK), the player has two (or $\mathrm{n}\iota \mathrm{o}\mathrm{r}\mathrm{e}$ ) $\mathrm{k}\mathrm{n}\mathrm{a}\mathrm{p}"\backslash$ of $\mathrm{s}\mathrm{i}\mathrm{z}\iota$. 1. alld hc is allowed $(01$

exchange (and also discard) items in his knapsacks. It is known that the competitive ratio or this $\mathrm{p}\iota 01$)$\downarrow \mathrm{e}\pi\iota$

llas $\mathrm{m}$ upper bound 1.3333 and a lower bound 1.2808 when the number of knapsack $k$ is 2. $(j11\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{u}11\dot{\epsilon}1\mathrm{t}\mathrm{t}^{\backslash }1\iota’$,
the tight bound is not known. The di題 culty for obtaining those bounds is $\mathrm{m}$ ainly caused by $n$ large
number of possible cases to be considered in their proofs. $\ln$ this paper, we $\mathrm{P}^{1\mathrm{O}}\cdot \mathrm{p}\mathrm{o}\mathrm{a}^{\neg}\mathrm{e}$ a $\mathrm{c}\mathrm{o}\mathrm{m}$ puter aided
analysis on the competitive ratios of online problems, and show $\mathrm{p}_{1}\cdot \mathrm{o}\mathrm{o}\mathrm{f}\mathrm{s}$ of the upper bounds .3660 alld
1.333 for 2-bin EOK. These results do not only give an another proof of the $\mathrm{h}_{1}\mathrm{o}\mathrm{w}\mathrm{n}$ b0ll’1d, but also $\mathrm{g}\mathrm{i}\mathrm{v}\epsilon^{1}$

a basis for the tight bound.
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1 Introduction
An online $p;.oblen\iota$ gives us a sequence of requests and asks to respond $\mathrm{i}$ mmediately to each request without

knowing future information. Online problems are a natural topic of interest in many disciplines such as $\mathrm{C}^{\cdot}\mathrm{O}\mathrm{I}\mathrm{U}-$

puter science, economics and operations research. Many applications are essentially online, where illllJle(litne

decisions are required in a real time. Paging in a virtual memory system is perhaps tlle most studied of $\mathrm{s}n$(41

computational problems. Routing in communication network is another well-known application $[1, 2]$ . $\mathrm{A}_{1}$ al-
goritlrrn which solves an online problem is called an online algorithm. On the other $\mathrm{h}$ and, an offline $alq$orithm
is allowed to respond to each request after receiving all the requests. In other words, an offline algorithm
knows the future, while an online algorithm does not. The most famous way to measure the e題 ciency of
online algorithm $\mathrm{s}$ is a competitive ratio, which is the ratio of the cost of an online algorithm to that of tlle
offline algorithm. A good online algorithm makes a cornpetitive ratio 1 as to close.

It is clear that, in many settings, the lack of the information for the future is a great disadvantage. Hence,
performances of online algorith ms are often much worse than those of offline algorithms, and as a result. the
competitive ratio becomes large. Then, it is $\mathrm{c}$ ommon to consider a relaxed model of online problems where
online algorithms can hold more than one solutions and output the best one. Iwama and Taketoini [$*\cdot l\rceil$ apply
this model to the removable online knapsack problems (ROK). They achieved the tight bounds 1.6180 for the
one bin model, and 1.3815 for $k$-bin models $(k\geq 2)$ where the online player has $k$. bins alld he can select
one out of the $k$ . Recently, a more relaxed model is proposed by the authors, called an exchangeable online
knapsack problem (EOK) [24]. In this problem, one call move items from one knapsack to another, $\mathrm{w}\mathrm{l}\mathrm{l}\mathrm{i}\iota.11$ is
not permitted in ROK. When the player is allowed to have $k$ bins, the problem is called a $k$ -bin $EOK[24]$ .
Although we have shown that the competitive ratio has an upper bound 1.3333 and a lower bound 1.2808 $\mathrm{j}(’$r
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2-bill EOK, the tight bound is not known. The difficulty for obtaining those bounds is mainly caused by $\dot{\epsilon}1$

