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A topological L-function for a threefold

Ken-ichi SUGTYAMA *f
January 6, 2004

1 Introduction

In recent days, analogies between the number theory and the theory of three-
folds are discussed by many mathematicians( [1][6](7]). It will be Mazur who first
pointed out analogies between primes and knots in the standard three dimen-
sional sphere. Morishita([7]) has investigeted a similarity between the absolute
Galois of Q and a link group. (A link group is defined to be the fundamental
group of a complement of a link in the standard three sphere.) Moreover he
has interpreted various symbols (eg. Hilbert, Rédei) from a topological point
of view. For an example, he has shown one may consider the Hilbert symbol of
two primes as their “linking number”.

In this report, we will study a similarity between the number theory and
the theory of topological threefold from a viewpoint of a representation theory.
Namely an L-function assosiated to a topological threefold will be discussed.
Since our definition of an L-function will be based on one of a local system on
a curve defined over a finite field (i.e. the Hasse-Weil’s congruent L-function),
we will recall the definition the L-function in the arithmetic case.

2 A brief review of the Hasse-Weil’s congruent
L-function |

In what follows, for an object Z over a finite field Fy, its base extension to F,
will be denoted by Z. We fix a rational prime [ which is prime to g.

Let C be a smooth curve over a finite field Fy and let C <y C* be its
compactification. Suppose we are given a Q;-smooth sheaf F on C. Then the
g-th Frobenius ¢, acts on H'(C*, . F) and the Hasse-Weil L-function is defined
to be |

L(C,F,T) = det[l — ¢;T|H'(C*, 7.F)].

It has
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e an functional equation,

e an Euler product.

Suppose F is deduced from an abelian fibration. Namely let A 4, C be an
abelian fibration whose moduli is not a constant. We set F = R!f,Q; and

L(A,s) = L(C, F,q™*).

Then L(A, s) is an entire function and Artin and Tate ([11]) have given a detailed
conjecture for a special value of L-function, which is a geometric analogue of the
Birch and Swinnerton-Dyer conjecture. Their conjecture predicts that the order

~of L(A, s) at s = 1 should be equal to the rank of the Mordell-Weil group of the
fibration. They have shown this is equivalent to the finiteness of I-primary part
of the Brauer group of A.

3 A definition of an L-function of a topological
threefold

3.1 The definition

Let X be the complement of a knot K in the standard three dimensional sphere.
By the Alexander duality, we know H;(X,Z) ~ Z and therefore it admits a

infinite cyclic covering
Y5 X.

Let S be a minimal Seifert surface of K. Then its inverse image 7~1(§) is a
disjoint union Li,ezS, of copies of S indexed by integers. We assume that the
genus of S is greater than or equal to two and that the fundamental groups
of So = § and Y are isomorphic. Let £x be a polarized local system on X
and let Lg be its restriction to S. The deck transformation of the covering
may be considered as a diffeomorphism of S and it is easy to see it lifts to an
isomorphism ¢ of the local system Lg.

Let us compare our situation to the arithmetic one. The covering Y 5 X
corresponds to C — C and the local system Lx is an analogy of F. Let px be
the representation of 71(X) associated to Lx. Since m*Lyx is the local system
for the restriction of px to m(Y) = m1(S), we may identify it with £g. Hence

Ls is an analogy of F and ¢ corresponds to the Frobenius.
According to the observation above, we will make the following set up.

Let X be a compact smooth threefold which may have smooth boundaries.
Suppose it has an infinite cyclic covering

Y5 X

which satisfies the following properties.



1. There is a smoothly embedded connected surface
e
whose genus is greater than or equal to 2 and the boundaries are contained
in 8X via 1.
2. Let T be the inverse image of S by m, which is a disjoint union of copies
of S indexed by integers:
T= l—'nezs’na S' :'§ Sn-
Then the map ip induces an isomorphism

w1(i0

m1(5,80) = ) m1(Y,%0(30))-

We will refer such an infinite cyclic covering to be of a surface type. The fol-
lowing notations will be used.

Notations 8.1. 1. X (resp. S, Y) is the interior of X (resp. 5, Y).

