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Abstract

Physics and other applications of mathematics employ amiscella-
neous assortment of mathematical tools in ways that contribute to a
fragmentation of knowledge. We can do better! Research on the de-
sign and use of mathematical systems provides aguide for designing a
unified mathematical language for the whole of physics that facilitates
learning and enhances insight. The result of developments over sev-
eral decades is acomprehensive language called Geometric Algebra with
wide applications to physics and engineering. This lecture is an intr0-
duction to Geometric Algebra with the goal of incorporating it into the
$\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}/\mathrm{p}\mathrm{h}\mathrm{y}\mathrm{s}\mathrm{i}\mathrm{c}\mathrm{s}$ curriculum.

I. Introduction
The main subject of my lecture is aconstructive critique of the mathematical
language used in physics with an introduction to aunified language that has
been developed over the last forty years to replace it. The generic name for that
language is Geometric Algebra (GA). The material is developed in sufficient
detail to be useful in instruction and research and to provide an entree to the
published literature.

After explaining the utter simplicity of the GA grammar in Section III, I
explicate the following unique features of the mathematical language:

(1) GA seamlessly integrates the properties of vectors and complex numbers
to enable acompletely coordinate-ffee treatment of $2\mathrm{D}$ physics.

(2) GA articulates seamlessly with standard vector algebra to enable easy
contact with standard literature and mathematical methods.

(3) GA reduces “
$\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}$, $\mathrm{d}\mathrm{i}\mathrm{v}$, curl and all that” to asingle vector derivative

that, among other things, combines the standard set of four Maxwell equations
into asingle equation and provides new methods to solve it.

Moreover the GA formulation of spinors facilitates the treatment of rotations
and rotational dynamics in both classical and quantum mechanics without co
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ordinates or matrices. GA provides fresh insights into the geometric structure
of quantum mechanics with implications for its physical $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}.19-30$ All
of this generalizes smoothly to a completely coordinate-ffee language for space-
time physics and general $\mathrm{r}\mathrm{e}1\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{t}\mathrm{y}^{1-3,36,37}$. The development of GA has been a
central theme of my own research in theoretical physics and mathematics.

II. Mathematics for Modeling Physical Reality
Mathematics is taken for granted in the physics curriculum–a body of im-
mutable truths to be assimilated and applied. The profound influence of math-
ematics on our conceptions of the physical world is never analyzed. The pos-
sibility that mathematical tools used today were invented to solve problems in
the past and might not be well suited for current problems is never considered.

One does not have to go very deeply into the history of physics to discover
the profound influence of mathematical invention. Two famous examples will
suffice to make the point: The invention of analytic geometry and calculus was
essential to Newton’s creation of classical $\mathrm{m}\mathrm{e}\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{c}\mathrm{s}.4$ The invention of tensor
analysis was essential to Einstein’s creation of the General Theory of Relativity.

Note my use of the terms “invention” and “creation” where others might
have used the term “discovery.” This conforms to the epistemological stance of
Modeling $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{y}^{4,6\triangleleft}$ and Einstein himself, who asserted that scientific theories
”cannot be extracted from experience, but must be ffaely $\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{d}^{n9}$.

The point wish to make by citing these two examples is that without essential
mathematical concepts the two theories would have been literally inconceivable.
The mathematical modeling tools we employ at once extend and limit our ability
to conceive the world. Limitations of mathematics are evident in the fact that
the analytic geometry that provides the foundation for classical mechanics is
insufficient for General Relativity. This should alert one to the possibility of
other conceptual limits in the applications of mathematics.

Since Newton’s day avariety of different symbolic systems have been invented
to address problems in different contexts. Figure 1lists nine such systems
in use today. Few scientists are proficient with all of them, but each system
has advantages over the others in some application domain. For example, for
applications to rotations, quaternions are demonstrably more efficient than the
vectorial and matrix methods taught in standard linear algebra courses. The
difference hardly matters in the world of academic exercises, but in the aerospace
industry, for instance, where rotations are bread and butter, engineers opt for
quaternions.

Each of the mathematical systems in Fig. 1 incorporates some aspect of ge
ometry. Taken together, they constitute ahighly redundant system of multiple
representations for geometric concepts that are essential in physics and other
applications of mathematics. As mathematical language, this Babel of mathe-
matical tongues has the following defects:

1. Limited access. Scientific ideas, methods and results are distributed
broadly across these diverse mathematical systems. Since most scientists are



Fig. 1. Multiple mathematical systems contribute to the frag-
mentation of knowledge, though they have acommon geomet-
$\mathrm{r}\mathrm{i}\mathrm{c}$ nexus.

proficient with only afew of the systems, their access to knowledge formulated
in other systems is limited or denied. Of course, this language barrier is even
greater for students.

2. Wasteful redundancy. In many cases, the same information is repre
sented in several different systems, but one of them is invariably better suited
than the others for agiven application. For example, Goldstein’s textbook on
$\mathrm{m}\mathrm{e}\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{c}\mathrm{s}^{1}$ gives three different ways to represent rotations: coordinate matri-
ces, vectors and Pauli spin matrices. The costs in time and effort for translation
between these representations are considerable.

3. Deficient integration. The collection of systems in Fig. 1is not an
integrated mathematical structure. This is especially awkward in problems that
call for the special features of two or more systems. For, example, vector algebra
and matrices are often awkwardly combined in rigid body mechanics, while Pauli
matrices are used to express equivalent relations in quantum mechanics.

4. Hidden structure. Relations among scientific concepts represented in
different symbolic systems are difficult to recognize and exploit.

5. Reduced information density. The density of information about na-
ture is reduced by distributing it over several different symbolic systems.

Evidently elimination of these defects will make physics (and other scientific
disciplines) easier to learn and apply. Aclue as to how that might be done lies in
recognizing that the various symbolic systems derive geometric interpretations
ffom a common coherent core of geometric concepts. This suggests that one can
create aunified mathematical language for physics (and thus for alarge portion
of mathematics and its applications) by designing it to incorporate an optimal
representation of geometric concepts. In fact, Hermann Grassmann recognized
this possibility and took it along way more than 150 years $\mathrm{a}\mathrm{g}\mathrm{o}.13$ However,
his program to unify mathematics was forgotten and his mathematical idea
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were dispersed, though many of them reappeared in the several systems of Fig.
1. A century later the program was reborn, with the harvest of acentury of
mathematics and physics to enrich it. This has been the central focus of my
own scientific research.