large number of possible cases to be considered in their prooffi.
In this paper, we propose an automated competitive analysis of online proble$\mathrm{l}\mathrm{n}\mathrm{s}$ . There are huge $\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{c}*\iota\cdot \mathrm{a}\mathrm{t}\mathrm{u}\mathrm{e}$ of

the computer aided proof so far. The most fa mous and exciting one is the proof of the four color theorem $1$ )$\mathrm{y}$

Appel and Haken $[17, 18]$ . In their approach, they made a reduction from the theorem to 1,476 subprobleus
by hand, and then they solved the problems by a computer. Recently, many papers use $\mathrm{s}\mathrm{e}\mathrm{n}1\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{h}.11\mathrm{i}\mathrm{t}\mathrm{c}^{1}$ proof
gramming to obtain improved analyses of approximation algorithms for various combinatorial optimization
problems. Goemans and Williamson [9] were the first to use semideflnite progr anming for this purpose. They

obtained azi 0.87856-appr0ximati0n algorithm for the MAX CUT and MAX 2-SAT problems, and all 0.79607-
approximation algorithm for the MAX DI-CUT problem. Feige and Goemans [12] improved the algorithm$\mathrm{m}\mathrm{s}$ in
[9], and they claimed that the approximation ratio of the algorithms are 0.931 and 0.859 for the MAX-2-SAT
and MAX DI-CUT problems, respectively. Krloff and Zwick [10] used extensions of tlleir ideas to obtain an
approximation algorithm for MAX 3-SAT with a conjectured performance ratio of $\frac{7}{8}$ . This proof is mostly

analytic but does rely on calculations carried out in Mathematica.
There are not the computer aided proof of the competitive ratio for online problems. Moreover, too many

combinations often makes a proof of a competitive ratio difficult for online proble$\mathrm{l}\mathrm{n}\mathrm{s}$. So, we decided to carry

out the computer aided proof of a competitive ratio for 2-bin EOK.
The rest of the paper is organized as follows. The next section gives the definition of EOK. Ill Section $.’$ ,

we propose the computer aided proof for 2-bin EOK. Section 4 is the conclusion.

2 Exchageable Online Knapsack Problem
An Exchangeable Online Knapsack Problem is a variant of a Removable Online Knapsack Problem [3]

where the online player can move items from one bin to other. That is, it is permitted that one can exchange
items put at once ffom one knapsack to other. When the online player has $k$ bins, we call the model as A-bin
Exchangeable Online Knapsack Problem ( $k$-bin EOK).

Let $B_{1}$ , $B_{2}$ , $\ldots$ , $B_{k}$ denote $k$ bins, where their capacities are always 1. Each $B_{j}$ has size $|B_{j}$ $|$ which is defined
as the total size of the items in $B_{j}$ . The input and the possible action at round $i$ and the goal are as follows,

respectively.

Input :An item $u:$ , whose size is $|ut|$ $\in(0,1]$ .

Action :The player decides (1) which bin out of the $k$ bins to put $u_{i}$ into axtd (2) which (zero or inoro) $\mathrm{i}\mathrm{t}\mathrm{e}$ ms
in the bins (including $u:$ ) are discarded or moved from one bin to other so that $|B_{j}|$ will be tzt most 1.0
for all $1\leq j\leq k.$

Goal :When input is finished, maximize the largest size in the $k$ bins.