2. Mg (resp. My, Ilx) is the fundamental group of S (resp. Y, X ) with
respect to the base point sq (resp. io(s0), 7(40(50)))-

3. Ily;x is the covering transformation group of Y - X.

Let ® be a deck transformation generating Iy, x. Identifing S with So (resp.
S;) via ip (resp. 1), ® induces a diffeomorphism ¢ on S by restriction. Since
the genus of S is greater than or equal to 2, it is diffeomorphic to'a quotient
of the Poincaré upper half plane H? by a discrete subgroup I' of PSLa(R).
Adding cusps I to the quotient, we get compactification §*. We will sometimes
identify S with S§*\ Z.

Remark 3.1. Note that there is an ezact sequence
1-Mg—-Ix -Z—1.

This is a geometric counterpart of the following situation in arithmetic geometry.
Let C be a smooth curve defined over Fy and let C be its base eztension to Fq.
Then their fundamental groups fit in the ezact segence

1 m(C) = m(C) = Z— 1.

Let F be a field of characteristic 0 and let L be a vector space over F of
dimension 2g with a skew-symmetric nondegenerate pairing a. Suppose we are
given a representation

Iy &% Aut(L, @)

such that , ,
Lns — O’Y . (1)
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Let ps be the restiction of px to Ilg and the local system associated to px (resp.
ps) will be denoted by Lx (resp. Ls). Then the diffeomorphism ¢ induces an
isomorphism of a polalized local system:

¢
Ls — > Lg
v v
s ¢ - s
Fig. 2.2

Let j be the open immersion of S into S* and let i be the inclusion of T
into §*. Then ¢ acts on H'(S*, j.Ls), which is a geometric analogue of the
Frobenius action. For a point P in ¥, let Ap be a small disc centered at P and
we set AL = Ap \ {P}. The parabolic cohomology H} is defined to be

H}(S, Ls) = Ker[H(S, Ls) = ®pesHY (A}, Ls)).

One can easily see that H5(S, Lg) admits an action of ¢ and it is isomorphic to
HY(8*,j.Ls) as a F[$]-module. Also the nondegenetate skewsymmetric pairing
a and the Poincaré duality induce a perfect pairing on H3(S, Ls), which is
invariant under the action of ¢. Hence H L(S,Ls) is a semisimple F[@]-module
and it is isomorphic to its dual as a F[(Z:]—module.

Now we define the topological L-fuction L(X,Lx) for the local system Lx
to be
L(X, Lx) = det[l — $*T|H}(S, Ls)).

Here T is an indeterminate.

Let My(S) be the mapping torus of ¢ and let My(Ls) be the local system
on X which is the obtained by the same way as “mapping torus” from the

isomorphism Lg 2 Ls. Note that by the definition we have

L(X, Lx) = L(My(S), My(Ls)).

3.2 Examples

Let K be a knot embedded in the standard three dimensional sphere S3 and let
Nk be its tubular neighborhood. Let X be the closure of the complement of
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Ng in S3. Then H; (X, Z) is isomorphic to Z by the Alexander duality and X
admits an infinite cyclic covering
D¢
Let X (resp. Y) be the interior of X (resp. Y) (cf. Notations 3.1). Then the
map induces an exact sequence
11y -lIx - Z - 1. (2)

Let S be a minimal Seifert surface of K and we set

§=8nX.
It is known if IIy is finitely generated, S & ¥ induces an isomorphism ([5])

g ~IIy.

Moreover Murasugi has shown if the absolute value of the Alexander polynomial
Ak(t) of K at t = 0 is equal to 1, then IIy is finitely generated.

Fact 3.1. ([4/IV. Proposition 5) Suppose every closed imcompressive surface
in X is boundary parallel. Then either
1. X is Seifert fibred,
or
2. X is hyperbolic. Namely there is the mazimal order Of of an algebraic
number field F' and a torsion free subgroup I' C PSLy(Op) such that X

is diffeomorphic to T\H3. Here after fizing an embedding F ito C, I is
regarded to be a subgroup of PSLy(C).

Now we assume that the infinite cyclic covering satisfies the following con-
ditions.

Condition 3.1. 1. Iy is finitely generated.
2. FEither
(a) X is Seifert fibred,
or

(b) there is the mazimal order O of an algebraic number field F and a
torsion free subgroup I' C SLy(OF) which freely acts on H® so that
X is diffeomorphic to T\H3. As before after fizing an embedding F
ito C, T is regarded to be a subgroup of SLa(C).

