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This paper is the résumé of the paper [Ya0]. Most of proofs of Theorems,
Propositions, Lemmas and so on are omitted. Only outlines of proofs wil be
shown, We refer [Ya(] for those proofs.

1 Introduction

Let D be a noncylindrical domain in (z,t)-plane with time-quasiperiodic
boundaries defined by

a1(t) <z < ay(t), t € R.

Here the given functions a;(t), ¢ = 1,2, are quasiperiodic functions.

Initial Boundary Value Problem

We shall consider IBVP for a linear wave equation in D
(87 — 82)u(z,t) = h(z,t), (=,%) €D,

u(ay(t),t) = r1(t), wu(az(t),t) =rat), t€ Rl,' (1.1)
u(z,0) = ¢(z), OGwu(z,0) = w(x), z € [a1(0), a2(0)].




Here r;(t), 1 = 1,2, and h(z,t) are quasiperiodic functions in ¢. We assume
that

lai()| <1 for all t € R. (1.2)

This means that the velocity of boundaries in z-direction is less than the
eigen-velocity. Then shock waves do not appear.

IBVP (1.1) describes some physical models like as the motions of the
string with time-quasiperiodically oscillating ends ([Yal][Ya3]), one-dimensional
optical resonator with a quasiperiodically moving wall ([L-P][P-L-V]) and so
on.

Conjecture and Some Counter Examples

We may generally expect that
(C) every solution of IBVP (1.1) is quasiperiodic in t.

There are counter works by Cooper [C] and Yamaguchi [Yad4]. Cooper showed
that in a simpler IBVP

(82 — 8%)u(z,t) =0, (z,t) €D,
u(0,t) =0, wu(a(t),t) =0, te€ R (1.3)
u(z,0) = (z), Owu(z,0)=9(z), = € [a1(0),a2(0)],

where a(t) is a periodic function, the solutions are unbounded in ¢ under
the periodicity of reflected characteristics. In [Yad], for a family of some
quasiperiodic h each solution of IBVP '

(82 — )u(z,t) = h(z,t), (z,t) € (0,m) x R,
u(0,t) = u(0,t) =0, te R, (1.4)
u(z,0) = ¢(z), Gwu(z,0) =¢¥(z), z € [0,7]

is unbounded in t. In this case each h has the property that the Diophantine
order of its basic frequencies is large and the differentiability in (z,t) is
small. Contrary to [Yad], it is shown in [Ya7] that every solution of IBVP
(1.4) is time-quasiperiodic if the differentiability of A is suitably larger than
the Diophantine order of the basic frequencies of h. Thus the Diophantine
condition is necessary in order that the solutions of IBVP .(1.1) are time-
quasiperiodic.



In this paper we shall give general conditions under which conditions every
solution of IBVP (1.1) is quasiperiodic in t.

1D Periodic DS and Rotation Numbers

Let ai(t), i = 1,2, be periodic functions with the rational ratio of the
periods. Then a composed function

A= ‘41_1 ° A21 Ai = (I + a’i) ° (I - a’i)_l’ i = 1’2a (15)

is a periodic dynamical system (DS). Here I is the identity, f~! is the inverse
of f, f o g is the composition of f and g and f™ is the composed iterates of
f. It is well-known [H] that for periodic (A — I)(z) the rotation number of
A’
n
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exists for each z € R! and is independent of z. A and its rotation number
are the essential notions to describe periodic and quasiperiodic property of
the solutions of IBVP and BVP with periodically oscillating boundaries. We
could apply the Herman-Yoccoz reduction theorem to A.

In [Yal,Ya2,Ya3] we deal with the case where h(z,t) vanishes identi-
cally, and all data a;(t) and 7;(t), ¢ = 1,2, are periodic, where the ratio of
the periods of a;(t) is a rational number. It was shown that if the periods
of a;(t), r;(t) and the rotation number w of A satisfy some Diophantine ap-
proximation inequality, every solution is quasiperiodic in ¢ with basic periods
(w, a1, ag,1). In [Ya2] it was shown that the properties of A and the reflected
characteristics determine the periodicity of the solutions of IBVP (1.1)-(1.3)
with a1 (t) = r1(t) = r2(t) = h(z,t) = 0.

1D Quadiperiodic DS and Upper (Lower) Rotaion Numbers

In general, the mapping A is defined for a;(t) satisfying a,(t) < ay(t) and
lal(t)| < 1, even if a;(t) are not necessarily periodic.

All the above results are essentially due to the periodicity of A — I that
assures the existence of the rotation number ([Yal,Ya2,Ya3]) and the periodic
reflected characteristics ([Ya2]). However, for example, if the periods of a;(t)



and az(t) have an irrational ratio, A — I is not periodic but quasiperiodic
with two basic periods. In this case several difficult problem arise. In this
paper, we shall be interested in such cases. We shall treat IBVP (1.1) under
more general condition that both a;(t), ¢ = 1,2, are quasiperiodic functions.
In this case naturally A — I is quasiperiodic and A is a quasiperiodic DS

Alz) =z + g(z)

with quasiperiodic term g(z). It is not known that for the quasiperiodic DS
the rotation number exists for all . As a matter of fact, in this paper we
shall see that the existence of the rotation number is not necessary. Instead,

we shall introduce a more weak notion upper and lower rotatwn number of
f at every point z (see section 2)

limsup( )( ), liminfw.

n—o0 n—00 n

The upper (lower) rotation numbers have several important properties lile as
semi-tnvariant property under conjugation.