Creating aunified geometric language for physics and mathematics is aprob-
$\mathrm{l}\mathrm{e}\mathrm{m}$ in the design of mathematical systems. Here are some general criteria that
I have applied to the design of Geometric Algebra as asolution to that problem:

1. Optimal algebraic encoding of the basic geometric concepts: magni-
tude, direction, sense (or orientation) and dimension.

2. Coordinate-free methods to formulate and solve basic equations.
3. Optimal uniformity of method across various domains (like as classical,

quantum and relativistic theories in physics) to make common structures as
explicit as possible.

4. Smooth articulation with widely used alternative systems (Fig. 1) to
fficilitate access and transfer of information.

5. Optimal computational efficiency. The unified system must be at
least as efficient as any alternative system in every application.

Obviously, these design criteria ensure built-in benefits of the unified lan-
guage. In implementing the criteria Ideliberately sought out the best available
mathematical ideas and conventions. I found that it was frequently necessary
to modify the mathematics to simplify and clarify the physics.

In the development of any scientific theory, amajor task for the0-
rists is to construct amathematical language that optimizes expres-
sion of the key ideas and consequences of the theory. Although existing
mathematics should be consulted in this endeavor, it should not be incorporated
without critically evaluating its suitability. Imight add that the process also
works in reverse. Modification of mathematics for the purposes of other sciences
serves as astimulus for further development of mathematics. There are many
examples of this effect in the history of physics.

Perhaps the most convincing evidence for validity of anew scientific theory
is successful prediction of asurprising new phenomenon. Similarly, the most
impressive benefits of Geometric Algebra arise from surprising new insights into
the structure of physics and other $\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{s}.38-43$

The following Sections survey the elements of Geometric Algebra and its
application. Many details and derivations are omitted, as they are available
elsewhere. The emphasis is on highlighting the unique advantages of Geometric
Algebra as aunified mathematical language.

III. Understanding Vectors
Arecent study on the use of vectors by introductory physics students summa-
rized the conclusions in two words: “vector $avoidanoe.”’ 11$ , 15 Imaintain that the
origin of thin serious problem lies not so much in pedagogy as in the mathemat-
$\mathrm{i}\mathrm{c}\mathrm{s}$ . The fundamental geometric concept of avector as adirected magnitude is
not adequately represented in standard mathematics. The basic definitions of



vector addition and scalar multiplication are essential to the vector concept but
not sufficient. To complete the vector concept we need multiplication rules that
enable us to compare directions and magnitudes of different vectors.

A. The Geometric Product
I take the standard concept of a real vector space for granted and define the
geometric product ab for vectors $\mathrm{a}$ , $\mathrm{b}$ , $\mathrm{c}$ by the following rules:

(ab) $\mathrm{c}=\mathrm{a}(\mathrm{b}\mathrm{c})$ , associative (1)
$\mathrm{a}(\mathrm{b}+\mathrm{c})=\mathrm{a}\mathrm{b}+\mathrm{a}\mathrm{c}$ , left distributive (2)
$(\mathrm{b}+\mathrm{c})\mathrm{a}=\mathrm{b}\mathrm{a}+\mathrm{c}\mathrm{a}$ , right distributive (3)
$\mathrm{a}^{2}=|$ $\mathrm{a}$

$|^{2}$ contraction (4)

where $|$ $\mathrm{a}$ $|$ is apositive scalar called the magnitude of $\mathrm{a}$ , and $|$ a $|=0$ implies
that $\mathrm{a}=0.$

AU of these rules should be familiar from ordinary scalar algebra. The main
difference is absence of a commutative rule. Consequently, left and right dis-
tributive rules must be postulated separately. The contraction rule (4) is pecu-
liar to geometric algebra and distinguishes it from all other associative algebras.
But even this is familiar from ordinary scalar algebra as the relation of asigned
number to its magnitude.

$\mathrm{R}\mathrm{o}\mathrm{m}$ the geometric product ab we can define two new products, a symmetric
inner product

a $\cdot \mathrm{b}=\frac{1}{2}(\mathrm{a}\mathrm{b}+\mathrm{b}\mathrm{a})=\mathrm{b}\cdot \mathrm{a}$, (5)

and an antisymmetric outer product

a A $\mathrm{b}=\frac{1}{2}(\mathrm{a}\mathrm{b}-\mathrm{b}\mathrm{a})=-\mathrm{b}$ $\Lambda \mathrm{a}$ . (6)

Therefore, the geometric product has the canonical decomposition

ab $=\mathrm{a}\cdot \mathrm{b}$ %a $\Lambda \mathrm{b}$ . (7)
$\mathrm{R}\mathrm{o}\mathrm{m}$ the contraction rule (4) it is easy to prove that a $\cdot$

$\mathrm{b}$ is scalar-valued, so
it can be identified with the standard Euclidean inner product.

The geometric significance of the outer product aA $\mathrm{b}$ should also be familiar
fffom the standard vector cross product a $\mathrm{x}\mathrm{b}$. The quantity a A $\mathrm{b}$ is called a
bivector, and it cm be interpreted geometrically as an oriented plane segment, as
shown in Fig. 2. It differs from a $\mathrm{x}\mathrm{b}$ in being intrinsic to the plane containing
a and $\mathrm{b}$ , independent of the dimension of any vector space in which the plane
lies.

$\mathrm{R}\mathrm{o}\mathrm{m}$ the geometric interpretations of the inner and outer products, we can
infer an interpretation of the geometric product from extreme cases. For or-
thogonal vectors, we have ffom (5)

a $\cdot \mathrm{b}=0$ $\Leftrightarrow$ ab $=-\mathrm{b}\mathrm{a}$ . (8)
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$\mathrm{F}_{\dot{1}}\mathrm{g}$. 2. Bivectors a $\Lambda \mathrm{b}$ and $\mathrm{b}\wedge \mathrm{a}$ represent plane segments of
opposite orientation as specified by a“parallelogram rule” for
drawing the segments.

On the other hand, collinear vectors determine aparallelogram with vanishing
area (Fig. 2), so from (6) we have

$\mathrm{a}\wedge \mathrm{b}=0$ $\Leftrightarrow$ ab $=$ ba. (9)

Thus, the geometric product ab provides a measure of the relative direction
of the vectors. Commutativity means that the vectors are colinear. Anticom-
mutativity means that they are orthogonal. Multiplication can be reduced to
these extreme cases by introducing an orthonormal basis.

