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1 Introduction

Among a variety of normal forms for phrase structure (or type-0) grammars,
Geffert normal forms are unique in that each of them consists of minimal linear
type productions with a fixed number of specific cancellation productions.
More specifically, we are interested in one of the Geffert normal forms in which
besides minimal linear type productions, only two cancellation productions
AB — ¢ and CC — ¢ are allowed.

Motivated from these forms, first we formalize Geffert normal forms into
grammars with minimal linear type productions and a finite set of cancellation
productions which we refer to as cancel minimal linear grammars. Then, within
cancel minimal linear grammars, we consider the effects of restrictive use of
the above two cancellation productions on the generative powers. That is, we
examine the generative powers of two types of cancel minimal grammars with -
either AA — € (exclusively) or AB — e.

We will show that cancel minimal linear grammars with the cancellation
production AA — ¢, only generate linear languages, while with the cancellation
production AB — ¢, they only generate context-free languages. Thus, a slight
difference of cancellation productions has an effect on the generative powers.
Their inclusion relations to the class of regular languages are also established.

2 Preliminaries

Let G = (N, T, P, S) be a minimal linear grammar, where N = {S} is a set of
nonterminal symbol, T is a set of terminal symbols, S in N is the initial symbol,
and P is a finite set of minimal linear productions of the forms, S — uSv or
S — w, where u,v,w € T*. A language L is a minimal linear language if there
is a minimal linear grammar G such that L = L(G), where L(G) = {w € T* |
S =t w}.

We introduce a cancel minimal linear grammar as follows: a cancel minimal
linear grammar (cmi grammar) is a 4-tuple G = ({S} U Ng, T, P, S), where T



and S are the same as before. Let N¢g be a finite set of nonterminal symbols
except for S. P is a finite set of productions and consists of minimal linear type
productions (ml-productions) Py and cancellation productions (c-productions)
Pg, where
Py = {S—uSv|u,ve(TUN)}U{S > w|we (TUNg)*}, and
Po = {a—e|lae N}

A language L is a cancel minimal linear language (cml language) if there
is a cml grammar G such that L = L(G). In a cml-grammar G, if P = {a —
€, B = €--,7 > €} holds, then we say that L(G) is an {e,f,---,v}-cml
language.

For a derivation S == q, if there exists a derivation oy such that o =3
w € T*, then « is called a valid string. When « is valid, the derivation o, is
called a valid derivation.

Consider a valid derivation S =% a;. If there exists no string o, such that
a1 == ay, where 0y € P, then we say that «; is irreducible.

In what follows, we consider only e-free languages. The classes of recursively
enumerable, context-free, linear, minimal linear, {e, f, - - -, y}-cancel minimal
linear, and regular languages are denoted by RE, CF, LIN, ML, CM L, g ... 1},
and REG respectively.

For the class of recursively enumerable languages, there exists the following
theorem.

Theorem 1 (Geffert) [1] Each recursively enumerable language L can be
generated by a cml grammar with a set of cancellation productions Po which
is one of the following five sets:

1:{AB —¢ CD —¢€}, 2:{AB—¢ CC — ¢},
3:{AA —>¢, BBB —¢€}, 4:{ABBBA — €},
5: {ABC — ¢€}.

3 Main results

3.1 {AA}-cml languages

Firstly, we show some results concerning { AA}-cml grammars. With the c-
production AA — €, cml grammars can only generate linear languages.

To show the relationship with other language classes, we consider a linear
language generated by G; which indicates the proper inclusion between the
classes of linear languages and {AA}-cml languages:

Gl = ({NO, Nl, N2, N3, N4}1 {aa b1 &) d’ €, f}7 Pla NO)) where

P = { Ny = aNoa,, Ny — aNla, N; = bN1b, N; = bNyb, Ny — CN2C,
N; = cN3ze, N; —)VdN3d, N3 — dNyd, Ny — eNye, Ny — efe }

Then, L(G;) = {a*rbFeckadrse®s feksdhacksbbaahr | ki, kg, ks, ks ks > 1}
which is proved to be not an {AA}-cml language.