Reduction Theorem for Quasiperiodic DS

The following holds : Assume that an upper (lower) rotation number
w of f and the basic frequencies of the quasiperiodic term ¢ satisfy the
Diophantine condition. Then the nearly affine mapping f written in the
form z + w + ¢(z) is conjugate to an affine mapping z + w, provided that
¢ is small enough. As a consequence, it will be shown that under the same
Diophantine condition the rotation number of f exists and coinsides with
the upper (lower) rotation number (Corollary of the Reduction Theorem in
section 3). The main tool we shall use here to show the above reduction
theorem is the rapidly convergent iteration method based on the Newton
iteration method [S-M], instead of the Herman-Yoccoz theory [H,Yoc] used
in case of the periodic A — I in [Yal,Ya3]. Then we shall show that under
the Diophantine conditions on an upper (lower) rotation number of 4 and
the basic periods of a;, i, h, every solution of IBVP (1.1) is quasiperiodic in
t and z. In this case the rotation number of A exists and coincides with the
upper (lower) rotation number of A. The reduction problem is also treated
by [P-L-V,L-P] in the quite different point of view.

Note that our results are obtained for a;(t) with the small perturbation
forms, different from those of [Yal]-[Ya3].



Domain Transformation

[Yal,Ya2,Ya3] dealt with homogeneous string equations. In order to treat
a nonhomogeneous equation in (1.1) with h(z,t) # 0, we shall introduce the
useful domain transformation of the noncylindrical domain D to a cylindri-
cal domain [0,w/2] X R!, where w is the upper (lower) rotation number of
A. It is remarkable that different from other domain transformations which
change the noncylindrical domain to a cylindrical domain, our transforma-
tion preserves the d’Alembert operator and does not produce any lower order
differential operators. This will be constructed by using the conjugate func-
tion of the Reduction Theorem. In case where a;(t) vanishes identically and
ay(t) is periodic, in [Ya-Yos] we have already constructed such d’Alembertian-
preserving transformation of a time-periodic one-sided noncylindrical domain
onto the cylindrical domain. And using this transformation, we treated IBVP
for a nonhomogeneous string equation ([Ya-Yos]). In [Ya5] the above domain
transformation is generalized to a time-periodic both sided noncylindrical
domain, and IBVP for a 3-dimensional radially symmetric wave equation is
studied. Also [Ya6] treated the periodic solutions of nonlinear string equation
with periodic nonlinear term.

2 1D Quasiperiodic DS and its Upper and
Lower Rotation Numbers

Definition. A function g(t), t € R!, is called quasiperiodic with basic fre-
quencies B = (b1, ,Bm) € R™ ( briefly 2m/B-q.p. ) if there exists a
continuous function §(8),0 = (6y,--- ,8,) € R™, that is 27-periodic in each
0; such that g(t) = g(Bt) holds. §(6) is called a corresponding function of
g and 27/8 = (2r /By, -+ ,2n/Bm) is called the basic periods of g. With-
out loss of generality, basic frequencies fi,- - , fm of any q.p. functions are
always assumed to be rationally independent.

We consider a monotone increasing mapping of R' to R

f(e) =z +g(),

where g(z) is a 27 /f3-q.p. function. We denote the set of such functions f
by Dg. Dg is a group with respect to the operation of the composition of
functions. '



Definition. A rotation number for any monotone increasing mapping f
with continuous periodic ¢ is defined by

. fMz) —=
p=p(f) = lim 1E) =T
n—o0 n
In periodic DS the above limit p exists, is independent of z and has conjugacy
invariant property
p(go fog™)=p(f)
for every periodic and continuous DS ¢.

Definition. An upper (lower) rotation number p(f)(x) (p(f)(z)) of f €
Dg at z € R! is defined by

p(f)(z) = li;n-_)scgp ﬂ:%—_x’
9 = tming 2 =2

If 5(f)(z) = p(f)(z) holds, then the rotation number p(f)(z) exists and
vice versa, and p(f)(z) = p(f)(z) = p(f)(z) holds. The above superior
(inferior) limit exists for each z € R'.

Proposition 2.1 Consider f € Dg. For any z € R' and any H € Dg there
erists y € R' such that

p(H™ " o f o H)(y) = p(f)(z).
Especially, if f has a rotation number p(f) independent of z, then
p(H™ o foH) = p(f)
holds.

Remark 2.1 For any w € R! there exist f, € Dg that has the rotation
number w.

For any zo € R! denote 5(f)(zo) by w = w(zp). Then we rewrite f
flz)=z+w+q(). (2.1)
Proposition 2.2 For any f € D[} of the form (2.1)
g 1@1=0
holds.



3 Reduction Problem of 1D Quasiperiodic DS
Consider Q € Dg
Q(z) ==z +g(z).

Here g(z) is a 27/(-q.p. function.

We assume that §(6) is real analytic defined in a strip |36;| < 7, ¢ =
1,--+,m. Here Sz is the imaginery part of z € C'. Let aq be a point in R!
and denote 5(Q)(ao) by w = w(ag). Then we rewrite Q of {z € C* : |Sz| < 7}
to C*

1= Q(z) =z 4+ w+ ¢(z). (3.1)

Reduction Problem

By a suitable transformation of the variable z to &
z = H(§) = £+ h(f), (3:2)

where h is a 2 /B3-q.p. function and h(ﬁ) s a real analytzc function, reduce
(3.1) to an affine mapping

&=H " 0QoH(¢) = R() = £ +w. (3.3)

Notation. Let C™ be the m-dimensional complex Euclidean space. For § =
(1, ,0m) € C™ we set |J0| = maxi<j<m |36;|. Let II, and 11, be sets {8 €
C™: |90 < r}and {# € C™: |J0] < r} (resp.). Let f(6) be 27m-periodic
in each 6; and real analytic in II,. Set 0yf(0) = (35, f(6),- -+ , 05, f(8)). We
define the norms

Fle = max| @), 1001, = max max|3y, FO)].

1<j<m fell,

FOI' ﬁ = (,81,"‘ ,,Bm) set H ﬂ ”: maxlgism |ﬂi|. FOI' k= (kl,"‘ ,km) € zm
set |k| = |ki| + - + |km| and (k, B) = k1B + - - - + kmm.

Consider a mapping @ of (3.1).