B. Basis and Bivectors
For $\mathrm{m}$ orthonormal set of vectors $\{\sigma_{1},\sigma_{2}, \ldots\}$ , the multiplicative properties can
be summarized by putting (5) in the form

$\sigma:3$ $\sigma_{j}=\frac{1}{2}(\sigma_{i}\sigma_{j}+\sigma_{j}\sigma:)=\delta_{\dot{l}j}$ (10)

where $\delta_{\dot{l}\mathrm{j}}$ is the usual Kroenecker delta. This relation applies to aEuclidean
vector of any dimension, though for the moment we focus on the $2\mathrm{D}$ case.

A unit bivector $\mathrm{i}$ for the plane containing vectors $\sigma_{1}$ and $\sigma_{2}$ is determined
by the product

$\mathrm{i}=$
$r_{1^{t}}r_{2}$ $=\sigma_{1}$ A $\sigma_{2}=-ty_{2^{\mathrm{c}}}y_{1}$ (11)

The suggestive symbol $\mathrm{i}$ has been chosen because by squaring (11) we find that
$\mathrm{i}^{2}=-1$ (12)

Thus, $\mathrm{i}$ is a truly geometric $\sqrt{-1}$. We shall see that there are others.
From (11) we also find that

$\sigma_{2}=\sigma_{1}\mathrm{i}=-\mathrm{i}$
$\sigma_{1}$ and $\sigma_{1}=\mathrm{i}_{\mathrm{f}}2$ . (13)

In words, multiplication by $\mathrm{i}$ rotates the vectors through aright angle. It follows
that $\mathrm{i}$ rotates every vector in the plane in the same way. More generally, it
follows that every unit bivector $\mathrm{i}$ satisfies (12) and determines aunique plane in
Euclidean space. Each $\mathrm{i}$ has two complementary geometric interpretations: It
oepmsents a unique oriented area for the plane, and, as an operator, it represents
an oriented right angle rotation in the plane
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C. Vectors and Complex Numbers
Assigning ageometric interpretation to the geometric product is more subtle
than interpreting inner and outer products –so subtle, in fact, that the appro-
priate assignment has been generally overlooked until $\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}1\mathrm{y}^{1}$. The product of
any pair of unit vectors $\mathrm{a}$, $\mathrm{b}$ generates a new kind of entity $U$ called a rotor, as
expressed by the equation

$U=$ ab. (14)

The relative direction of the two vectors is completely characterized by the
directed arc that relates them (Fig. 3), so we can interpret $U$ as representing
that arc. The name “rotor” is justified by the fact that $U$ rotates aand $\mathrm{b}$ into
each other, as shown by multiplying (14) by vectors to get

$\mathrm{b}=\mathrm{a}U$ and $\mathrm{a}=U\mathrm{b}$ . (15)

Further insight is obtained by noting that

a $\cdot$ $\mathrm{b}=\cos\theta$ and aA $\mathrm{b}=\mathrm{i}\sin\theta$, (16)

where $\theta$ is the angle from ato $\mathrm{b}$ . Accordingly, with the angle dependence made
explicit, the decomposition (7) enables us to write (14) in the form

$U_{\theta}=\cos\theta+\mathrm{i}\sin\theta=\mathrm{e}^{\mathrm{i}\theta}$ (17)

It follows that multiplication by $U_{\theta}$ , as in (15), will rotate any vector in the
$\mathrm{i}$-plane through the angle $\theta$ . This tells us that we should interpret $U_{\theta}$ as $\mathrm{a}$

directed arc fixed length that can be rotated at will on the unit circl\^e just as
we interpret avector aas adirected line segment that can be translated at will
without changing its length or direction (Fig. 4).

Fig. 3. Apair of unit vectors $\mathrm{a}$, $\mathrm{b}$ determine adirected $a\mathrm{r}\mathrm{r}$

on the unit circle that represents their product $U=\mathrm{a}\mathrm{b}$ . The
length of the arc is (radian measure of) the angle $\theta$ between
the vectors.

With rotors, the composition of $2\mathrm{D}$ rotations is expressed by the rotor product

$U_{\theta}U_{\varphi}=U_{\theta+\varphi}$ (18)

and depicted geometrically in Fig. 5as addition of directed arcs



14

$\overline{||}$
a

$|\mathrm{I}$

$2’...’\underline{\mathrm{a}}’..,$
’

$11|||1||$

$|\mathrm{I}|..\cdot..a’$

\prime\prime

”.,.,
$d’$

$\prime\prime\prime’.\cdot|\prime\prime\prime||1$ ”

$\frac{|.\prime’|\mathrm{I}...1||\prime\cdot\prime’|}{\mathrm{a}}...\prime^{-\prime}\prime’\prime’.$

\prime\prime

Fig. 4. All directed arcs with equivalent angles are represented
by asingle rotor $U_{\theta}$ , just as line segments with the same length
and direction are represented by asingle vector $\mathrm{a}$.

–

Fig, 5. The composition of $2\mathrm{D}$ rotations is represented alge-
braically by the product of rotors and depicted geometrically
by addition of directed arcs.

The generalization of all this should be obvious. We cm always interpret the
product ab algebraically as acomplex number

$z$ $=:AU=\lambda e^{\mathrm{i}\theta}=$ ab, (19)

with modulus $|$ $z$ $|=\lambda=|$ $\mathrm{a}$ $||\mathrm{b}|$ . And we can interpret $z$ geometrically as a
directed arc on acircle of radius $|z|$ (Fig. 6). It might be surprising that this
$\mathrm{g}\infty \mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}$ interpretation never appears in standard books on complex variables.
Be that as it may, the value of the interpretation is greatly enhanced by its use
in geometric algebra.

Fig. 6. A complex number $z=\lambda U$ with modulus Aand angle
$\theta$ can be interpreted as a $\mathrm{d}\dot{\mathrm{u}}$ected arc on a circle of radius
$\lambda$ . Its conjugate $z^{\mathfrak{j}}=\lambda U^{\uparrow}$ represents an arc with opposite
orientation
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The connection to vectors via (19) removes alot of the mystery from complex
numbers and facilitates their application to physics. For example, comparison
of (19) to (7) shows at once that the real and imaginary parts of acomplex
number are equivalent to inner and outer products of vectors. The complex
conjugate of (19) is

$z’=\lambda U^{\dagger}=$ :A $e^{-\mathrm{i}\theta}=$ ba, (20)

which shows that it is equivalent to reversing order in the geometric product.
This can be used to compute the modulus of $z$ in the usual way:

$|z|^{2}=zz^{\mathrm{t}}=)$h2 $=$ baab $=\mathrm{a}^{2}\mathrm{b}^{2}=|$ a $|^{2}|$ $\mathrm{b}$ $|^{2}$ (21)

Anyone who has worked with complex numbers in applications knows that
it is usually best to avoid decomposing them into real and imaginary parts.
Likewise, in GA applications it is usually best practice to work directly with
the geometric product instead of separating it into inner and outer products.

