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1 Introduction

In this paper we consider absolute ridge regression estimators in general linear model
with homogeneous normal errors. These are two main contributions a) we find a class of
generalized Bayes estimators which have a particularly simple form and b) we show that
we may always construct such estimators with smaller condition number than the usual
least squares estimator.

Hoerl and Kennard (1970) introduced the ridge regression technique as a way to si-
multaneously reduce the risk and increase the numerical stability of the least squares
estimator in ill-conditional problem. The risk reduction aspect of Hoerl and Kennard’s
method was often observed in simulations but was not theoretically justified. Strawder-
man (1978) looked at the problem in the context of minimaxity and produced minimax
adaptive ridge-type estimators but ignored the condition number aspect of the problem.
Casella (1980,1985) considered both the minimaxity and condition number aspects and
gave estimators which were minimax and condition number decreasing for some but not
all design matrix. Neither Strawderman or Casella gave generalized Bayes minimax esti-
mators.

In the present paper, we propose a broad class of generalized Bayes minimax estimators
which increase the numerical stability of the least squares estimator for all full rank design
matrices. What is particularly noteworthy about our class of estimators is that they
contain a subclass with a form (adapted to the case of unknown o2) which is remarkably
similar to that of the estimators originally suggested in Stein (1956) for the case Cov(X) =
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I. In particular, our simple generalized Bayes estimators of the mean vector are of the
form

bsp = —a/{v(@+1) +W}CHX
where W = X’C~1D~'X/S for some positive definite matrices C' and D.

To be more precise, we start the familiar linear regression model Y = AB + ¢ where Y
is an n x 1 vector of observations, A is the known n x p design matrix of rank p, 8 is the
p x 1 vector of unknown regression coefficients, and € is an n x 1 vector of experimental
errors. We assume ¢ has a multivariate normal distribution with mean zero and covariance
matrix 021, that is, € ~ N(0,0%I).

The least squares estimator of 3 is 4 = (A’A)~1A’y. Since the covariance matrix of 3
is given by 0?(A’A)~?, the least squares estimator may not be a suitable estimator when
some components of B or some linear combinations of B have a very large variance and
when A’A is nearly singular. Additionally (A’A)~! may have inflated diagonal values so
that small changes in the observations produce large changes in B. Hoerl and Kennard
(1970) proposed the ridge estimator

Br(k) = (A'A+ kL)' Aly (1.1)

where k is a positive constant to ameliorate these problems. Adding the number k before
inverting amounts to increasing each eigenvalue of A’A by k. We will also be concerned
with reducing the condition number of adaptive version of 3 in Section 3 and 4.

In particular, if P is the orthogonal matrix of eigenvectors of (4’A)~!, with d; > dy >
-+« > d, as eigenvalues, it follows that

P(AA)'P=D, PP=1I,
where D = diag(ds,. ..,dp). Then (1.1) can be written as
Br(k) = P(D™! + kL) 1P Ay. (1.2)

The ridge estimator is more stable than 3 in the sense that the condition number of the
estimator is reduced.

However, we are interested in proposing better estimator than B from the decision-
theoretic point of view. We measure the loss in estimating 8 by b with loss function

| L(v,8) = o~2(b— BY (b — B).
Then risk function (mean squared error) of an estimator b is given by
R(b,8) = EL(b, B).

The least squares estimator B is minimax with constant risk. Therefore, b is a minimax
estimator of 3 if and only if

R(b,0) < R(B,8) =Y di, forall .
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Hence the search for estimators better than B is a search for minimax estimators.

To simplify expression and to make matters a bit clearer it is helpful to rotate the
problem via the above orthogonal transformation, P, so that the covariance matrix be-
comes diagonal. We define X = P/ and § = P', which implies that X ~ N (6,02D).
Therefore, for X ~ N(,02D) and S = (y — AB)'(y — AB) ~ o2x2, (independent of X),
we consider the problem of estimation of  under the loss function (& — 8)'(§ — 6) /2.