(C) There exists a point ap € R! such that w = w(ag) = p(Q)(ac) and
= (1, ..., Bm) satisfy the Diophantine condition : There exists a positive
constant Cy depending on § such that

(6, 8) + o} > s

holds for all k € Z™\ {0} and all [ € Z.

Reduction Theorem. Consider (3.1) with w = p(Q)(as), where g(z) is
a 2r/B-q.p. function with §(0) real analytic in 11, and continuous in II,.
Assume (C). Then there ezists a constant M° > 0 dependent on Cy, r such
that if |G|, < M° holds, then (3.1) is reduced to the affine mapping (3.3) by
(3.2) with a 2r/B-q.p. term h(€) with h(8) real analytic in I1,/,.

Outline of the proof of this theorem will be shown in section 7.

Coroliary. Consider (3.1) with w = p(Q)(ag). Under the same assumptions
of the reduction theorem (3.1) has a rotation number independent of z € R'.
In other words, p(Q) = p(Q)(z) = w(z) holds for any z € R*.

4 Qﬁasiperiodic Solutions of IBVP (1.1)

(C1) a;(t),i = 1,2, are 7-q.p. functions, where n € R™. a;(f) are real
analytic, and satlsfy 0 < infpepm G2(8) — Supgepm 1(0) and |as(8)] < 1 for
6 € R™. a;(t) satisfy a(0) = a](0) =0, ¢ =1,2, a;(0) = 0.

(C2) ri(t), i = 1,2, are a;-q.p. functions, where o; € R™ (resp.). #;(6) are
C*-function satisfying [m 7i(8)d8 = 0. r4(t) satisfy r;(0) = ri(0) = r{'(0) =
0,i=1,2.

(C3) h(z,t) is a p-q.p. function, where p belongs to RP. h(z,0) is of C*® in
D, and the support of h is contained in the cylinder W = (supyc g1 a1(t), infiep a2(t)) X
R!.

Remark 4.1 (1) @4(0) =a}(0) =0, i =1,2, a;(0) = 0in (C1) and r;(0) =
ri(0) = r{(0) = 0,4 = 1,2 in (C2) are compatibility conditions with
the latter part of (C6) below.



(2) It follows from the Weyl Theorem that

| t) = sup a:1(0), inf as(t) = inf 85(6).
fél;gal() Sup @ (), inf ax(t) = inf &5(9)

(3) For the same reason as (2) it follows immediately that
lai(®)] < sup [ai(t)] = sup|a's(6)| < 1
for all t € RL.

By |ai(t)] < 1, A is well-defined by (1.5). Then A(z) belongs to Dg. Let w
be an upper rotation number of A. Then A(z) is represented by

Az) =z +w+q(z).
Here ¢(z) is an n-q.p. function. §(6) is real analytic in {§ € C™;|36;| <

ro,% = 1,...,m} for a constant ry > 0.

Remark 4.2 Without loss of generality we can assume that the basic peri-
ods of a;(t) and a»(t) are the same.

The following proposition is important. It assures the existence of the
infinite number of the boundary functions a1(t), as(t) that satisfy both the
analytical condition (C1) and the number-theoretic conditions (C4) and (C5).

Proposition 4.1 Let w be any positive number. Then for any small ¢ there
ezxist an infinite number of real analytic a,(t) and as(t) satisfying inf, aq(t) >
sup, a1 (t) such that A has the rotation number w and g(z) satisfies |§|, < €.
The set of such functions ay(t), as(t) has a continuum cardinal number.

The proof is seen in [Ya0].

Remark 4.3 If h(z,t) identically vanishes, then the condition 0 < inf, as(t)—
sup, a1 (t) in (C1) is not necessary.

For simplicity we set

B=2m/n=(27/m, .., 27 [m),
N =2r/a; = (21/al, ..., 21 /o),
v=2r/p= (27/p, ..., 21/ 1),
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where o; = (of,...,of") and p = (1, ..., i)

The following Diophantine condition is essential in order that each solution
is q.p. in t.

(C4) B, A1, A2, v and w satisfy the Diophantine condition : There exists a
constant C' > 0 depending on 3, A;, A2, v and w such that

'(kla )‘1) + (k27)\2) + (k7ﬂ) + (-7’ 7) + ’/Tl/&)l
C
T+ T & TH + Gy

holds for all (ky, k2, k, ) € Zmtm2tm+p\ {0} and all [ € Z.

7T

Remark 4.4 It is well-known in number theory that almost all vector
()\1’ )‘25 ﬂ, Y, w) € Rmitmat+mip+l

satisfy (C4). ”Almost all” means the Lebesgue measure sense. We can
construct such vectors as solutions of algebraic equation of order m; 4+ mqy +
m +p + 1. For the construction, see Appendix in [Yad].

(C5) B and w satisfy the Diophantine condition : There exists a positive
constant Cy depending on # such that

C
|(k, B) + nljw| > |k|‘"2+1

holds for all k € Z™\ {0} and all | € Z.

Remark 4.5 In section 7 it will be shown that for suitable a;(t), r;(t) and
h(z,t) not satisfying (C4) or (C5), every solutions of IBVP (1.1) grows up
as a time sequence {t;} tends to infinity.

(C6) The initial data ¢ and 4 are of C*-class in (a;(0), a2(0)), and of C?-
class and C'-class (resp.) in [a1(0), a2(0)]. ¢,¢" and ) vanish at z = a,(0)
and z = ay(0).