GA gives complex numbers new powers to operate directly on vectors. For
example, from (19) and (20) we get

$\mathrm{b}=\mathrm{a}^{-}1$ (22)

where the multiplicative inverse of vector ais given by

$\mathrm{a}^{-1}=\frac{1}{\mathrm{a}}=\frac{\mathrm{a}}{\mathrm{a}^{2}}=\frac{\mathrm{a}}{|\mathrm{a}|^{2}}$ . (23)

Thus, $z$ rotates and rescales ato get $\mathrm{b}$ . This makes it possible to construct and
manipulate vectorial transformations and functions without introducing a basis
or matrices.

This is agood point to pause and note some instructive implications of what
we have established so far. Complex numbers, especially equations (17) $\mathrm{m}\mathrm{d}$

$(18)$ , are ideal for dealing with plane trigonometry and $2\mathrm{D}$ rotations. However,
students in introductory science and engineering courses are often denied access
to this powerful tool, evidently because it has areputation for being conceptually
difficult, and class time would be lost by introducing it. GA removes these
barriers to use of complex numbers by linking them to vectors and giving them
aclear geometric meaning.

GA also makes it possible to formulate and solve $2\mathrm{D}$ physics problems in
terms of vectors without introducing coordinates. Conventional vector algebra
cannot do this, in part because the vector cross product is defined only in $3\mathrm{D}$ .
That is the main reason why coordinate methods dominate introductory physics,
computer science, engineering, etc. The available math tools are too weak to
do otherwise. GA changes all that!

Most of the mechanics problems in introductory physics are $2\mathrm{D}$ problems.
Coordinate free GA solutions for the standard problems are worked out in my
mechanics $\mathrm{b}\mathrm{o}\mathrm{o}\mathrm{k}.12$ Although the treatment there is for amore advanced course
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it can easily be adapted to the introductory level. The essential GA concepts
for that level have already been presented in this section.

Will comprehensive use of GA significantly enhance student learning? We
have noted theoretical reasons for believing that it will. However, mathematical
reform at the introductory level makes little sense unless it is extended to the
whole curriculum. Taking physics as example, the following sections provide
strong justification for doing just that. We shall see how simplifications at the
introductory level get amplified to greater simplifications and surprising insights
at the advanced level.

IV. Classical Physics with Geometric Algebra
This Section surveys the fundamentals of GA as amathematical framework
for classical physics and demonstrates some of its unique advantages. Detailed
applications can be found in the references.

A. Geometric Algebra for Physical Space
The arena for classical physics is a $3\mathrm{D}$ Euclidean vector space $P^{3}$ , which serves
as amodel for “Physical Space.” By multiplication and addition the vectors
generate ageometric algebra $\mathcal{G}\mathrm{a}=\mathcal{G}(\mathcal{P}^{3})$ . In particular, abasis for the whole
algebra can be generated from astanda$rd$ ffame $\{\sigma_{1},\sigma_{2},\sigma_{3}\}$ , arighthanded set
of $\mathrm{o}\mathrm{r}\mathrm{t}\dot{\mathrm{h}}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{l}$ vectors.

With multiplication specified by (10), the standard ffame generates aunique
trivector (3-vector)or pseudoscalar

$i=\sigma_{1}\sigma_{2}\sigma_{3}$ , (24)
$\mathrm{m}\mathrm{d}$ a bivector (2-vect0rbasis

$\sigma_{1}\sigma_{2}=i\sigma_{3}$ , $\sigma_{2}\sigma_{3}=i\sigma_{1}$ , $\sigma_{3}\sigma_{1}=i\sigma_{2}$ . (25)

Geometric interpretations for the pseudoscalar and bivector basis elements axe
depicted in Figs. 7and 8.

The pseudoscalar $i$ has special properties that facilitate applications as well
as articulation with standard vector algebra. It follows from (24) that

$i^{2}=-1$ , (26)

and it follows from (25) that every bivector $\mathrm{B}$ in $\mathcal{G}_{3}$ is the dual of avector $\mathrm{b}$ as
expressed by

$\mathrm{B}=i\mathrm{b}=\mathrm{b}i$ . (27)

Thus, the geometric duality operation is simply expressed as multiplication by
the pseudoscalar $i$ . This enables us to write the outer product defind by (6) in
the form

a A b $=i$ a x b. (24)
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Fig. 7. Unit pseudoscalar $i$ represents an oriented unit volume.
The volume is said to be righthanded, because $i$ can be gener-
ated from arighthanded vector basis by the ordered product
$\sigma_{1}\sigma_{2}\sigma_{3}=i.$

Fig. 8. Unit bivectors representing abasis of directed areas in
planes with orthogonal intersections
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Thus, the conventional vector cross product a $\mathrm{x}\mathrm{b}$ is implicitly defined as the
dual of the outer product. Consequently, the fundamental decomposition of the
geometric product (7) can be put in the form

ab $=\mathrm{a}\cdot$ $\mathrm{b}+i$ a $\mathrm{x}\mathrm{b}$ . (29)

This is the definitive relation among vector products that we need for smooth ar-
ticulation between geometric algebra and standard vector algebra, as is demon-
strated with many examples in my mechanics $\mathrm{b}\mathrm{o}\mathrm{o}\mathrm{k}.12$

The elements in any geometric algebra are called multivectors. The special
properties of 1enable us to write any multivector $M$ in $\mathcal{G}\mathrm{s}$ in the $ex$ anded form

$M=\alpha+\mathrm{a}+i\mathrm{b}+i\beta,$ (30)

where $\alpha$ and Aare scalars and aand $\mathrm{b}$ are vectors. The main value of this
form is that it reduces multiplication of multivectors in $\mathcal{G}_{3}$ to multiplication of
vectors given by (29).

