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Abstract: In the paper we prove that

(x) log, (G)| =V (G)I,

where G is any subset of a polynomial ring Q[X] over a finite field Q = GF(q)
modulo (X7 — X), (G) is the subring of Q[X] generated by G and V(G) is the
set of values of G. |A| means the cardinality (size) of a set A. This research has
its origin and gives another result in our study on the information dynamics
of cellular automata where the cell state is a polynomial over a finite field. At
the same time, it should be noticed that the equation (*) itself may serve as a
powerful tool in the computer algebra—subring generation.
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1 Preliminaries

This paper addresses an algebraic problem which arose in our study of the infor-
mation dynamics of cellular automata, see the concluding remarks of [4]. How-
ever, its presentation here is self-contained and can be read without knowledge
of the literature.

The problem is to investigate the structure of subrings of a polynomial ring
Q[X] modulo (X7 — X) over Q = GF(q),q = p", where p is a prime number
and n is a positive integer. Evidently |Q| = ¢. Q[X] is considered to be the
set of polynomial functions {g : @ — Q}, which are uniquely expressed by the
following polynomial form.

g X)=ap+a X+ 4a; X+ +ag-1X1,0,€Q,0<i<q-1. (1)

It is easily seen that |Q[X]| = ¢? For any element a € Q[X], we note that
a? —a = 0 and pa = 0. As for the literature of finite fields and polynomials over



them, we refer to the encyclopedia by Lidl and Niederreiter [3].

Notation : For a subset G C Q[X], by (G) we mean the subring of Q[X] which
is generated by G. G is called a generator set of (G). Every element of G is called
a generator of (G). For a ring, there may exist more than one generator sets. See
Supplements below, where the general case of universal algebra is written, since
the ring R with identity element 1 is an algebra (R, +, —,0,,1).

It is an interesting topics to investigate the lattice structure (set inclusion) of
subrings of Q[X]. Since we consider nontrivial subrings, the smallest subring is
Q, while the largest one is @[X]. In this paper we focus on the cardinality of
subrings. The cardinality |B| of an arbitrary subring B C Q[X] is a power of g.
For any 1 < i < q, there exists a subring B such that |B| = ¢*, see Theorem (4)
below. There can be more than one subrings having the same cardinality, see
Example 3 below.

Now we are going to enter the main topics. First, we need to define the following
two notions.

2 Log-ring size of G

Taking into account the fact that the cardinality of any subring of Q[X] is a
power of g, we define the log-ring size of G by the following equation.

Definition 1. For any subset G C Q[X], the log-ring size A(G) is defined by the
following equation.
A(G) = log, [(G)| (2)

Note that 1 < A(G) < g.

3 Value size of G

Definition 2. Suppose that a subset G C Q[X] consists of r polynomials: G =

{91,892, .-, 9r : 9 € Q[X],1 <4 < r}. Then an r-tuple of values (g1(a), g2(a), -.., gr(a))

for a € Q is called the value vector of G for a and denoted by G(a). Note that
G(a) € Q". The value set V(G) of G is defined by

V(G) ={G(a) | a € Q}. 3)
Finally we define the value size of G by |V(G)|. Note that 1 < |V(G)| < q.

When G consists of one polynomial, say G = {g}, we simply denote (g) and
V(9) in stead of ({g}) and V({g}), respectively.
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4 Theorems

We state and prove the main theorem and one of its derivatives. The main
theorem appeared without proof in the concluding remarks of our paper [4],
page 416. It also gives another (much simpler) proof of Theorem 5.3 of the
same paper as the special case of |V(G)| = A(G) = ¢, which corresponds to the
nondegeneracy and the completeness of a configuration.