Theorem 4.1 Assume (C1)-(C6). Then there exists a constant € > 0 de-
pendent on Cy, B and ry such that if |§|,, < € holds, IBVP (1.1) has a unique
C?-solution u that is (on,00,m,w)-¢.p. in t and z. wu is represented by
ug -+ U + U + ug satisfying the following properties :



1. Solutions of BVP
(a) wp satisfies

O2u — 02u =0, (x,t) € R?,

u(ai(t),t) = u(ay(t),t) =0, t € R.
(b) wuy satisfies
O%u—0%u=0, (z,t) € R?,

u(a1(t),t) = r1(t), u(as(t),t) =0, t € R.
(¢) ug satisfies

Ou— 0%u =0, (z,t) € R?,

u(a1(t),t) =0, ulag(t),t) =m(t), t € R.
(d) us satisfies
O2u — 0%u = h(z,t), (z,t) € R?,

u(ay(t),t) = u(ay(t),t) =0, t € R

Here h(z,t) is an extension of h(z,t) defined in D to R? seen in
Remark 6.2.

2. Regularity

(a) uo is of C%-class in (z,t) € R? and of C*®-class in (z,t) € R?\ S,
where S = {(z,t) € R®;z+t= A1 0 A™(u), ~z +t = A™(u), p =
0,a2(0), n € Z}.

(b) ui (1 =1,2,3) is of C®-class in (z,t) € R2.
3. Quasiperiodicity
(a) uo is (w,m)-¢.p. in both t and z.
(b) us, 4 =1,2, is (o4,7n)-¢.p.(resp.) in both t and z.
(c) ug is (u,n)-q.p.(resp.) in t.

The outline of this theorem will be given in sections 5 and 6.

11
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5 IBVP for Homogeneous Wave Equation

Consider IBVP for a homogeneous wave equation in D

Ou(z,t) — Bu(z,t) =0, (z,t) € D, : (5.1)
u(a1(t),t) =r1(t), wu(az(t),t) = ra(t), t € R, (5.2)
u(z,0) = ¢(z), Ou(z,0) =9(z), =z € [a1(0),ax(0)]. (5.3)

By |aj(t)| < 1, i = 1,2in (C1) we have the d’Alembert representation formula
of solutions of (5.1)

u(z,t) = f(—z+1t) + g(z + ). (5.4)

We shall show that f and g are determined so that (5.4) may satisfy (5.2)
and (5.3). First, from (5.2) we have

f(—=a;(t) +t) + g(ai(t) +t) = ri(t), 1=1,2. (5.5)
From (5.4) and (5.5) we obtain
w(z,t) = f(—z+t) - fo ATz +t) +mo(l +a) Nz +1)
and by setting 7 = (I — az)"1(¢)
FoA(T) = f(r)=rio(I+a1) o Ag(r) —rg0 (I —ay)~(r). (5.68)

1. Construction of u1(z,t) and uq(z,1t)

The following lemmas shall be used to solve (5.6) for the given functions
a; and 15, 1 = 1,2.

Lemma 5.1 Let R(z) be a ¢.p. function with basic frequencies E=(Ey.E)
whose corresponding function R(8) is of C* and satisfies frv R(8)d6 = 0.
Let 7y be a constant in R*\{0}. Assume that = € R” and vy satisfy the Dio-
phantine condition : There ezist constants C = C(E,v) > 0 and 7 > 1 such
that the following inequality

16,E) = (n/7)i] > T,f—
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holds for all k € Z¥ \ {0} and alll € Z. Then a functional equation
G(z+7v) — G(z) = R(z)

has a q.p. solution G(z) with basic frequencies Z. G(8) is of C>. G(z) is the
only q.p. solution with basic frequencies Z which satisfies [, G(6)df = 0.

This lemma and its proof are seen in [Yal], Lemma 2.9.

Lemma 5.2 Leta(t) and b(t) be 27 /a-q.p. and 27/B-q.p. (resp.) whose cor-
responding functions are of C®, where oy, -+ ,Qm, b1, - , Bn are rationally
independent. Then a composed function a o (I + b)(t) is (2n/c,2m/B)-q.p.
Its corresponding function F(0y,- -+ ,0m,©1,--,0y) is of the form

&(61 + alg(e)a ey Om + amg(@))
of C*®. Moreover it holds

/ F@,0)d6= | a(6)ds.

Tm™

This lemma is shown in [Ya0].

Since by (C1) and (C4) A satisfies the assumptions of the Reduction
Theorerm, it follows that there exists a real analytic function H(§) = £+h(£),
where h(€) is an 7-q.p. function, such that

H'oAoH() = £ +w. (R)

Consider functional equations

g +w) =g =r(), i=12
where

fl(g) =ro (I + 0/1)_1 (@) A2 o) H(f),
Fa(€) = —ra0 (I —az)™" 0 H(E).
Since a; and r; are a;-q.p. and 7-q.p. (resp.), it follows from Lemma

5.2 that 7;(€),i = 1,2, are (o, n)-q.p. whose corresponding functions are
of C™® class and have the 0-mean value. By this fact and the Diophantine
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inequality in (C3), it follows from Lemma 5.1 that each equation has a unique
(@i, n)-q.p. solution g; whose corresponding function is of C*°. Then fi(7) =
gio H™l(r),i=1,2, are of C* in R and are the solutions of Eq.s (resp.)

fio A(r) = filr) = Fo HY(r), i=1,2.
We set

u(e,t) = fi(-z+1t) - fio ATz +t) +mio (I +a) Mz +1), (5.7
uy(7,t) = fo—z +t) — f0 ATz +1). (5.8)
Then u; and u, are of C* in (z,t) € R? and satisfy

Ou; — 82u; =0, (z,t) € R?,
ul(al(t)at) = Tl(t)’ ul(a2( ) ) 0,
uz(a1(t),t) = 0, uz(ag(t),t) = ra(t).

Since g;(£) and h(€) are (o, n)-q.p. and n-q.p. (resp.), it follows from Lemma
5.2 that f; is (a4, n)-q.p. Hence u;(z,t) is (a4, 7)-q.p. (resp.) both in z and ¢.
Thus the assertions 1.(b),1.(c), 2.(b) and 3.(b) of Theorem 4.1 are proved.