The expansion (30) has the formal algebraic structure of a“complex scalar”
$\alpha+$ $i(3$ added to a“complex vector” $\mathrm{a}+i\mathrm{b},$ but any physical interpretation
attributed to this structure hinges on the geometric meaning of $i$ . Avery im-
portant example is the expression of the electromagnetic field $F$ in terms of an
electric vector field $\mathrm{E}$ and amagnetic vector field $B$ :

$F=\mathrm{E}+i\mathrm{B}$ . (31)

Geometrically, this is adecomposition of $F$ into vector and bivector parts. In
standard vector algebra $\mathrm{E}$ is said to be apolar vector while $\mathrm{B}$ is an axial vector,
the two kinds of vector being distinguished by adifference in sign under space
inversion. GA reveals that an axial vector is just abivector represented by its
dual, so the magnetic field in (31) is fully represented by the complete bivector
$i\mathrm{B}$ , rather than $\mathrm{B}$ alone. Thus GA makes the awkward distinction between
polar and axial vectors unnecessary. The vectors $\mathrm{E}$ and $\mathrm{B}$ in (31) have the
same behavior under space inversion, but an additional sign change comes ffom
space inversion of the pseudoscalar.

To facilitate algebraic manipulations, it is convenient to introduce aspecial
symbol for the operation (called reversion) of reversing the order of multiplica-
tion. The reverse of the geometric product is defined by

$(\mathrm{a}\mathrm{b})^{\mathrm{t}}=$ ba. (32)

We noted in (20) that this is equivalent to complex conjugation in $2\mathrm{D}$ . Prom
(24) we find that the reverse of the pseudoscalar is

$i^{\mathrm{t}}=-i$ . (33)

Hence the reverse of an arbitrary multivector in the expanded form (30) is
$M^{\uparrow}=\alpha+\mathrm{a}-i\mathrm{b}-iff,$ (34)
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The convenience of this operation is illustrated by applying it to the electr0-
magnetic field $F$ in (31) and using (29) to get

$\frac{1}{2}FF^{\mathrm{t}}=\frac{1}{2}(\mathrm{E}+i\mathrm{B})(\mathrm{E}-i\mathrm{B})$ $= \frac{1}{2}(\mathrm{E}^{2}+\mathrm{B}^{2})+\mathrm{E}\mathrm{x}\mathrm{B}$, (35)

which is recognized as an expression for the energy and momentum density of
the field.

You have probably noticed that the expanded multivector form (30) violates
one of the basic math strictures that is drilled into our students, namely, that
“it is meaningless to add scalars to vectors,” not to mention bivectors and
pseudoscalars. On the contrary, GA tells us that such addition is not only
geometrically meaningful, it is essential to simplify and unify the mathematical
language of physics and other applications, as can be seen in many examples
that follow.

Shall we say that this stricture against addition of scalars to vectors is a
misconception or even aconceptual $\mathrm{v}\mathrm{i}\mathrm{r}\mathrm{u}\mathrm{s}$ ? At least it is adesign flaw in
standard vector algebra that has been almost universally overlooked. As we have
just seen, elimination of the flaw enables us to combine electric and magnetic
fields into asingle electromagnetic field. And we shall see below how it enables us
to construct spinors $fmm$ vectors (contrary to the received wisdom that spinors
are more basic than vectors)!

B. Reflections and Rotations
Rotations play an essential role in the conceptual foundations of physics as well
as in many applications, so our mathematics should be designed to handle them
as efficiently as possible. We have noted that conventional treatments employ
an awkward mixture of vector, matrix and spinor or quaternion methods. My
purpose here is to show how GA provides aunified, coordinate-ffee treatment
of rotations and reflections that leaves nothing to be desired.

The main result is that any orthogonal transformation $\underline{U}$ can be expressed in
the canonical $fom^{12}$

$\underline{U}\mathrm{x}$
$=\mathit{3}$ $U\mathrm{x}U^{\mathrm{t}}$ , (36)

where $U$ is aunimodular multivector called aversor, and the sign is the parity
of $U$ , positive for arotation or negative for areflection. The condition

$U^{\mathrm{t}}U=1.$ (37)

defines unimodularity. The underbar notation serves to distinguish the linear
operator $\underline{U}$ from the versor $U$ that generates it. The great advantage of (36)
is that it reduces the study of linear operators to algebraic properties of their
versors. This is best understood from specific examples.

The simplest example is reflection in aplane with unit normal $\mathrm{a}$ (Fig. 9),

$\mathrm{x}’=-$axa $=-\mathrm{a}(\mathrm{x}_{[perp]}+ \mathrm{x}||)$a $=\mathrm{x}_{[perp]}-\mathrm{x}||$ . (31)
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To show how this function works, the vector $\mathrm{x}$ has been decomposed on the
right into a parallel component $\mathrm{x}||=$

$(\mathrm{x}\cdot \mathrm{a})\mathrm{a}$ that commutes with aand an
orthogonal component $\mathrm{x}_{[perp]}=(\mathrm{x}\wedge \mathrm{a})\mathrm{a}$ that anticommutes with $\mathrm{a}$ . As can be
seen below it is seldom necessary or even advisable to make this decomposition
in applications. The essential point is that the normal vector defining the direc-
$t\dot{\iota}on$ of a plane also represents a reflection in the plane when interpreted as a
versor. A simpler representation for reflections is inconceivable, so it must be
the optimal representation for reflections in every application, as shown in some
important applications below. Incidentally, the term versor was coined in the
$19^{th}$ century for an operator that can re-verse adirection. Likewise, the term is
used here to indicate ageometric operational interpretation for amultivector.

Fig, 9. Reflection in aplane.