Let $\sigma$ and $A$ be an input sequence { $u_{1},$ $u_{2}$ , $\ldots$ , $u_{\dot{1}}$ , $\ldots$ , un} and an algorithm for $k$-bin EOK, respectively. For
an instance $\sigma$ , $|4(0)|$ denotes the cost achieved by $A$ , which is defined by the largest size of the bins (i.e.,
$\max\{|B_{1}|, \ldots, |B_{k}|\})$ after the final round for input $\sigma$ is completed. $|$ $OP7$ $(\mathrm{c}\mathrm{r})|$ is the cost achieved by the
offline optimal algorithm, $\frac{|OPT(\sigma)|}{|A(\sigma\}|}$ is called the competitive ratio (CR) of algorithm $A$ for input $\sigma$ , and its

worst-ca $\mathrm{e}$ value, i.e., $CR(A)=$
$rnax\sigma$

$\frac{|OPT(\sigma)|}{|A(\sigma)|}$ , is called $CR$ of $A$ .
The related results and our results are shown in Table 1. The tight bounds for the competitive ratio of

ROK are shown in [3], and the competitive ratio for 2-bin EOK are shown in [24]. But the tight bounds for
2-bin EOK have not been shown yet.
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Upper Bound Lower Bound
Online Knapsack Problems $\infty$ oo

1-bin Removable Online Knapsack Problems 1.6180 1.6180
$k$-bin $\mathrm{R}\mathrm{e}\mathrm{m}\mathrm{o}\mathrm{v}\mathrm{a}\overline{\overline{\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{O}}\mathrm{n}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}}$Knapsack Problems$(\mathrm{k}\geq 2)$ 1.3815 1.3815

2-bin $\mathrm{E}\mathrm{x}\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{g}\mathrm{e}\mathrm{a}\mathrm{b}\underline{\mathrm{l}\mathrm{e}}$Online Knapsack Problems 1.3333 1.2808

Table 1: Competitive ratio of various Online Knapsack Problems

3 Automated Competitive Analysis
In this section, we show how we prove the upper bounds of $CR$ 1.3660 and 1.3333 for 2-bin EOK. We reg aid

the proof as a search proble$\mathrm{m}$ to check the entire state of the online algorith$\mathrm{l}\mathrm{n}$ . To achieve this, in addition to
retrieve the entire state transitions automatically, it is necessary to check the competitive ratio of each state
automatically.

3.1 Outline of Algorithm $A_{system}$

We prove the CR for 2-bin EOK with computer assist. Shown in the secti0n3, this proof makes many
states. And one must describe each action, if without computer assist. So, we write the rule for making states
to the computer, and make the computer make states. Moreover, each state made by the $\mathrm{c}\mathrm{o}$ mputer has the
inequalities that items held in bins must satisfy. We must analyse whether the cost ratio between offline alld
online is $<\alpha$ , or not in each state. We use Mathematica to analyse the competitive ratio of each state and
also the condition for the state transition.

An algorithm which was made to assist the proof is shown in Fig. 1. Let this algorithm be $A_{syst\theta n\iota}$ . We

Online Algorithm $O$

Figure 1: Outline of $A_{\mathrm{s}ystem}$ .

give $A_{syst\mathrm{e}m}$ an online algorithm $O$ , $\alpha$ to prove $CR$ and a classification on the size of an item as inputs. They
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$\mathrm{h}^{-}\mathrm{a}\mathrm{v}\overline{\mathrm{e}}$ a close relation each other. $\tau\overline{1}\overline{\mathrm{S}}$ a $\overline{\mathrm{p}\iota\cdot}$i$\overline{\mathrm{n}}$rary strategy to make state transitions. Then, $A_{systv’\iota}$ processes
the problem with inputs and outputs whether it can satisfy $CR<\alpha$ , or not.

Next, we describe the action of $A_{system}$ . Firstly, $A_{system}$ makes state transitions, using inputs and an
algorithm $A$ . Each state consists of $(W_{1}, W_{2}, I)$ and condition. Their definition is the sam $\mathrm{e}$ in the above
argument. $A$ is a part of $A_{sy\epsilon tem}$ , and exists to make state transitions. Secondary, $A_{sy_{\theta}tem}$ chcckes whether
every state can satisfy $CR$ $<\alpha$ , using Mathematica, or not. If every state can satisfy, because it means that
we prove $CR<\alpha$ for this problem, $A_{system}$ outputs true. Otherwise, $A_{systen}$ , outputs false.