2. Construction of ug(z,t)

We shall construct a unique w-periodic function go(£) so that ug defined
by

u(z,t) = fo(~z+1t) — foo AT (z +1t), fo=gooH™?

may satisfy the assertions 1.(a), 2.(a) and 3.(a) of Theorem 4.1.

Let 1 and 7, be equal to A7 ( 2(0)) and —a,(0) (resp.). For ¢y and 1),
satlsfymg (C5) define dy(z) and o(z) by

¢pooAi(z) (0<z<m)
ofe) = {m( 2 (n<s<0)

s JeoAi@)Ai(z) (0<z<m)
vole) = {—wo(—fﬁ) (72 <z <0).



Define fo(z) and §o by

o) = ~(1/2) (8o@) + [ uliddn) - 0l6) = Foo HCE)
Go(€) is defined in [€2,& ], where &, i = 1,2, is the solution of equation
H(&) =%

Lemma 5.3 Let ¢y and vy satisfy (C6). Then there ezists an w-periodic
function go(€) such that ,

(1) 90(&) = Go(§) for £ € [£2,€1]
(2) go(&) is of C? class in R!

(3) go(€) is of C* class in R\W, where W is a set {§;+nw;i =0,1,n € Z}
and & = H_l(O)

To show this lemma we prepare the following lemma. See [Ya0] for the
proof.

Lemma 5.4 The followings hold.

() ¢o and vy are of C? and C* class (resp.) in [v2,m] and of C* class in
(VQa 0) U (07 ’Yl)'

(b) fo(m) is of C* class in (72,0) U (0,m1), and of C* class in [y2, 1], and
satisfies fo(y2) = fo(m).

(c) Go(x) is of C*= class in (&, &) U (&, &1), and of C* class in [€2,&1], and
satisfies go(€&2) = Go(&1)-

d) &-&=w.
Using Lemma 5.3, we obtain the following lemma.

Lemma 5.5 Let ¢ and vy satisfy (C5). Let go(&) be the w-periodic function
in Lemma 5.3. Let fo(z) be defined by fo(z) = go 0 H™}(z). Then

wo(2,8) = fol=z +1) — foo ATM( +1) (5.9)

15
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18 the solution of IBVP
Ou—u=0, (z,t) € (ar(t),a2(t)) x R,
u(ai(t),t) = u(az(t),t) =0, t € R, (5.10)
u(z,0) = ¢o(z), Bu(z,0) =9o(z), z € [a1(0),a2(0)],

and of C? in R? and of C*™ in R?\ S, where

S={(z,t) € R{z+t= A 0 A(u), -z +t = A™(n),
¢ = —az(0),a:(0),n € Z}.

up s (w,n)-¢.p. both in t and z.

We also have the following lemma. See [Ya0] for the proof.

Lemma 5.6 Let u;,i = 1,2, be the functions defined by (5.7) and (5.8). Let
u;(z,0) and Ou;(z,0),% = 1,2, be denoted by ¢;(z) and 1;(x), i = 1,2 (resp.).
Then the restrictions of ¢; and v;,i = 1,2 to [a1(0), az(0)] satisfy (C6).

6 BVP for Nonhomogeneous Wave Equation
We consider BVP for a nonhomogeneous wave equation

O2u(z,t) — 02u(z,t) = h(z,t), (z,t) € D, (1.1)
u(ay(t),t) =0, wu(az(t),t) =0, t€ R. (1.2")

Now let H be the function in (R) in section 5. Let X be a mapping of R? to
R? defined by
y=(H o AT (—z+1t) ~ H (z +1)) /2, (6.1)
s=(H o AT (—z+1t)+ H ' (z +1)) /2. '

Such transformations were considered in [Ya5, Ya-Yo] in case where A(t) is a
periodic DS. Without any difficulty, we are able to extend the transformations
for periodic DSs to one for quasiperiodic DS A(t) due to the Reduction
‘Theorem in section 3. Similarly to Propositions 4.1 and 4.2 in [Ya5), we are
able to show the following Proposition 6.1. We assume



(C1’) a;(t), 2 = 1,2, are n-q.p. functions, where 7 belongs to R™. @;(f) are
of C2 in T™. a;(t) satisfy 0 < infic g a2(t) — sup,epr 1(t) and |aj(t)| < 1 for
t e RL.

(R1) A is reducible in the following sense : there exists a conjugate function
H € Dg, where H and (H?) are of C% in T™, such that
H'oAoH(z)=1+w. (R)

Remark 6.1 Assume (C1) and (C5). Then it follows from the Reduction
Theorem that there exists a constant & > 0 such that for ¢ with |q|, <€ A
is reducible by a real analytic conjugate function H. Hence (C1’) and (R1)
are satisfied.

Proposition 6.1 Assume (C1’) and (R1). X is the bijection of D to E, and
maps the boundaries = = a,(t) and z = ay(t) onto the boundaries y = 0 and
y=w/2 (resp.) bijectively. :

Let u(z,t) be of C* in (z,t) € R? and v(y, s) be defined by w(X~'(y, s))-
Then

(8% — B2)u(z, t) = K(y, 8)(82 — 8)v(v, 5),
where K (y, s) is defined by
(H™Y o H(y + s)(H ") o H(~y + s)(A{") 0 Aro H(y + 5)-

K(y,s) is n-¢.p. in s and K(y,0) is real analytic.

We apply X to BVP (1.1)-(1.2’). Then we obtain BVP in the cylindrical
domain E :

v(0,5) = v(w/2,5) =0, s€ R (6.2)

Here v(y, s) = uo X (y,s) and g(y,s) = (1/K(y,5))ho X7 (y, ). 9(v,5) is
(n, w)-q.p. and §(y, ) is real analytic in II,. We have the following proposi-
tion. '

{afv(y,s> ~82(y,s) = 9(y,5), (v,9) €E,

(C4’) B, v and w satisfy the Diophantine condition : There exists a positive
constant C depending on 3, v and w such that

. C
(K, B) + (4,7) + 7l /w| > T

holds for all (k,5) € Z™*?\ {0} and all l € Z.
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Proposition 6.2 Assume (Cl), (C3) and (C4’). Then BVP (6.2) has a
(n, 1)-q.p. solution v(y,s). ¥(y,0) is of C* in (0,w/2) x T™*P.