The reflection (38) is not only the simplest example of an orthogonal tran&
rot ation but $\mathrm{a}\mathbb{I}$ orthogonal transformations can be generated by reflections of
this kind. The main result is expressed by the following theorem: The product
of two reflections is a rotation through twice the angle between the normals of
the reflecting planes. This important theorem seldom appears in standard text-
books, primarily, Ipresume, because its expression in conventional formalism is
so awkward as to render it impractical. However, it is an easy consequence of
asecond reflection applied to (38). Thus, for aplane with unit normal $\mathrm{b}$ , we
have

$\mathrm{x}’=-\mathrm{b}\mathrm{x}’\mathrm{b}=$ baxab $=U\mathrm{x}U^{\mathrm{t}}$ , (38)

where anew symbol has been introduced for the versor product $U=$ ba. The
theorem is obvious $\mathrm{b}\mathrm{o}\mathrm{m}$ the geometric construction in Fig. 10. For an algebraic
proof that the result does not depend on the reflecting planes, we use (17) to
write

$U=\mathrm{b}\mathrm{a}=\omega s$ $\xi\theta+\mathrm{i}sin_{2}1\theta=e^{11\theta}2$ , (40)

where, anticipating the result from Fig. 9, we denote the angle between aand $\mathrm{b}$

by $\frac{1}{2}\theta$ and the unit bivector for the aA $\mathrm{b}$-plane by $\mathrm{i}$. Next, we decompose $\mathrm{x}$ into
acomponent $\mathrm{x}_{[perp]}$ orthogonal to the $\mathrm{i}$-plane and acomponent $\mathrm{x}||$ in the plane.
Note that, respectively, the two components commute (anticommute) with $\mathrm{i}$, so

$\mathrm{x}_{[perp]}U^{\mathrm{t}}=U^{\mathrm{t}}\mathrm{x}_{[perp]}$ , $\mathrm{x}||U^{\mathrm{t}}=U\mathrm{x}||$ . (41)
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Inserting this into (39) with $\mathrm{x}=\mathrm{x}||+\mathrm{x}_{[perp]}$ , we obtain

$\mathrm{x}’=U\mathrm{x}U^{\mathrm{t}}=\mathrm{x}_{[perp]}+U^{2}\mathrm{x}||$ . (42)

These equations show how the tw0-sided multiplication by the versor $U$ picks
out the component of $\mathrm{x}$ to be rotated, so we see that one-sided multiplication
works only in $2\mathrm{D}$ . As we learned ffom our discussion of $2\mathrm{D}$ rotations, the versor
$U^{2}=e^{\mathrm{i}\theta}$ rotates $\mathrm{x}_{[perp]}$ through angle $\theta$ , in agreement with the half-angle choice
in (40).

Fig. 10. Rotation as double reflection, depicted in the plane
containing unit normals $\mathrm{a}$, $\mathrm{b}$ of the reflecting planes.

The great advantage of the canonical form (36) for an orthogonal transforma-
tion is that it reduces the composition of orthogonal transformations to versor
multiplication. Thus, composition expressed by the operator equation

U2 $L^{r_{1}}=\underline{U}_{3}$ (43)

is reduced to the product of corresponding versors

$U_{2}U_{1}=U_{3}$ . (44)

The orthogonal transformations form amathematical group with (43) as the
group composition law. The trouble with (43) is that abstract operator algebra
does not provide away to compute $\underline{U}_{3}$ from given $\underline{U}_{1}$ and $\underline{U}_{2}$ . The usual solution
to this problem is to represent the operators by matrices and compute by matrix
multiplication. Amuch simpler solution is to represent the operators by versors
and compute with the geometric product. We have already seen how the product
of reflections represented by $U_{1}=$ aand $U_{2}=\mathrm{b}$ produces a rotation $U_{3}=$ ba.
Matrix algebra does not provide such atransparent result.

As is well known, the rotation group is asubgroup of the orthogonal group.
This is expressed by the fact that rotations are represented by unimodular
versors of even parity, for which the term rotor was introduced earlier. The
composition of $2\mathrm{D}$ rotations is described by the rotor equation (18) and depicted
in Fig. 5. Its generalization to composition of $3\mathrm{D}$ rotations in different planes
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Fig. 11. Addition of directed arcs in $3\mathrm{D}$ depicting the product
of rotors.

is described algebraically by (44) and depicted geometrically in Fig. 11. This
deserves some explanation.

In $3\mathrm{D}$ a rotor is depicted as a directed arc confined to a great circle on the unit
sphere. The product of rotors $U_{1}$ and $U_{2}$ is depicted in Fig. 11 by connecting
the corresponding arcs at a point $\mathrm{c}$ where the two great circles intersect. This
determines points $\mathrm{a}=\mathrm{c}U_{1}$ and $\mathrm{b}=U_{2}\mathrm{c}$, so the rotors can be expressed as
products with a common factor,

$U_{1}=$ ca, $U_{2}=$ bc. (45)

Hence (43) gives us

$U_{3}=U_{2}U_{1}=(\mathrm{b}\mathrm{c})(\mathrm{c}\mathrm{a})=$ ba, (46)

with the corresponding arc for $U_{3}$ depicted in Fig. 11. It should not be for-
gotton that the arcs in Fig. 11 depict half-angles of the rotations. The non-
commutativity of rotations is illustrated in Fig. 12, which depicts the construc-
tion of arcs for both $U_{1}U_{2}$ and $U_{2}U_{1}$ .

Those of you who are familiar with quaternions will have recognized that
they are algebraically equivalent to rotors, so we might as well regard the two
as one and the same. Advantages of the quaternion theory of rotations have
been known for the better part of two centuries, but to this day only asmall
number of specialists have been able to exploit them. Geometric algebra makes
them available to everyone by $\mathrm{e}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{d}\mathrm{d}\mathrm{i}\cdot \mathrm{g}$ quaternions in a more comprehensive
mathematical system. More than that, GA makes a number of significant im-
provements in quaternion they–the most important being the integration of
reflections with rotations described above. To make this point more emphatic, I
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Pig. 12. Noncommutativity of rotations depicted in the con-
struction of directed arcs representing rotor products.

describe two important practical applications where the generation of rotations
by reflections is essential.

Multiple reflections. Consider alight wave (or ray) initially propagating
with direction $\mathrm{k}$ and reflecting off asequence of plane surfaces with unit normals
$\mathrm{a}_{1}$ , $\mathrm{a}_{3}$ , .. . ’

$\mathrm{a}_{n}$ (Fig. 12). By multiple applications of (38) we find that it emerges
with direction

Fig. 13. Multiple reflections.

$\mathrm{k}’=(-1)^{n}\mathrm{a}_{n}\ldots \mathrm{a}_{2}\mathrm{a}_{1}\mathrm{k}\mathrm{a}_{1}\mathrm{a}_{2}\ldots \mathrm{a}_{n}$ (47)

The net reflection is completely characterized by asingle unimodular multivector
$U=\mathrm{a}_{n}\ldots \mathrm{a}_{2}\mathrm{a}_{1}$ , which, according to (30), can be reduced to the form $U=\mathrm{a}+i\beta$
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if $n$ is an odd integer, or $U=\alpha+i\mathrm{b}$ if $n$ is even. This is one way that GA
facilitates modeling of the interaction of light with optical devices.