On the other hand, the regular language Ly = {a**b*2c*sd®e¥s | ky, ks, ks,
ks, ks > 1} is not an {AA}-cml language.
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The following {AA}-cml language L(G3) indicates the proper inclusion
between the classes of minimal linear languages and {AA}-cml languages:
L(G3) = {a™™a™ | m > 1, n > 0}, where G5 = ({S, A}, {a,b}, P, S), and
Py ={S = aSa, S — SAb, S = bA, S — SAbA, S — b, AA— ¢} Itis
easy to see that L(G3) is not minimal linear.

By these languages, we have the following theorem.

Theorem 2 1. ML C CMLg44 C LIN.
2. REG and CM L4y are incomparable.

3.2 {AB}-cml languages

We will show that {AB}-cml grammars can only generate context-free lan-
guages.

Let G = (N, T, P, S) be an { AB}-cml grammar. Without loss of generality,
we may assume that any ml-production in P is of the form S — BiuA’SB*vA!
or S — BiwA!, where u,v € T*, w € T, i,5,k,1 > 0.

We set P = Py, U Py, U Pp, where

r1: S — B'inullAjnSBknvnAlu’
Py, =

sey

Tip - S — Bilpulijl”SBklp’UlpAllp,

To1 : S — Bim’wzlAln,
]31‘42 — R

Taq : S — Bi2awy, Al
Po = {r.: AB — €}.
Consider a derivation S =L w, where v be a derivation which uses ¢;; times
applications of rix, for each 1 < k < p. At the last step, we use a production

T2s in Py, at most one time, and we also use the c-production some times in
7. We first examine a necessary condition of + for w to be in L = L(Q).

Lemma 1 On the number of nonterminal symbols A and B, the following
equations hold with v by ws, in a production roy in Pyy,:

o o ti :
Ju—ta o Jip—1lip . — [ s (1)
ku—ln - kp—lp ' las )
tip
. jll _ill e jlp -‘ilp .
Now, we set M = and the rank of M is rp,.
ki =1y -+ k'lp - llp
Obviously, ¢1, - - -, t1, should be integer solutions of equations (1). To solve

these equations, firstly we consider the next equation,



There exist (p — rpr = M) vectors that are linearly independent, and the
linear combination of those vectors is the solutions of (2). A solution vector v
of (1) is represented as v = byvy + - - - + by vz + V¢, Where vy, -+, vy are base
vectors that satisfy (2), b1, - -, by are integers, and v; is a base vector which
satisfies (1).

Now, we consider the vector v; = (£, +,%sp). Then, there exist at most
t + e t ' . . . . . . . e
( ﬂt ; :— ,tp ) different irreducible derivations. For each derivation § ==
t1: " ** Utp-
(B + -+ +ty)!
LY M
valid derivation or not. Since it satisfies the equation (1), for a valid derivation,

; e YeT2se
there exists some 7, € Pyy,, we eventually have a derivation, S '=° w, where

w € T*. In this case, we say that the irreducible valid derivation is compatible
with v;.

Let R, be a finite union of the set of all possible irreducible valid derivations
compatible with the vector v, for all v € fvt +Siavi |l IC{1,--, M }}

Now, we consider a vector v; = (t;1,---,%;,) which satisfies (2). By the
similar way to v;, we also effectively check whether it is a valid derivation
or not, and for a valid derivation, we eventually have its irreducible form,
S =>* B'uA'SB'wA!, where u,v € T* and i,l > 0. In this case, we say that
the irreducible valid derivation is compatible with v;.

Let R be a finite union of the set of all possible irreducible valid derivations
compatible with the vector v;, where 1 < i < M.

ZeSYe, where 1 < e < , we can effectively check whether it is a

[Construction]
Let G4 = ({5, A, B}, {a,b,¢,d, e}, Py, S) be an {AB}-cml grammar, where

Py={ r:8—aASB5 r;: S — BbASB3A5, r3: S — BcASB2A,

T4: 8 = BdASB3A, r5: S — BeA®, v,: AB — ¢ }

By using an example {AB}-cml grammar G4, we show how to construct a
context-free grammar G’ = (V, T, P', Nyo) which satisfies L(G') = L(G,).