Theorem 3. For any subset G C Q[X], the log-ring size is equal to the value

size.
A(G) =log, |{G)| = |[V(G)|. 4)
Proof. For given G we assume that m = g — |V(G)| > 0 . Then there are m

elements ¢y, ¢z, ..,cm € @ and a value vector v € V(G) such that

Gg)=9,1<i<m. (5)

and
v # G(a) # G(a') #v forany a # ¢i,a' #¢i,1 <i<m. (6)
Such a G is called (¢, 2, ...y, )-degenerate. From the commutativity property of
the substitution and the ring operations [4], it is seen that any polynomial func-

tion which is obtained from (cy, ¢z, ...c,,)-degenerate functions by ring operations
is also (¢, 2, ..., cm )-degenerate. Therefore,

(G) ={h € Q[X] | his (c1,c2,..., cm) — degenerate}. (D

On the other hand, from Equations (5) and (6), the number of all (¢;, ca, ..., ¢ )-
degenerate polynomials turns out to be ¢9~™ = ¢!V (9)l. Therefore we see,

(G| = ¢Vl (8)

Taking log, of both sides, we have the theorem. When m = 0, every values of
G are different, G generates Q[X] and therefore |(G)| = ¢?. So, taking log, we
have the theorem.

Using Theorem (3) we have the following result.
Theorem 4. For any 1 <i < g, there ezits a subring B such that |B| = ¢".

Proof. Consider a function h such that |V (k)| = i. For example, take a function
h such that

h(ao) = Qag, h(al) =ai, h(az) =a2,°*",
h(ai-1) = ai-1 = h(a;) = h(ai1) = -+ = h(ag-1). (9

Then by the interpolation formula given in Supplement below, we obtain a poly-
nomial g such that g(c) = h(c), for any ¢ € Q. Therefore we see |V (g)| = [V (h)|.
Then by Theorem (3) we have |[(g)] = [V (g)| = [V(h)| = ¢'.

! In the information dynamics, m is called the degree of degeneracy [4].



5 Polynomials in several indeterminates

Theorems (3) and (4) proved above can be generalized to the polynomial ring
in several indeterminates X;, X, ..., X,,.

Let Q[X1, X3, ..., X,] be the polynomial ring modulo (X{—X;)(X3-X3) --- (X2
X,) over @. The log-ring size and the value size of G C Q[X1, X3, ..., X,,] are
defined in the same manner as the one indeterminate case. Note, however, that
1 < AG) <g*and 1l < |V(G)| < q*. Then we have the following theorems
which can be proved in the same manner as the one variable case.

Theorem 5. For any subset G C Q[X1, X2,..., Xnl,
A(G) =log, |{(G)| = [V(G)]. (10)

Theorem 6. For any 1 < i < q", there exits a subring B such that |B| = ¢*.

6 Examples
Example 1: Q = GF(3) = {0,1,2}

G: = {a+ bX}, where b # 0. (G1) = Q[X].
Since |Q[X]| = ¢?, A\(G1) = ¢

Generally, for an arbitrary @, any polynomial of degree 1 generates Q[X] and
is called a permutation of Q. Note that |V (a + bX)| = g, since Q is a field and
a + bc = a + b’ implies ¢ = ¢'.

G2 = {X?}. We see that
(G2) ={0,1,2,X2,2X2%, 1+ X%,2+ X2, 1 +2X2 2+ 2X?} # Q[X].

So, |{G2)| = 9 = 3% and A(G2) = 2. It is the only nontrivial subring of polyno-
mials over GF(3). On the other hand we see |V(X?)| = 2.

Example 2: Q=GF(4)=GF(2?)= {0,1,w,1 + w}. Note that w? =1+ w, (1 +
w)? = w and w(l +w) = 1. 2a = 0 for any a € Q.

X2 (X?) = Q[X]
A(X?) = 4. [V(X?)| = 4.

X3:(X3) ={a+bX3:4a,b€Q}.
[(X3)| =42 (A\(X®) =2). [V(X?)| =2.

1
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X+X3(X+X3={a+bX+cX3:a,bcEQ}.
(X + X3)| =43 (A\(X + X3) =3). [V(X + X3)| =3.