It follows from Proposition 6.2 that us(z,t) = v o X(z,t) is a (n, u)-q.p.
solution of BVP (1.1)-(1.2’) that is of C* in D.

Lemma 6.1 Let uz(z,0) and 8tu3(:vl,0) be denoted by ¢3(x) and P3(z) (resp.).
Then ¢3 and s satisfy (C6).

Thus we have obtained the following proposition.

Proposition 6.3 Assume (Cl1), (C3) and (C4’). Then BVP (1.1)-(1.2’) has
a (n, p)-g.p. solution usz(z,t) of C* in D. Moreover ¢3(z) = uz(z,0) and
¥3(z) = Opus(z,0) satisfy (C6).

Remark 6.2 From the proof of the above proposition the solution is ex-
tended to R. x R} if we extend h(z,t) to R. x R} as h(z,t) = go X(z,t).

We shall outline the proof of Theorem. Let ¢g and 1y be defined by

bo=¢— (1 + b2+ ¢3), o =1 — (1 + 12 +9s3),

where ¢, 1 are the initial values in (1.1) satisfying (C6), and ¢;,%;,i = 1,2 are
defined in Lemma 5.6 : ¢;(z) = ui(z,0), ¥;(z) = dwui(z,0). Then since ¢;
and 1;,7 = 1,2 and ¢; and ;5 satisfy (C6) from Lemma 5.6 and Proposition
6.3 (resp.), Then ¢¢ and g also satisfy (C6). Therefore it follows from
Lemma 5.4 that ug defined by (5.9) is the (w,n)-q.p. solution of IBVP
(5.10) and satisfies the regularity conditions 2.(a) of Theorem. Clearly u =
up + Uy + ug + ug is the unique solution of IBVP (1.1). Thus we have proved
the theorem.

7 Quasiperiodic Solutions by the Superposi-
tion of Unbounded waves

As we have seen in the previous sections, the solutions of IBVP (1.1) are
represented as the superposition of the forward waves and the backward
waves that are quasiperiodic in ¢. The quasiperiodicity of solutions is shown,
provided that the Diophantine condition and the differentiability of a;, r;, h



are supposed. In this section we shall construct r; so that every quasiperi-
odic solution of IBVP (1.1) is the superposition of the forward wave and
the backward wave that are sequentially time-unbounded. The order of the
growth rate of the waves depends on the differentiability of r; and the or-
der of the Diophantine order. As we stated in section 1, in [Yad] for the
fixed end case, we have already constructed h(z,t) so that every solution of
IBVP (1.4) may be time-unbounded. Hence in this section we shall treat
the case where h(z,t) identically vanishes. By the similar number-theoretic
arguments to [Yad], we shall take appropriate basic frequencies, and then by
use of the basic frequencies we shall construct r;(¢) as lacunary Fourier series
for which every solution of IBVP (1.1) is the superposition of sequentially
time-unbounded waves. In this section we shall assume that a;(t), i = 1,2,
are periodic functions with the same period 1.

Consider IBVP for a linear homogeneous wave equation :

Oiu(z,t) — O2u(z,t) =0, (z,t) € D,
u(ay(t),t) =r1(t), wu(aa(t),t) =ra(t), te R, (7.1)
u(z,0) = ¢(z), Gu(z,0) =¢Y(z), = € [a1(0),a2(0)].

Here a;(t), i = 1,2, are C*® periodic functions satisfying (1.2), and 7;(t), i =
1,2, are q.p. with basic frequencies A = (A, -+, Am) given later. For sim-
plicity we take the periods of a;(t) as 1. The initial data ¢, ¢ satisfy (C86) in
section 4.

First we shall change IBVP (7.1) to IBVP that gives boundary values at
fixed z in the same way in section 6.

Consider A(t) in (1.5). Since a;(t) are periodic, it follows from (1.2) that
Ais a DS in D(T"), where D(T"!) is the set, of all 1D 1-periodic DSs. Let the
rotation number of A be w. w is positive ([Yal]).

Assume the following condition on w.

(AH) w satisfies the Diophantine condition : There exist positive constants
c and § such that the Diopahantine inequality holds

C
|qw—p|2$

forany pe N,q€ N.
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It is well-known that the set of w that satisfy (AH) for § > 1 is of full
measure in R}.

By (AH) we are able to apply the Herman-Yoccoz Theorem to A(t)
([Ya3]). Then we obtain

H'oAoH(E) =

for H € D(T"). Then by the same argument as that of section 6, using the
domain transformation X of R? onto R? defined by

{y = (H o AT}~z +1) — H (z +1)) /2,

s=(H o A7} (~z + 1) + H Nz +1)) /2, (6.1)

we transform D onto K = (0,w/2) X R'. By this transformation IBVP (7.1)
becomes

82u(y, s) — O2u(y,s) = 0, (y,8) €K,
v(0,5) = p1(s), v(w/2,5)=pa(s), s€R, (7.2)
v(y,0) = 61(y), Ow(y,0) =(y), ve (O,w/2),

where v(y, 8) = uo X~!(y, s), pi(s) are q.p. functions with basic frequencies
(1, A) whose corresponding function g;(#) have the same smoothness as ; in
T™ 1 and ¢y, ¢, are C* in (0,w/2) and C? in [0,w/2] and satisfy suitable
compatibility conditions.

In order to show our assertion we shall need some number-theoretic ar-
guments. We shall prepare some lemmas.