Remark 3.2. Professor Fujii kindly informed us that if X is hypebolic, then
the Condition 3.1. 2 (b) is always satisfied.
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Suppose X satisfies 1 and 2(b) of Condition 3.1. Then we have the canon-
ical representation

Iy ~T & SL,(C).

We set
L= 0632’

and let o be the standard symplectic form on L. Namely for elements z =
( 1 ) and y = ( b ) of L, a(z,y) is defined as
T2 Y2

a(:r,y)=det( 71 0 )

T2 Y2
This invariant under the action of ILx. The result of Neuwirth([5]) implies

71 (io)

IIs =~ Iy,
and it is easy to see
L"s =,
Hence the conditions in §3.1 are satisfied.

Next suppose that X satisfies 1 and 2(a) of Condition 3.1. Then under a
mild condition, one can check its fundamental group has a linear representation

Ix 2% SLy(C)

such that
LUs = .

Details will be found in [9].

Remark 3.3. Even if we take the trivial representation, we can define an L-
function for a knot complement. Note that this is nothing but the Alezander
polynomial, which corresponds to the congruent zeta function of a curve. But
contraty to the arithmetic case, as we have seen, we have a priori a two di-
mensional irreducible linear representation of m(X). This is one of the main
reasons to consider the L-function.

4 Properties of a topological L-function

In the present section, we will list up basic properties of our topological L-
function. Proofs of the statements will be found in [9].
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4.1 A functional equation
Let b(Ls) be the dimension of H}(S, Ls).

Theorem 4.1. (The functional equation)

L(X, Lx)(T) = (-T)°9)L(X, Lx)(T™).

Corollary 4.1. Suppose b(Ls) is odd. Then L(X, Lx)(1) vanishes and in par-
ticular the dimension of H5(S, Ls)®" is positive.

4.2 A geometric analogue of Birch and Swinnerton-Dyer
conjecture

In the present section, we will work with the holomorphic category.

Let A* be a smooth projective variety with a morphism
A5 o5

such that its resriction to S

| ABS

is a smooth fibration whose fibres are abelian varieties of dimension g. Moreover
we assume [ satisfies the following conditions.

Condition 4.1. 1. A*/S* is the Neron model of A/S and has a semistable
reduction at each point s € 3.

2. R'u,Q is isomorphic to the local system Ls.

3.
HY(S*,R 1.0 4.) =0.

Suppose there is a commutative diagram

A 2 - A
i i
v é
S* S*

R

Fig. 4.1
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such that ¢(X) = Z. Since Ls = R, Q, this induces the diagram as Fig.
2.2. We define the Mordell-Weil group MWx (A) to be

MWx (4) = A(S)*
and its rank will be denoted by rx(A). Since the cycle map induces an imbed-
ding

rx(A) is less than or equal to the order of the topological L-function L(X, Lx)
at T'=1.

Theorem 4.2. Suppose H2(A*,O4+) = 0. Then rx(A) is equal to the order of
the topological L-function L(X,Lx) at T = 1.

We define the topological Brauer group Bri,p(A*) to be
Briop(A*) = H*(A*, 0%.).
Then the exponential sequence
02— 04— 05 =0
implies the exact sequence
H?*(A*,Z) - H*(A*,04+) = Brip(A*) - H3(A*, Z).

Since A* is compact, both H2(A*,Z) and H3(A*,Z) are finitely generated
abelian groups. Hence Bry,,(A*) is finitely generated if and only if H2(A*, O4-.)
vanish since the latter is a complex vector space.

Corollary 4.2. Suppose Briop(A*) is finitely generated. Then the rank of the
Mordell-Weil group rx(A) is equal to the order of the topological L-function
L(X,Lx) atT =1.