Strawderman (1978) and Casella (1980) essentially considered the class of estimators
of the form

Or(K) = (I - {I+ D'k} X,

which originally came from straight generalization of (1.2), that is, the generalized ridge
estimator
Br(K)=P(D '+ K)'P' Ay

where K = diag(ky,...,kp). They proposed a sufficient condition for minimaxity, for
adaptive estimators HR(K ) where K = (X'D~1X/S)diag(ay,...,ap), ¥ is a suitable
positive function and a; is positive for all 7. Casella (1980) dlscussed the relationship
between minimaxity and stability (in terms of lowered condition number) and pointed
out that forcing ridge regression estimators to be minimax makes it difficult for them to
provide the numerical stability for which they were originally intended. Casella (1985)
found that, under certain conditions on the structure of the eigenvalues of the design
ma.tnx, both minimaxity and stability can be simultaneously achxeved for a special case
Y(w) = |

In section 2, we give a class of minimax estimators of # (and hence, by transformation,
() somewhat broader than those of Strawderman (1978) and Casella (1980,1985). We
then give a class of generalized hierarchical prior distributions on § and o2 which give
generalized Bayes estimators satisfying the minimaxity condition. This class generalizes
(also to the class of unknown o?) the class of priors in Strawderman (1971), Lin and Tsai
(1973), Berger (1976,1980) and Faith (1978). We further show that for certain choices
of parameters in the hierarchy, the resulting estimators have the simple form indicated
above. Section 3 is denoted to the study of general conditions under which an estimator
competitive with 3 has increased numerical stability (i-e. decreased condition number).
Section 4 is denoted to showing that we may always choose a simple generalized Bayes
minimax estimator in our class which has greater numerical stability than the least squares
estimator.

2 A class of minimax generalized Bayes estimators

In this section, we first give a sufficient condition for minimaxity and then use it to
obtain a class of generalized Bayes minimax estimators. This class contains a sub-class
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of a particularly simple form, which we hope, adds to the practical utility of our results.
Our estimators are of the form

A S X'CDIXN .,
0y = (I—X,C_ID_1X¢< 5 )C )X (2.1)

where C = diag(cy, . . .,c,) where ¢; > 1 for any i.
First we give a sufficient condition for minimaxity.

Theorem 2.1. é¢ is minimaz if ¢'(w) > 0 and

0< ¢(w) <2(n+2)7" (%ﬁ% - 2) :

Proof. The risk of f4 is given by
R(8,0% b,) = E |05 — 6Y 0 - 6)/0°]

S SUXYE) . (SAXE(cd))
=2 4+ [02 Z{Xz/(qd>})2¢( 5 )]

oSS Xy LX) -
Si o n s (U] oy

Let W = X'C~1D~1X/S. For the second term in (2.2), using chi-square identity

EDAh(OA)] = nER(E)] + 2EDER (2)]

(See for example Efron and Morris (1976)), we have

E[ X'C-2X < 5 (X'c-lD-lJ())]
(X'C1D1X)% g2 S

~ 7 | G iz (S + 25600) - 4618 W)X C*D1x)]

~E [}XT'_C%% (( + W) 4¢(W)¢’(W))] .

For the third term in (2.2), using the Stein identity, we have
1 X2/(c;id;)}\ X2/(c:ds
5 [z,.a—z(xi _a)x, (2{ 2/ (c )}) ) (Z{ ; g(m)})]

-3 E [ﬁ ( (W) +2 ‘)é s (We'(W) - W_2¢(W)))]

[Z 4o) | X O («»’gp _ ¢V<;V))] |
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Hence since ¢'(w) > 0, we have

R(@, 0'2, 5¢,c)
’ d(W) X'C2X B ii_,-X’C"lD‘lX
SZd,+E[ 7 oDk |+ 2eW) 2Zc,-—_x'c—2x +4
oW) X'C°X > {di/ci} )]
< ; _ 9 LUy
_Zdri—E[ W e THTE (T 2eW) 2 el
< d.
O
Next, consider the following generalized prior distribution:
8|\, ~ N, (0, n'D(AIC 1)), forq= o2,
Ao A%(1=A)Ij01/q;, fory >1, n o n°. (2.3)

This is a generalization of prior considered in Strawderman (1971), Lin and Tsai (1973),
Berger (1976, 1980) and Faith (1978). The marginal density of X, S, A and 7 is propor-

tional to
LIRS R e
oo (A 15 28 %)
H (d;—1/2(c1 _ A)—1/2) )\a(l _ ’y)\)bﬂede
2
_ _m S (g (1-Ne)o)?t— AT 1
_fexp< 22 =g, G~ = Me))' =A% = 2)
np+n/2+eAp/2+a, H (d:1/2(cz _ A)_1/2) (1 —_ 7>\)bd0