Lemma 7.1 Let a be any natural number. Then there erist countably many
a-dimensional real vectors ( = (¢1,...,Ca); G > 0,1 = 1,...,a, with the fol-
lowing property : There ezist positive constants Cy and Cy, and a sequence

{k;} € Z*\ {0} with |k;] = oo (j — o0) such that -

Co %8
Ik 'a. - ’(kJ’C)I — !k’ ,a (73)

holds.



This lemma is simply proved by using Theorem VI and Theorem VIII in
[Cal, p.13 and p.15 (resp.).

First we shall give the basic frequencies of r;(¢), 1 = 1,2, by Lemma 7.1.
Let a be equal to m+1 and ({1, - , {m+1) be the vector given in Lemma 7.1.
We take A = (A1, , Am) = (G1/Cmsts - 5 $m/Cm+1) s the bacic frequencies
of r;(t). Set A = (), 1) € R™*!. Then it follows from Lemma 7.1 that there
exists a sequence {k;} C Z™*!\ {0} such that

C, Cs -
—_— <
tk |m+1 —= I(kJ’A)] |k |m+1

holds for any j. Here C, and Cj are positive constants equal to Cp/{m+1 and
C1/Cm+1 (resp.).

Remark 7.1 The real vectors ({1, - - , {ms1) satisfying (7.3) are constructed
as algebraic solutions of some algebraic equations of degree m +1. There are
infinitely many vectors in R™*! that satisfy (7.3). See [Ca] and [Yad].

The following lemma is shown similarly to Proposition 2.4 in [Yad], p.488.

Lemma 7.2 There ezxists a subsequence of the above {lsj} with the following
properties. We again write the subsequence by {k;}.

1. 0 < (kj,A) < 27/3w for any j € N.

2. {(kj,A)} is monotone decreasing : (kjy1,A) < (kj, A).

3. There exists a positive constant M < 1 such that |k;| < M|k; .| holds
forany j € N.

Let {k;} be the sequence given in Lemma 7.2. We define F(6) by a
lacunary Fourier series

f 6) = Zf] Cos (kj’a)'

i=1
Let the Fourier coefficients f; satisfy the following : There exists positive
constasnts ¢; = ¢;(f), ¢ = 1,2, such that

TS5 S

for a given N € Z,. We denote the set of such functions f(6) by QY and
the set of q.p. functions f(t) defined by f(t) = F(At) by QY. Clearly QY is
a subset of Djy.
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Lemma 7.3 Consider a functional equation
Ft+w)—F@t) =G{), teR, (7.4)

where G(t) is an element of QY with [, G(6)d = 0. Let m+1 > N.
Then there ezists a solution F(t) of (7.4) of the form

F(t) = S(t) + G(t)/2

that is unique ezcept the difference of constants. S(t) satisfies the following :
There exist positive constants C, C' and a sequence {t,} with t, = oo (v =
oo) such that

Ctl-Nm+th) < §(t,) < CtlN/m+) e N.

The proof of this lemma is done in the similar way to that of Theorem 3.1
in [Yad], p.490-p.495.

Now we show the quasiperiodicity of the solution v(y, s) of IBVP (7.2).
v is represented by the superposition of the forward wave and the backward
wave by the d’Alembert formula (See section 5)

v(y,s) =fl-y+s) = fly+s)+my+s),
where f(s) satisfies
f(s+w) = f(s) = p1(s +w) — p2(s +w/2) = p(s). (7.5)

p(s) is q.p. with basic frequencies A. We take p as an element of QY. We
apply Lemma 7.3 to (7.5). Then there exists a solution f(s) of the form

f(s) = 5(s) + p(s)/2,

where S(s) satisfies the following : There exist a sequence {s,}, s, = oo,
and positive constants C, C such that

CS},_N/(m-i-l) S. S(Sy) S ésllj—N/(m-i‘-l)

holds.
Next we shall show the quasiperiodicity of the solution v. Since we have
fl-y+9)— fly+s)=(S(-y+s) - S(y+3))
+ (p(=y + ) = ply + 9)) /2,



and the latter part is q.p. in ¢, we have only to estimate the former part :

giCOS (kJ,Al)
2

1S(-y+5) =Sy +s)| < Z sin (k;, Ay)

X

sin (kj, A)(—y + s) — sin (kj, A)(y + s)‘

[M]8

G, sin (k;, A)y cos (kj, A)sl

Tewnl
1 sin (]CJ, Al)

= 1
2Cs Z |k |N
j=1 "

< +o0.

<.
1l

IN

This means the quasiperiodicy of S(—y+s)—S(y+s). Therefore our assertion
is proved.

Since from the first identity of (6.1) ¢ is written of the form s + w(y, s)
with w(y, s) periodic in y, s, t tends to +00 as s tends to +o00. Since we have,
from (6.1),

u(z,t) =0 OX(sc,t),

it follows that wu(z,t) also is the superposition of the sequentially time-
unbounded waves. Hence we have seen the conclusion.

8 Outline of Proof of Reduction Theorem
We shall deal with A

z1 = Q(z) = z 4+ w+ q(x), (3.1)
and by a suitable transformation

z=H() = £+ h(E) (3:2)
reduce (3.1) to the affine mapping

§e=H1oQoH()=R()=¢{+w. (3-3)
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Let x and o be constants in (0,1) and (1,00) (resp.). We set ro = r and

o0

Ga = (1/5%), do=min(ro/(4aa),1/(2as)),

8=1

ds =d0/.5‘a, S = 1,2’... .
We take o so as to satisfy ro > 2dy. We define sequences {r;}, {p;}, {¢;} and
{M,} by
Tgp1 = Tg — 2ds; Ps =Tg — d37 Cs =r;— ds/2" Ms — M(1+}C)s

for every s =0,1,-.- and M = |§|,. For later use we note that

Ts+1 — Ps = —d,, <s+1 = Ps+1 T+ ds+1/2a Ps — Cs+1 =d,; + ds+1/2'

In this section all C' are positive constants dependent on some or all of
m, B,w,a,r. '