Note that the corollary above is a geometric analogue of the theorem of Artin
and Tate. ([10][11])

4.3 An Euler product and an Euler system

Suppose the map ¢ in Fig. 2.2 satisfies the following condition.
Condition 4.2. There ezists a diffeomorphism ¢g of S such that
1. ¢g is homotopic to ¢,
and

2. every fized point of ¢F is non-degenerate and is isolated for any positive
integer n.
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Because of Condition 4.2(1), Fig. 2.2 may be replaced by:

®o
Ls > Lg
y ¢0 v
S — - s
Fig. 7.1

We prepare some notations. Let us fix a positive integer n. The set of fixed
points of ¢§ will be denoted by 5% . We define ®o(n) to be the orbit space of
the action of ¢g on

{s€S|¢B(s) =5 and ¢F(s)#s for 1<Vm<n-1}
and we set
by = LI Do(n).

For an element v of ®o(n), we call the integer n its length and we will denote

it by I(y). Let z € 5% bea representative of v € ®g3. Then 433(7) defines an
automorphism of the fibre of Ls ® Q at z and the polynomial

~ )

det[ll — g T|(Ls ® Q)x)

is independent of the choice of z, which will be written as P, (T').

Let VP is the invariant subspace of L ® Q under the action of 71 (A%). It is

easy to see ®pesVF has an action of qﬁ Now the Grothendieck-Lefshetz trace
formula implies the folloing theorem.

Theorem 4.3. (Euler product formula) Suppose the map ¢ in Fig. 2.2 satisfies
the Condition 4.2. Then

L(X, Lx) = (det[l — ¢*T| ®pex VF) ! [] P(T™) 1
YE€Po

Our L-function has a Euler system, which has been considered by Kolyvagin
in the Iwasawa theory of an elliptic curve ([8]). Let ¢p be a diffeomorphism
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of § satisfying the Condition 4.2 and let us fix a generator t of Ily,x ~ Z.
Then Q[Ily,x] may be identified with P = Q[t,t~1] and defining the action of

t by (¢3)~%, the compact supported cohomology group H}(S,Ls ® Q) may be
regarded as a P-module. In gereral, the Fitting ideal of a finitely generated P-
module M will be denoted by Fittp(M). The following lemma directly follows
from the definition of our L function.

Lemma 4.1.
l'?":t'l:P(‘l_Ic1 (S: Ls® Q)) = (LC(X7 CX)))

where L.(X,Lx) is defined to be
LC(Xa [:X) = det{l - d’;*t'Hi(Sa Ls® Q)]

For v € ®y(n), let O, C S be the corresponding orbit of ¢o and let S, be
its complement. The corestriction map

H(Sy, Ls ® Q) & HI(S, L5 8 Q)
is defined to be the Poincaré dual of the restiction map
HY(8,Ls®Q) ¥ H'(S,,Ls ® Q).

Observe that both of them are homomorphism of P-modules. The Thom-Gysin
exact sequence implies

0= H'(S,Ls ®Q) ™' H'(S,,Ls ® Q) > @ze0,(Ls @ Q)x 0,
and let |

0= @ze0,(Ls ® Q)z = HY(S5, Ls © Q) B HA(S,Ls®Q) =0 (3)
be its dual sequence. The following lemma follows from the obeservation:

Fittp(©zc0, (Ls ® Q)z) = (Py(tM)).
Lemma 4.2.
Pittp(H(Sy, L5 ® Q)) = (Le(X, Lx) - Py ().
In general for an N-tuples of distinct elements {7;,--- ,vn} of @9, we set
S’Y=S\(O’YIU”'UO'7N)‘ (4)

The induction on N shows the following proposition. |

Proposition 4.1.

N
Fittp(H;(Sy, Ls ® Q)) = (Le(X, Lx) - [ [ Py (#09)).

i=]
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Definition 4.1. (An Euler system of a topological L-function) Let v be the
empty set or an N-tuples of distinct elements of ®o. Suppose a finitely generated
P-modules V, is given for suchvy. If {V,}., satisfy the following conditions, they
will be refered as Euler system of the topological L-function.

1.
Fittp(V¢) = (L¢(X, Lx)).
2. Suppose .
v =vU{ws}, w41 €7
Then there is a surjection as P-modules
Vo — Vy
and their Fitting ideals satisfy the relation
Fittp(Vy) = Fittp(Vy) - (Pyy,, (#H0V+1))).
We set

and for an N-tuples of distinct elements vy of &, we define
Vy= Hg(s'ra Ls® Q).

Then {V,}., is an Euler system by Proposition 4.1.