$\mathrm{c}$

Fig. 14. Symmetry vectors for the benzene molecule.

Pig. 15. Symmetry vectors for the methane molecule.

Point Symmetry Groups. Molecules and crystals can be classified by their
symmetries under reflections and rotations in planes through afixed point. All
such symmetries are generated by some combination of three unit vectors $\mathrm{a},$

$\mathrm{b},\mathrm{c}$

satisfying the versor conditions

$(\mathrm{a}\mathrm{b})^{\mathrm{p}}=(\mathrm{b}\mathrm{c})^{q}=(\mathrm{c}\mathrm{a})^{r}=-1$ , (48)

where $\{p, q, r\}$ is aset of three integers that characterize the symmetry group.
These conditions describe $\mathrm{p}$-fold, $q$-fold and $r$-fold rotation symmetries. For
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Fig. 16. Symmetry vectors for crystals with cubic symmetry.

example, the set is {6, 2, 2} for the planar benzene molecule (Fig. 14), and
$(\mathrm{a}\mathrm{b})^{6}=-1$ represents asixfold rotation that brings all atoms back to their
original positions.

The methane molecule (Fig. 15) has tetrahedral symmetry characterized by
{3, 3, 3}, which specifies the 3-fold symmetry of the tetrahedron faces. This
particular symmetry cannot be extended to aspace filling crystal, for which it
can be shown that at least one of the symmetries must be 2-f0ld.

There are precisely 32 crystallographic point groups distinguished by a small
set of allowed values of $p$ and $q$ in $\{p, q, 2\}$ . For example, generating vectors
for the case {4, 3, 2} of crystals with cubic symmetry are shown in Fig. 16. $\mathrm{A}$

complete analysis of all the point groups is given $\mathrm{e}\mathrm{k}\mathrm{e}\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e},14$ along with an
extension of GA techniques to handle the 230 space groups.

The point symmetry groups of molecules and crystals are increasing in im-
portance as we enter the age of nanoscience and molecular biology. Yet the the
topic remains relegated to specialized courses, no doubt because the standard
treatment is so specialized. However, we have just seen that the GA approach
to reflections and rotations brings with it an easy treatment of the point groups
at no extra cost.

This is agood place to summarize with alist of the advantages of the GA
approach to rotations, including some to be explained in subsequent Sections:

1. Coordinate-ffae formulation and computation.
2. Simple algebraic composition.
3. Geometric depiction of rotors as directed arcs.
4. Rotor products depicted as addition of directed arcs.
5. Integration of rotations and reflections in asingle method.
6. Efficient parameterizations (see $\mathrm{r}\mathrm{e}\mathrm{f}^{12}$. for details)
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7. Smooth articulation with matrix methods.
8. Rotational kinematics without matrices.

Moreover, the approach generalizes to Lorentz $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}.2$

C. Frames and Rotation Kinematics
Any orthonormal righthanded ffame $\{\mathrm{e}_{k}, k =1,2,3\}$ can be obtained from our
standard ffame $\{\sigma_{k}\}$ by arotation in the canonical form

$\mathrm{e}_{k}=U\sigma_{k}U^{\mathrm{t}}$ . (49)

Alternatively, the frames can be related by arotation matrix

$\mathrm{e}_{k}=\alpha_{kj}\sigma_{j}$ . (50)

These two sets of equations can be solved for the matrix elements as afunction
of $U$ , with the result

$\alpha_{kj}=\mathrm{e}_{k}\cdot\sigma_{j}=<U$ $r_{k}U’ r_{j}>$ , (51)

where $<\ldots>$ means scalar part. Alternatively, they can be solved for the rotor
as a function of the frames or the $\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{x}.12$ One simply forms the quaternion

$\psi$ $=1+$ e7 ($\mathrm{r}_{k}$ $=1+\alpha_{kj}\sigma_{j}\sigma_{k}$ (52)

and normalizes to get

$U= \frac{\psi}{(\psi\psi^{\mathrm{t}})\pi 1}$ . (53)

This makes it easy to move back and forth between matrix and rotor representa-
tions of arotation. We have already seen that the rotor is much to be preferred
for both algebraic computation and geometric interpretation.

Let the frame $\{\mathrm{e}_{k}\}$ represent aset of directions fixed in arigid $\mathrm{b}\mathrm{o}\mathrm{d}\mathrm{y},44$ perhaps
aligned with the principal axes of the inertia tensor. For amoving body the $\mathrm{e}_{k}=$

$\mathrm{e}k(t)$ are functions of time, and (49) reduces the description of the rotational
motion to atime dependent rotor $U=U(t)$ . By differentiating the constraint
$UU\dagger=1,$ it is easy to show that the derivative of $U$ can be put in the form

$\frac{dU}{dt}=$ $\mathrm{L}_{\mathrm{O}U}$, (54)

where
$\Omega=-i$ $i$ (55)

is the rotational (angular) velocity bivector. By differentiating (49) and using
(54), (55), we derive the familiar equations

$\frac{\ _{k}}{dt}=$
$\mathrm{J}$ $\mathrm{x}\mathrm{e}_{k}$ (56)
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employed in the standard vectorial treatment of rigid body kinematics.
The point of all this is that GA reduces the set of three vectorial equations

(56) to the single rotor equation (54), which is easier to solve and analyze for
given $\Omega=\Omega(t)$ . Specific solutions for problems in rigid body mechanics are
discussed $\mathrm{e}\mathrm{l}\mathrm{s}\mathrm{e}\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}.12$ However, the main reason for introducing the classical r0-

tor equation of motion in this lecture is its equivalence to equations in quantum
mechanics 1, 2, 19-30

D. Maxwell’s Equation
We have seen how electric and magnetic field vectors can be combined into a
single multivector field

$F$ (x, $t$) $=\mathrm{E}(\mathrm{x}, t)+i\mathrm{B}(\mathrm{x},t)$ (57)

representing the complete electromagnetic $\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{l}\mathrm{d}.18,31-33$ Standard vector algebra
forces one to consider electric and magnetic parts separately, and it requires
four field equations to describe their coordinated action. GA enables us to put
Humpty Dumpty together and describe the complete electromagnetic field by $\mathrm{a}$

single equation. But first we need to learn how to differentiate with respect to
the position vector $\mathrm{x}$ .