3.2 Online Algorithm $O$

3.2.1 Common Strategy

An online algorithm $O$ is a primary strategy to make state transitions, and given to A$sys$Ce$m$ as an input.
Moreover, $O$ , $\alpha$ , and a classification have a close relation each other. Therefore, if $O$ changes, the others
change. In the reverse case, it also does. When Asystem makes state transitions, it is very $\mathrm{i}$ mportant to
determine which items are discarded. $\mathrm{O}$ is designed so that $A_{system}$ can determine which items are discarded
well. That is, we can also say that $O$ is a primary strategy to determine which items are discarded.

Let $t$ be $\frac{1}{t}$ . $O$ devide items into three diffrent classes $S$ , $L$ , and $X$ . An item in each class is denoted by $s$ ,
$\ell$ , and $x$ , respectively. Each item satisfies: $0<|s|\leq 1-t$ , $1-t<|\ell|\leq t$ , and $t<|x|\leq 1.$

Now we explain how to devide items. If a player can make a bin larger than tlle size $t$ , it is clear that $CR$

of this case can satisfy $CR$ $<\alpha$ . If a item of $X$ is given at the first time, a player carx make the good bin with
only $x$ . Therefore, we think only the case where no items of $X$ are given. That is, a class $X$ is designed so
that we can ignore the class $X$ as inputs. Next, we discuss a class $S$ . If a $\ell_{S}$ must be discarded, Each size of
all bins a player has is larger than $t$ . Then, the player satisfies $CR<\alpha$ . Therefore, we think also only the
case where no items of $X$ are given. That is, $O$ is designed so that we can think only a class $L$ as inputs alld
if the player can make the bin larger than size $t$ , the player just discards given items after that.

By the way, we describe a primary principle to determine which $\mathrm{i}\mathrm{t}\mathrm{e}$ ms are discarded. The principle is to
substitute a smaller item for a larger item. That is, if a player discards a item, the player keeps a $\mathrm{s}$ maller
item than it to substitute for it. But if a item is by far smaller than the other, it cannot be substituted for a
larger one. To substitute $v$ for $u$ , $u$ and $v$ must satisfy the following conditions.. $|v|\leq|u|$ (Otherwise, the adversary gives an item whose size is l-[ul as an input, alld a player $\mathrm{r}:\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{o}\mathrm{t}$

hold the item.). $\Pi v|u|<$ a (Otherwise, the adversary stops inputs. If the size of offline and online are $|u|$ and $\rfloor v|$ , respec-
tively, a player cannot satisfy $CR$ $<\alpha$ .)

That is, if a player discards $u$ , the player must keep $v$ which satisfies the above conditions.
To satisfy the the above substitution conditions, $L$ is devided into more three different classes $Ls\cdot L_{\mathrm{A}}$ ,, and

$L_{L}$ , shown in Fig.2. An item in each class is denoted by $\ell_{S}$ , $\ell_{M}$ , and $l_{L}$ , respectively. Each item satisfies:
$1-t<|\ell s|\leq 1-t^{2},1-t^{2}<|\ell_{\mathrm{A}I}|\leq t^{2}$ , and $t^{2}<|\mathit{1}_{L}|\leq t.$ Because of $\lrcorner_{\mathrm{A}}\ell p,$,vn\iota ih,L\iota $<$ $\mathrm{f}\mathrm{i}$ $=\alpha$ , $\ell_{L\min}$ cau substitute
for all $\ell_{L}$ ’s so far given. That is, $L_{L}$ is a $\max$ range which can substitute for an item of size $t$ . A $\ell_{\mathrm{A}\mathit{1}}$ aazd a
$\ell_{L}$ cannot be hold in the same bin at the same time, because the total of lower bounds of $L_{\Lambda \mathit{1}}$ and $L_{L}$ is over
1. Moreover, a $\ell s$ and a $\ell_{M}$ can lee hold in the same bin at the same time unconditionaly, because the total
of upper bounds of $Ls$ and $L_{M}$ is under 1.