Consider a sequence of mappings {Q,} of the form
(T)s T1s = Qs(xs) =Z;+w+ QS(xs): s = Oa 17 trt, (81)

where g, is a 27 /(3-q.p. function and w is the upper rotation number 5(Q)(ay),
the same constant in (3.1), and for s = 0 we set 2o = z, 210 = 71, Qo = Q and
go = q, where z,,7z,Q, q are seen in (3.1). We shall successively construct a
sequence {H,} of transformations in Dy of the variables z;

T, = H3($3+1) = (I+ hs)($5+1), s = 07 17 Tty

where h, is a 27/(3-q.p. function and [ is an identity, so that the mappings
(T)s may become closer and closer to the affine mapping (3.3) by the succes-
sive transformations. It should be noted that in this process we shall keep
the upper rotation number of @), fixed i.e., for every s = 0,1, there exists
as € R! such that p(Q;)(as) = p(Q)(as) = w . This is assured by Proposition
2.1.

We assume

(As) ds(6) is real analytic in IT,,, continuous in II,, and satisfies

|slp, < M.

The following proposition is fundamental to prove Reduction Theorem.



Proposition 8.1 Consider a mapping (8.1). Assume that (C) holds. Then

there exists a positive constant M° = M%(k, , ||B||, 7, m, Co) independent of

s such that for any M € [0, M®), under the assumption (A;) the mapping
(T, is transformed to

(T)s+1 ZTisr1 = Qs41(Ts41) = Tag1 + W + oy (Ts41) (8.2)
by a transformation with a 2w /B-q.p. term h
5y = Hy(zes1) = (1 + h) (Tes1) o (3)
with the following properties :

1. gs41 98 a 27/ B-q.p. function, and §s41 is real analytic in ﬁps +1, contin-
uous in Il,, ., and satisfies

“js+1|ps+1 <My = A481+K' (8-4)

2. hy is a solution of a functional equation
hs(x + w) — ho(2) = ¢s(2) = Vs, (8.5)
where ¢, is expanded into the Fouriuer series
0@ = 2 et = [ g0 0, (@)
nezZm m

and v, is given by

v=d = (/20" [ q.6)ds (8.7)

hs is real analytic in I, ,,, continuous in Il ., and satisfies

Pl < MOS8 /10 < ME/10,

. 8.8
| Dohslr,,, < MPH/8/10 < M/10. &2)

In the following lemmas in this section M is taken suitably small.

Outline of Proof of Proposition 8.1.
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Proof of Proposition 8.1 shall be done by several steps.
1. Estimates of izs and Ohs
We show (8.8). Setting

ho(z) = Y hleime,

nezm

we obtain, from (8.5) with (8.6) and (8.7),

By = /(™0 ~ 1)

for every n # 0. Since h? is arbitrary, we take % = 0. For 8 € II,,,, we have

|ho(O)] < D W7 1eMIS < 7 hgfelniress,
where |n| = |n1| + - + |nm| for n = (ny, -+ ,np). By (C) we have

: 2
€0 1> 2|m, B

2|w|Com
> 20T
- |n|m+1

for a suitable [ € Z. Since |¢}| < M, exp (—|n|p;) for n € Z™, we have
s (8)] < (m/2lw|Co) Y [n|™+1 M, e~ Inles glnirsss
= (7/2|w|Co) M, Y _ |n|™+ e Inl,
Since

Z In‘ke—lnld < Cmd—(k+m+1)

nezm

holds for any positive d, it follows that
hs(8)| < CM,/d?™+2,
Take M sufficiently small. Then we have

Ihs(8)] < ME+3/8)10 < M5/10



in Il . ,. Hence the first inequality of (8.8) is proved. Similarly we can obtain
the second inequality. It is clear to show that hy(z) is real-valued for each
real z. In fact, ;™ = A" holds.
2. Estimate of Gs41

We denote H; ! by I + g,. Clearly g, = —hs 0 H; %
Lemma 8.1 g, is 2n/f3-¢.p., and g is real analytic in Il¢, ..

This lemma proved in [S-M], p.261-p.263.
Lemma 8.2 For any © € Il ,, there exists 6 € Il,,,, such that

© = 0 + Bhy(6).
For the proof of the lemma, see [Ya0].

From (8.1), (8.2), (8.3) and (8.5) we have

Gs+1 (ms+1) = (I + hs)_l ((I + hs) (ms—i-l + w) + Vs (8 9)
+ g5 © (I + ) (@51) = Ga(8081)]) = (@os1 + ).
Note that g;41(z) is real-valued for real z. For brevity set z = z,4; and

JO = (I+h8>(m+w)a Jl =4{gs©° (I+h3)($) - QS(x)a J = ']1 +V.s-

Using the mean-value theorem, we obtain
1
gou1(z) = J f (I + h)™)' (Jo+ t)dt. (8.10)
0

First we estimate J.

Lemma 8.3 J satisfies

[ lpua < (1/5) M5
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Lemma 8.4 The inverse of I + h, satisfies

(@+hyy10)

< 4/3.
1

s+

‘For the proofs of these lemmas, see [Ya0].

From (8.9) and Lemma 8.2, §,,; is real analytic in II,,..,- We estimate
gs+1. Using (8.10), Lemmas 8.3 and 8.4, we have

Iqﬂ-l Pst1 < (Msl+n/5)(4/3) < M81+n = Ms+1-

This proves (8.4). Thus Proposition 8.1 is proved.
Now using Proposition 8.1, we shall prove the Reduction Theorem. Set
Gy=HioHyo..0H, F,=G,—1I.

Lemma 8.5 The sequence {13’5} converges uniformly to o function F in
{I80] < r/2}.

Let H be the limit of the sequence {G,}. Since
Gl 0QoG,(z) =z +w+g(z)
and g¢,(z) converges to 0 as s — oo, we obtain
H'0oQoH(z) =z +w.

Therefore Reduction Theorem is proved.
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