Next we will show how Kolyvagin’s Euler system appears in our geometric
situation. We assume any two of {P,(t"")},ce, are relatively prime. Let v
and 7' be as 2. of Definition 4.1. The same arguments of to obtain (3) shows

0= Bazco, .. (Ls ®Q)e — HX(Sy,Ls ® Q) T HY(S,,Ls ® Q) — 0.

IN+1

Note that P, (¢{("¥+1)) annihilates ®zeo,,,, (Ls ® Q)z and by the assump-

tion its multiplication on H}(S,, Ls®Q) is an isomorphism. These observations
imply the following lemma.

Lemma 4.3. Let us fiz z., € H}(S,,Ls®Q). If we take y, € H:(Sy,Ls®Q)
so that
Cor(yy) = z4.

Then we have
Cor(Py, ., (t“"""‘l))y,),,) = P,,N“(tl("”“))z,,.

Moreover P, (t"+1))y., is independent of the choice of Y.
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Now we fix a non-zero element ¢4 of H.(S,Ls ® Q). For an N-tuples of
distinct elements 7y of ®; we will inductively define an element ¢, of H}(S,, Ls®
Q). Let v/ =yU {yn+1} be as before. We take any d, € H}(Sy,Ls ® Q) to
be

Cor(dy) = cy,

and we set
¢y = Pyyy, (tl('”"“))d.,'.

Then the system {c,}, is well-defined by Lemma 4.3 and they satisfy
Cor(cy) = P’7N+1 (tl('YN-H))c’h

which is the same relation as Kolyvagin’s Euler system ([8]). One may realize
an Euler system is an another appearence of Fuler product.

4.4 The Franz-Reidemeister torsion and a Special value

We will briefly recall the theory of densities and the Franz-Reidemeister torsion
([2] [3] [9]). Throughout the subsection, let F' be equal to R or C. Let V be a
vector space over F' of dimension r > 0 and let {vi,---,v,} be its basis. We

set
(ANTVY* ={a-viA---Avea€ F*}

and
| AT V| = (ATV)*/{£1}.

Then | A" V| is isomorphic to F* /{£1} and will be mentioned as the space of

densitieson V. Let
(AV)Y* S A"V

be the canonical projection and the image 7(f) of f € (A"V)* will be denoted
by |f|. For the 0 dimensional vector space 0, we define

A0 =F, (A°0)* =F*
and
| A% 0| = F*/{%1}.
Moreover for f € A%0 = F*, its image in | A® 0] = F*/{£1} will be denoted
by |f|. If F is R, the canonical projection
(A°0)* =R* 5 |A0| ~ Rsg

is nothing but the map of taking absolute value. In the followings, we always
assume the 0 dimesional vector space 0 has the density 1 € | A?0| = F*/{x1}.
Also we always assume every complex is bounded and consists of finite dimen-
sional vector spaces over F.
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Definition 4.2. If a complez
=[C0 > ... 5 C"
has a density on each C* and H*, we say the complez C' is given a density.

Remark 4.1. When C' = H*, we assume H* is given the same density as C*.

For a complex with a density
C=[C">..->C",

we can associate an element Trr(C") of F* /{£1}, which is called as the Franz-
Reidemeister torsion (the FR-torsion for simplicity). Let |C*| (resp. |H*|) be
the density on C* (resp. H*). Then one may intuitively think of 7 r(C') as

TFR(C ) - H( ||Ic;'zl| 1)-"

Let us take a finite triagulation of S which is preserved by ¢. Then by a pararell
transformation of the symplectic form «, we obtain a complex with a density C;
such that its cohomology groups are isomorphic to H'(My(S), M, 3(Ls))- Using
the previous observation:

L(X, Lx) = L(My(S), My(Ls)),
we can show the following theoreﬁ.
Theorem 4.4. Suppose ¢* — 1 is isomorphic on HA(S, Ls). Then we have
IL(X, Lx)(1)| = Trr(Cy).

Remark 4.2. In general, we can show the following statement:
Let r be the dimension of Ker [¢* — 1|Hp]. Then we have

lim |(T - 1)7"L(X, Lx)(T)| = R((Hp)) - rr(Cy)-

Here R((HL)') is the regulator of the local system. Note that this is quite similar
to the formula which is predicted by the Birch and Swinnerton-Dyer conjecture.
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