Furthermore, we focus on whether a group of classes is over $t$ , or not, and regard $2t-1$ and $2-2t$ as bounds
to devide more different classes. ( $(1-t)+(2t-1)=t$ and $2t-1+2-2t$) In the next section, they are used.
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0 $1-t$ $1-t^{2}$ $t^{2}$
$t$ 1

Figure 2: classification of an item

3.2.2 Online Algorithm for $\alpha\approx$ 1.3660

Next, we discuss an online algorithm $O$ where an input $\alpha$ is $\frac{1+\sqrt{3}}{2}(=\alpha\approx 1.3660)$ . $t$ is a $111\mathrm{a}\overline{\lambda}$ point $\mathrm{w}1_{1}\mathrm{i}\mathrm{c}1_{1}$

satisfies $\frac{t}{2-2t}<\frac{1}{t}=\alpha$ . That is, $t$ is one of the roots of each equation $2-2t=t^{2}$ azxd $2t-1=1-t^{\underline{)}}$., and $t$ is
$\sqrt{3}-1.$ Items of each class satisfies: $\frac{3-\int\overline{3}}{2}(\approx 0.2679)<|\ell s|\leq\frac{\sqrt{3}}{2}(\approx 0.4641)$ , $\frac{t3}{2}<|\ell_{t}$, $| \leq’\frac{\sim-\sqrt{3}}{2}(\approx 0.53_{\mathrm{J}}^{r}|9)$ ,
and $\frac{2-\sqrt{3}}{2}<|l_{L}|\leq\sqrt{3}-$ $1(\approx$ 0.7312 $)$ .

Let $N(c)$ be the $\max$ number that a player can hold items of a class $c$ in the samle bin at the same time.
For exmaple, $N(L_{L})$ , $N(L_{M})$ , and $N(Ls)$ are 1, 2, 3, respectively. The number that items of a class $c$. call
component the size of offline is at most $N(\mathrm{c})$ . Therefore, a player may hold at most $N(c)$ items of a class $c$.
at the same time.

In $L_{L}$ , because $N(L_{L})$ is 1 and $L_{L}$ is a $\max$ range which can substitute for an item of size $t$ , a player ulay
hold at least the smallest item of $\ell_{L}\mathrm{s}$ so far ever given. In $L_{M}$ , though $N(L_{\mathit{1}\}l})$ is 2, when a player has two
$\ell_{M}\mathrm{s}$ in a state, the two items cannot be hold in the sa ne bin at the same time. Therefore, the number that
items of $L_{M}$ call component the size of offline is at most 1, and the player may hold at most one item of $L_{\mathrm{A}\mathit{1}}$

at the same time. Because of $\lrcorner\ell\ell_{M\mathrm{n}1i,\iota}^{1\mathrm{r}\mathrm{u}h\angle}<\neg 1-tt^{2}<\alpha$ , a player may also hold at least the smallest item of $\ell_{\mathrm{A}\mathrm{f}}\mathrm{s}$

so far ever given. In $L_{s}$ , For a similar reason, a player may also hold at least the smallest and the second
smallest items of $\mathit{1}s\mathrm{s}$ so far ever given.

After all, a player will substitute a smaller item for a larger item in the salrie class. That is, if a player
must discard an item of a class, the player will discard a larger item of the class and keep a smaller item of
the class.