We can define the derivative $\nabla=\partial_{\mathrm{x}}$ with respect to the vector $\mathrm{x}$ most quickly
by appealing to your familiarity with the standard concepts of divergence and
curl. Then, since $\nabla$ must be avector operator, we can use (29) to define the
vector derivative by

WE $=$ ! $\cdot$ $\mathrm{E}+i/\mathrm{x}\mathrm{E}=/\cdot \mathrm{E}+\nabla\Lambda$E. (58)

This shows the divergence and curl as components of asingle vector derivative.
Both components are needed to determine the field. For example, for the field
due to astatic charge density $\rho=\rho(\mathrm{x})$ , the field equation is

WE $=\rho$ . (59)

The advantage of this form over the usual separate equations for divergence and
curl is that $\nabla$ can be inverted to solve for

$\mathrm{E}=/_{p}^{-1}$ . (60)

Of course $\nabla^{-1}$ is an integral operator determined by aGreen’s function, but GA
provides new insight into such operators. For example, for asource $p$ with $2\mathrm{D}$

symmetry in alocalized $2\mathrm{D}$ region 72 with boundary $\partial \mathcal{R}$, the $\mathrm{E}$ field is planar
and $\nabla^{-1}$ can be given the explicit $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}^{16,17}$

$\mathrm{E}(\mathrm{x})=\frac{1}{2\pi}\int_{\mathcal{R}}|d^{2}\mathrm{x}|\frac{1}{\mathrm{x}’-\mathrm{x}}p(\mathrm{x}’)+\frac{1}{2\pi \mathrm{i}}\oint_{\partial R}\frac{1}{\mathrm{x}’-\mathrm{x}}d\mathrm{x}’\mathrm{E}(\mathrm{x}’)$, (61)

where $\mathrm{i}$ is the unit bivector for the plane. In the absence of sources, the first
integral on the right vanishes and the field within 72 is given entirely by aOne
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integral of its value over the boundary. The resulting equation is precisely equiv-
alent to the celebrated Cauchy integral formula, as is easily shown by changing
to the complex variable $z=$ xa, where a is afixed unit vector in the plane that
defines the “real axis” for $z$ . Thus GA automatically incorporates the full power
of complex variable theory into electromagnetic theory. Indeed, formula (61)
generalizes the Cauchy integral to include sources and the generalization can be
extended to $3\mathrm{D}$ with arbitrary $\mathrm{s}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{c}\mathrm{e}\mathrm{s}.16,17$ But this is not the place to discuss
such matters.

An electromagnetic field $F=F(\mathrm{x}, t)$ with charge density $p=p(\mathrm{x}, t)$ and
charge current $\mathrm{J}=J(\mathrm{x}, t)$ as sources is determined by Maxwell ’s Equation

$( \frac{1}{c}\partial_{t}+\nabla)F=p-\frac{1}{c}$ J. (62)

To show that this is equident to the standard set of four equations, we employ
(57), (58) and (30) to separate, respectively, its scalar, vector, bivector, and
pseudoscalar parts:

$\nabla\cdot \mathrm{E}=p,$ (63)

$\frac{1}{c}\mathrm{C}?_{t}\mathrm{E}-5$ $\mathrm{x}\mathrm{B}=-\frac{1}{c}\mathrm{J}$ , (64)

$i \frac{1}{c}\mathit{8}_{1}\mathrm{B}+x$ $\mathrm{x}\mathrm{E}=0,$ (65)

$i\nabla\cdot \mathrm{B}=0$ (66)

Here we see the standard set of Maxwell’s equations as four geometrically $\mathrm{d}\dot{*}$

tinct parts of one equation. Note that this separation into several parts is simi-
lar to separating equating real and imaginary parts in an equation for complex
variables.

$\mathrm{V}\circ$ GA in the Mathematics Curriculum
My monograph on Geometric Algebra and Calculus as aunified language for
$\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}^{17}$ is the most comprehensive reference on the subject, but it is not
suitable as textbook, except perhaps for graduate course in mathematics. $\mathrm{B}\triangleright$

sidaae there have been some important developments since it was first published.
Some GA textbooks for physics students have recently been published.3,33 Of
course, it will take more than some books to define afull curriculum.

As it does for physics, GA provides aframework for critique of the current
math curriculum. I mention only courses that are mainstays of mathematical
physics. Afull critique of these courses requires much more space than we
can afford here. By first introducing GA as the basic language, the course in
linear algebm can be simplfied and $\mathrm{e}\mathrm{n}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{d}^{45}$. For example, we have seen
how $\mathrm{G}\mathrm{A}\Re \mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{a}\mathrm{e}$ the treatment of rotations and reflections. GA will then
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supplant matrix algebra as the basic computation system. Of course, matrix
algebra is avery powerful and well-developed system, but it is best developed
from GA rather than the other way around. Courses on advanced calculus
and multivariable calculus with differential forms and differential geometry are
unified and simplified by geometric $\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{c}\mathrm{u}\mathrm{l}\mathrm{u}\mathrm{s}.34$ Likewise, GA unifies courses
on real and complex analysis. Group theory can also be developed within the
GA $\mathrm{f}\mathrm{f}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k},14,46$ but much work remains to incorporate the full range of
available methods and results.

VI. Outlook
Ichallenge educators, scientists and engineers to critically examine the following
claims supported by the argument in this paper:

$\mathrm{o}$ GA provides aunified language for the whole of physics and for much
of mathematics and its applications that is conceptually and computationally
superior to alternative mathematical systems in many application domains.

$\mathrm{o}$ GA can enhance student understanding and accelerate student learning.
$\mathrm{o}$ GA is ready to incorporate into curricula, especially the physics curriculum.
$\mathrm{o}$ GA provides new insight into the structure and interpretation of mathe-

matical applications.
$\mathrm{o}$ Research on the design and use of mathematical tools is equally important

for instruction and theory.
$\mathrm{o}$ Reforming the mathematical language of physics is the single most essen-

tial step toward simplifying physics education at all levels from high school to
graduate school. Similar benefits can be expected for other disciplines.

Note. Most of my papers listed in the references are available on line. Physics
education research papers can be accessed from $<$http://modeling.asu.edu$>$ .
GA papers can be accessed from $<$http://modelingnts.asu.edu $>$ . Many fine
papers on GA applications in physics and engineering are available at the Cam-
bridge website $<$http://www.mrao.cam.ac.uk/” $\mathrm{c}\mathrm{l}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{d}/>$.

This paper is an extract from my Oersted Medal Lecture.l Ithank Eckhard
Hitzer for help in preparing it.
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