X exp _ﬂ)\z __ai _ E np/2+n/2+e)\p/2+a(1 _ ’}’)\)b. (24)
2 c;d; 2

Under the loss (6—8)'(6—8) /a2, the generalized Bayes estimator is given by E(n8| X, S)/E(n|X, S),
which can be written, using (2.4),
a E(An|X,S) 4 ( pcs(W) —1)
=] - —=—F-41 =(I-—=—=—=C")X,
bon = (1= Tt sy o) X = (1= 55
where W = X'C71D"'1X/S. When p/2+n/2+e+2>0,

00 2
/ P/ 3/ el gy (___722 A E : E,%: ~ %s-’) dn o (14 Mw)™P/2 /22 (2.5)
A d.

and we have

_ . EmMX,S) _ fol/‘y AP/2+a+1(] _ g \)O(1 4 w)) P2 "/2-e=2g)
¢GB(w)—wE( o = vl it
MXS) T 17 e/ (L — qAP(L + wh)P2-n/2--2d)

_w fol tp/2+a+1(1 - t)b(l + wt/ry)“P/2—n/2——e—2dt

v fol tp/2+a(1 — £)b(1 + wt ) ~P/2-n/2—e~2dt

(2.6)
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which is well-defined for @ > —p/2 — 1 and b > —1. Using an identity, which is given by
change of variables ¢ = (1 4+ w)A/(1 + wl)

1 1 ! tw
a1 — )P - N af1 _ 4\ — 27 ya—p+y-2
/OA (1= N)P(L +wh)~"dA (w+1)a+1/0 (-1 - ) d,
we have
sen(w) = wEONXS) __w PRI 01— tw/(w + )}

EMX,8) ~ y+w flp/z+a(l — )b{1 — tw/(w + 7)}/2+e-a-bdt
@.7)

We have the following lemma.

Lemma 2.2. [fb> 0, e > —p/2 — n/2 — 2 and —p/2 — 1 < a < n/2 + e, we have for
¢cp(w) given by (2.7),

1. ¢(w) is monotone increasing in w.
2. ¢(w)/w is monotone decreasing in w.
3. limy o0 p(w) = (p/2+a +1)/(n/2+ € —a).

Proof. The proof of (i) and (ii) is straightforward using monotone likelihood ratio prop-
erties of the densities implied in (2.6) and (2.7). The proof of (iii) follows from (2.7). O

By Lemma 2.2, parts (i) and (ii) and Theorem 2.1, we have immediately the following
result.

Theorem 2.3. Ifb>0,e > —p/2 — n/2 —e—2and —p/2—-1<a<n/2+e, then bcB
1s minimaz provided ¢, . . .,cp are chosen so that '

p/24+a+1 2 dAdi/a}
0Sn/2+e-—a Sn+2 (ma.x{d,-/c;} 2)'

Note: If we choose ¢; = d;/d, the bound on the RHS is 2(p — 2)/(n + 2). The choice of
a = —2 and e = —1 give a value of (p — 2)/(n + 2) for the LHS and hence for p > 3 and
n > 1 these choice of a and e give minimax generalized Bayes estimators for any b > 0
and v > 1. As Casella (1980,1985) indicated, this choice of ¢; may be poor from the point
of view of the numeric stability of the estimator. We consider this point further in Section
3. In that section, «y will play a role in the stability of the estimator.
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2.1 A class of simple generalized Bayes minimax estimators

When b = n/2—a+e—1 in equation (2.7), the expression for ¢gp(w) takes a particularly
simple form. In this case,

w B(p/2+a+2,b+1)
w+vB(p/2+a+1,b+1) = {w/(w+7)}B®/2+a+2,b+1)
w

¢cp(w) =

- (w+ 'yt)u(l +1/a)—w

b (2.8
Y(a+1)+w (28)
where a = (p/2+a+1)/(b+1)=(p/2+a+1)/(n/2+e—a).
Therefore our simple generalized Bayes estimator is
fsp = (I -~ ———i——c-l) X, (2.9)
Y(a+1)+W

Hence we have the following corollary which follows immediately from Theorem 2.3.