We construct nonterminal symbols in V and productions in P’ based on R
and R;. From productions in P,, we construct the following equation,

1]
1 0 00\[ta]| (1
(5 -2 1 2) t3 ‘(5)"'(1E)'

g

The solution of (1) is represented as v = byvy + byvy + v;, where v; =

(0,1,0,1), v = (0,1,2,0) and v; = (1,0,0,0).
At first, we consider about R;.
e For v; corresponding to the valid derivation S =% aASB’ =%

aABeASB5 == ae, we construct nonterminal symbols and productions,
Noo — aN15, N15 — €.

211



212

e For v, + v; corresponding to a valid derivation S = aASB® =&

abASB? BE qbd ASBSEL abde, we construct new nonterminal symbols
and productions, N5 = bNi3, N3 = dNys.

For a valid derivation rir4rorsy?, construct new nonterminal symbols and
productions, Ny5 = dNy7, Ny7 = bNis.

e For v;+v; and v;+v; + V3, construct new nonterminal symbols and pro-
ductions, N3 = cNyy, Ny = cNis, N1y — leG; Nis = cNyg, Nig —
bNy4, and Nig —= cN17. Nig = dN1g, Nig — bNig, N1z = dNig, Nig —
bN17, Nig = dNyg, N17 — cNys.

Next, we consider about R.

e For v, corresponding to the derivations, S =% BdASB3A, and S =%
BbASB3 A5, we construct derivations Xi; — dX;;4,b for each 3 < j < 7.
For each 5 < ] < 9, le g bX1j—2d,

e For v, corresponding to the a derivation r3rorsy?, we construct deriva-
tions X;; — cXj41bc for each 4 < 5 < 8.
For each 4 < J < 9, X1j — clej_lc.
For derivations r3rsray%, construct derivations X: 15 = cXij4+1¢b for each
3<j<L8
For each 3 < j <7, X1; = ccXyj42b.
For derivations ryrsrsy, construct derivations Xi; — bX;;j_scc for each
6<;5<09.
For each 5 < j <9, Xy; = beXyj_1c.

At last, we have a context-free grammar G/, such that L(G,) = L(G),

Where G, = ({N007 N13) e N19: X13a ce X19}7 {a'7 ba c, da 6}, P” NOO);

P'={ Noo —aNi5, Niz = cNis|dNys, Nig— cNyg | dNyg,
N15 e I bN13 | bdN15 I de15 ! CN]_s ' dN17,
Nig = bN14 | cN17 | dN1g, Nyiz — bNys | cNyg | dNyg,
Nig = bNyg | dN1g, Nig — bNy7 }
u { Nlj - leNlj, X1j - X1kX1j l €, where 3<j<9, 3<k< J}
U { le — dX1j+2b, where 3< 5 < 7}
U { le - lej_gd, where 5<j <9 }

X1; = eXyj11be,
le — clej_lc,
X1; = cXyj410b,
le — CCX1J'+2b,
le - lej_zcc,
X1 = beXyjac,

where 4< <8}
where 4<j7<9}
where 3<j<8}
where 3<j<7}
where 5<j <9}

where 5<j<9}.

From the above argument, demonstrated by an example grammar Gy, we

conclude that an {AB}-cml language L is a context-free language.

In order to show the relationship with other language classes, we know that

an {AB}-cml language L(G,) is not minimal linear. Further, a context-free



language L5 = {a™b™c"d" | m,n > 1} indicates the proper inclusion between
the classes of context-free languages and { AB}-cml languages.

As for the relationship with regular languages, it is possible to show that
any regular language can be generated by an {AB}-cml grammar. Then, we
have the following theorem.

Theorem 3 LIN C CML4p, C CF.

4 Conclusion

In this paper, we considered the generative powers of { AA}-cml grammars and
{AB}-cml grammars. There are many possible variations from Geffert normal
forms in Theorem 1, which include, for example, {AB, A}-cml, {AB, AA}-cml
languages for type 2, { AAB}-cml languages for type 5. The status of all these
language families in Chomsky hierarchy remains open, and we are now working
on.
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