Example 3: Q=GF(5)={0,1,2,3,4}

We consider the following singleton subsets; G5 = {X*}, G4 = {X?}, Gs =
{X + X3+ X%} and Gg = {X3}. :
Then we have the following results on value size and log-ring size.

Gs=X*:(X*)={a+bX*:a,b€Q}.
{X4)| = 5% ( A(X*) = 2). On the other hand |V(X4)| = 2.

Gy= X2
(X?)={a+bX%+cX*:a,b,ce Q}. (11)
{X?2)| = 5% ( A(X?) = 3). On the other hand |V(X?2)| =3.

Problem: Show |(X + X3 + X*)| = 54.
Also, show |(4X +4X2 +2X3 + X4)| = 54.
Are they the same subring of cardinality 54 ?
On the other hand |[V(X + X3 + X4)| = 4.

Ge = X3 : (X3) = Q[X], since (X3)2=X%?and X3 - X2=X.
A(X3) = 5. It is seen that |V (X3)| = 5.

Gr=X+X%|V(X+X?)|=3.|(Gy)| =37

Gs =G4UGr = {X%, X + X?}: V(Gs) = {(0,0),(1,2),(4,1), (4,2),(1,0)}.
So, [V(Gs)| = 5. On the other hand (Gs) = Q[X]. So, A(Gs) = 5.

It is clear that the subrings of a polynomial ring constitutes a lattice (set inclu-
sion) structure. In order to calculate the complete diagram, even for small g, we
need a computer software. However, as far as we know, there does not exist such
a program that generates every subring of a polynomial ring over a finite field
modulo X7 — X.

Here are shown partial inclusion relations of the above Example 3, ¢ = 5.
Q (X% ¢ (X% c QIx].
Q C (X + X?) c Q[X].
Note that (X?) # (X + X2) and (X*) is not included by (X + X?3).



In fact, from (11) we see that in any polynomial in {(X?) the coefficient of the term
X3 is zero, while in (X + X?) we see for example (X + X2)% = X2 +2X3 + X4,

7 Supplements

7.1 Interpolation formula

Given a function h(z) : @ — @, the following interpolation formula gives a
unique polynomial function f(z) over @ such that f(c) = h(c),Vc € Q. In
Chapter 5, page 369 of the encyclopedia by Lidl and Niederreiter [3], Equation
(7.20) gives the interpolation formula for several indeterminates. Here we cite
its one indeterminate version.

HOESINICHESCE (12)
ceQ
By this formula we can compute the coefficients a;,0 < i < ¢ — 1 in formula (1)
from the value set of h, though inefficient. '

7.2 Generators

A (universal) algebra 2 is a pair A = (A, O), where A is a nonempty set called a
universe and O is a set of operations f1, fa,... on A. For a nonnegative integer n,
an n-ary operation on A is a function f : A™ — A. A subuniverse of an algebra
A is a subset of A closed under all of the operations of A. The collection of
subuniverses of A is denoted by Sub( A). For any subset B of A, we define

(B)A =[){S € Sub(A)|B C S}

called the subuniverse of A generated by B. If (B)* = A, then we say that B is
a generating set for A.

Classification: According to Schmid [5], the elements of A is classified into
three categories:

(1) irreducibles: elements that must be included in every generating set.
(2) nongenerators: elements that can be omitted from every generating set.
(8) relative generators: elements that play an essential role in at least one
generating set.

This classification is closely related to the information contained by a polyhomia.l
in a configuration.

2 For the universal algebra, the reader is referred to [2]
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Decision problems: Bergman and Slutzki asked and answered the following
questions [1] :

(1): Does a given subset generate a given algebra ? Answer: P-complete.

(2): What is the size of the smallest generating set of a given (finite) algebra ?
Answer: NP-complete.

These results give an answer to the computational complexity problem whether
a configuration is complete or not.
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