3.2.3 Online algorithm for $\alpha\approx$ 1.3333

$t= \frac{1}{\alpha}$ means that $CR$ is improved if $t$ is larger. Therefore, we aims at designing 0 which has larger $t$ .
We designed $O$ which has $t= \frac{3}{4}$ . That is, We improved $O$ so that $O$ satisfies $CR< \frac{4}{3}$ $(\approx$ 1.3333$)$ . Tbe

classification of items is shown in Fig. 3. $L_{J_{1}\mathit{1}}$, is devided into more two different classes $L_{\mathrm{A}IS}$ and $L_{\Lambda \mathit{1}L}$ -

0.25 0.4375 0.5 0.5625 0.75

Figure 3: Classification of the items according to their sizes.

Fundamentally a player will substitute a smaller item for a larger item in the same class like the case of
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$a$ $\approx$ 1.3660. A smallest $\ell_{L}$ of $\ell_{L}\mathrm{s}$ so far ever given subsitutes for other $l_{L}$s. And $\ell_{\lambda \mathit{1}}$ can do so. ( $\ell_{\mathrm{A}JS}$ can
substitute for $\ell_{ML}$ .) But it is not enough. Therefore, we can think to substitute two or $\mathrm{r}$ ore items for one
item. For example, To substitute $v_{1}$ and $v_{2}$ for $u$ , $u$ and $v_{1}$ alld $v_{2}$ must satisfy the following conditions.. $|v$) $|+|v_{2}|\leq|u|$ (Otherwise, the adversary gives an item whose size is $1-|u|$ as an input, and a player

cannot hold the item.). $\frac{|u|}{|v_{1}|+|v_{2}|}<$ ’ (Otherwise, the adversary stops inputs. If the size of offline and online are $|u|$ and $|\mathrm{t}_{1}’|+|v_{2}|$ ,
respectively, a player cannot satisfy $CR<\alpha$.)

We design $O$ so that two items of $Ls$ substitute for a item of $L_{L}$ . The subs titution happens when two items of
$Ls$ and one item of $L_{L}$ are held and one or more items must be discarded. If the subtitution happens. 0 can
satisfy the above second conditions surely. Therefore, $O$ must satifsy the above first conditions to substitute.
That is, when there is a possibility to substitue two $\ell s\S$ for one $\ell_{L}$ , if $|\ell s|+|?s|\leq|\ell_{L}|$ holds, 0 discard the
largest item of $L_{L}$ and keep items of $L_{S}$ , otherwise, discards the largest items of $L_{S}$ and keep items of $L_{S}$ .

3.3 Algorithm $A$

3.3.1 Outline of Algorithm $A$

$A$ is a part of $A_{ey\mathrm{A}em}$ , and exist to make state transitions. When a item is given in a state as an input, it
happens a transition from the state. $A$ outputs the transition state.

As inputs, a state and one of the classified classes which are given to $A_{system}$ are given t) $A$. Then, $A$

makes the transition and new conditions which states have, and output the transition state.
The outline of the action of $A$ is shown in Fig. 4. Because $A$ is a part of $A_{syster}$ , we can say that Fig.

$\ovalbox{\tt\small REJECT}_{\mathfrak{B}\mathrm{t}\mathrm{e}\mathrm{a}\mathrm{n}88}^{\mathrm{l}}\mathrm{a}s\mathrm{s}1\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{d}\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{s}\ovalbox{\tt\small REJECT} 1\mathrm{e}\mathrm{b}\varphi$

1. input the top of the Queue
2. input the item one by one
3. output the moved states and if the state is new, add the state to the Queue

Figure 4: Outline of an algorithm $A$ .
4 shows a part of actions of $A_{*ystem}$ . There is also a queue of the states in $A_{\theta yste’ n}$ . Of course, the queue
includes only an empty state at the first time. As inputs, the top of the queue and one of the classified classes
which are given to $A_{sy\epsilon \mathrm{t}em}$ are given to A. (Each classified class is given one by one to one state.) Then, $A$

makes a transition state, and outputs it. If the state is new, then it is added to the bottom of the $\mathrm{q}^{\mathfrak{l}}$ ueue. The
actions are continued till the queue is empty. All states which are made by $A$ have conditions, and given to
Mathematica.
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3.3.2 Structure

Next, we discuss the structure of the algorithm $A$ . We know that $A$ is given one state and one classified
item as inputs and makes a transition state which has conditions, using them, from the above arguu]ellt. Now,
we describe how to make a transition state.

Each class has a upper and lower bounds, and let a item of the class be $u$ . $A$ makes new conditions and a
transition state, using Wi, $W_{2}$ , $u$ , conditions and their bounds. The flow chart of $A$ ’s action is shown in Fig.
5. Firstly, $A$ checkes whether there exists a group which can make the bin more than $t$ with $\prime u$ $\cup \mathrm{t}\dagger_{1}.\cup \mathrm{f}!V$2
unconditionaly or not. If the classification is like Fig. 3, two items of class $\ell_{\mathrm{A}IS}$ or each one item of class $p_{g}$.
and $\ell_{h\mathit{1}L}$ constitutes such a group. If there exist, $A$ outputs EndState. Otherwise, A goes to the next cheek.
The next check is whether there exists a group which can satisfy both the total of their lowerbound is at least
$t$ and the total of their upperbound is at most $t$ , or not. Now, if there exists a group which can make $\epsilon\iota$ bin
smaller than $t$ , we think the group cannot exceed $t$ . For example, if there exists two $\ell s\mathrm{s}$ in Fig. 3, we think
$|\ell s|+|\ell s|\leq t.$ Therefore, if there exists, $A$ adds the new conditions with the output state and go to the
next check. Otherwise, $A$ goes to the next check without adding the new conditions. For example, two $\ell_{S}’$ ’s
can do in Fig. 3. The new condition, $\ell s+\ell s\leq t,$ is added to the output state. The next check is whether
there exists a group which can satisfy both the total of their lowerbound is at least 1 and the total of their
upperbound is at least 1, or not. If there exists, $A$ adds the new conditions with the output state and go to
the next check. Otherwise, $A$ goes to the next check without adding the new conditions. For example, three
$\ell s’ \mathrm{s}$ can do in Fig. 3. The new condition, $\ell s+\ell s+\ell s>1,$ is added to the output state. The next check is
whether $A$ can put $u$ into bins, discarding no items , unconditionaly, or not. For example, tlxe case i$\mathrm{n}$ which
the item of $\ell s$ is given in the state3 of Section 3 does. If the player carl do, the state which is put the class
from the input state is output. Otherwise, $A$ must discard one or more items. Therefore, $A$ determines the
removed items and output the transition state. Determining the removed items is very importan for this
system. This action changes with online algorithm $O$ given as an input.

3.4 Results

We have applied algorithm $A_{system}\mathrm{f}\mathrm{o}\mathrm{r}$ the two online algorithms of EOK and obtained the following $\mathrm{L}^{\cdot}\mathrm{O}\mathrm{I}\mathrm{I}\mathrm{I}-$

petitive ratios. Figure 6 illustrates the state transtion of the online algorithm of $ce\approx$ 1.3333 obtained by
$A_{syst\mathrm{e}m}$ . The state transition and the competitive ratios of each state is confirmed automatically.

Theorem 1 The online algorithms in Section 3.2. 2 and 3.2.3 have the competitive ratios $\alpha\approx$ 1.3660 and
1.3333, respectively.

4 Concluding Remarks
In this paper, we studied an automated competitive analysis for the exchangeable online knapsack problem.

We showed proofs of $i$he upper bounds 1.3660 and 1.333 for 2-bin EOK. Although there is a gap between the
lower and the upper bounds, our results give a basis for the tight bound. The bounds for $k$-bin EOK should
be also addressed in the future.
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