Corollary 2.4. bss given by (2.9) is minimaz provided cy,...,¢p 8 chosen so that

Y-{di/c:}
0<esi (w@/a} “2)'

It is interesting to note that when C' = D = I, our simple estimator has the form

N a
Osp = (1 B y(a+1) +X'X/S) X.

This is very closely related to Stein’s (1956) initial class of estimators. He suggested that
for X ~ N(6,1,) with p > 3, there exist estimators dominating the usual estimator X
among a class of estimators of the form 8,5 = (1 —b/(a + X'X))X for large a and small
b. Hence our estimators may be regarded as a variant for unknown variance case.

Following Stein (1956), James and Stein (1961) showed that d,5 fora=0and 0 <b <
2(p—2) dominates X. Since Strawderman (1971) derived Bayes minimax estimators, many
authors have proposed various minimax (generalized) Bayes estimators. However the
form of these estimators is invariably complicated like our expression (2.7) above. Simple
estimators &, have received little attention although 4, fora >0and 0 <b < 2(p - 2)
is easily shown to be minimax by using Baranchik’s (1970) condition. It seems that most
statisticians have believed that generalized Bayes estimators which improve on X must
have a quite complicated structure. Our result above indicates that this is not so and that
generalized Bayes minimax estimators, improving on X may indeed have a very simple
form. ' '



134

3 Condition numbers and numerical stability

As in Casella (1985) and other papers, we use the condition number to measure nu-
merical stability of our ridge-type estimators. This discussion focuses on the stability
of estimators of § (as opposed to estimators of ). Recall that our estimators of § may
be represented as §, = (I — tC~1)X where ¢t = ¢(w)/w and w = X'C-1D-1X/S. The
vector of regression parameters, (3, is related to the mean vector 8 through the orthogonal
matrix P (§ = P'() and the observation vector X in Section 2 is related to the least
squares estimator, 3, through X = P’ﬁ In this section, we are interested in studying the
numerical stability of ridge-type estimators of ,éq;, arising from our improved estimators
8, of 6 through

By = Py = P(I —tC™HX
= P(I-tCY)P'B
= P(I —tC~ ) P'(A'A) Ay
= P(I —tC"Y)P'PDP'A'y
= P(diag{d;'(1 - t/c;)'}) T P Ay (3.1)
=G A%,

The condition number of a matrix H is defined by x(H) = |H||||H || where [|H| =
SUp,,—1 (¢’ H'Hz)/? = max );, where ), are the eigen values of the positive-definite matrix
H'H. Tt follows that if H is a positive-definite matrix, K(H) = k(H~!). As indicated in
Casella (1985) (See also Belsley, Kuh and Welsch (1980)), the condition number measures
the numerical sensitivity of the solution of a linear equation B=H —1A'y. In particular if
6B and & (A'y) indicate perturbations in 3 and A’y respectively,

1681/18] < w(H)(16A'y|/|A'y)),

where | - | denotes the usual Euclidean norm. For simplicity of notation, we define the
condition number of an estimator of the form (3.1) k(3,) to be equal to the condition
number of the matrix G4, k(G™1) = k(G), i.e. k(B,) = k(G).

It follows immediately from the definition of x(G) that (we assume t < 1, ¢; > 1)

<) = du/d, - 62
and w(B,) = maxd;(1 —t/c;) (3.3)
* "~ mind;(1 —t/c;) |

In terms of numerical stability, a smaller condition number implies greater stability.
Of course, the condition number gives in (3.3) depends on ¢t = ¢(w)/w and in particular
when w = 00, t = 0 and (3.3) reduces to (3.2). We will be interested in finding conditions
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on our generalized Bayes estimator so that for all possible values of ¢ we have inequality

k(Bs) < K(B).
The following result allows condition number improving generalized Bayes estimators
under two different conditions on ¢y, ..., c,.

Theorem 3.1. Suppose ¢(w)/w is monotone decreasing and suppose limy,_.q p(w)/w =
to < 1. Then &(B;) < k(B) for any t € [0,ty] if either

1. ife,>c12c2> -2 cp-1 and

c16p-1(dp-1 — dp) Gp-1Cp(d1dp-1 — dﬁ))
C1dp-1 — Cp-1dp  Cplip-1 — Gp1]

to S mm(
or

2. ife; << <y and

[ cici(did; — didp))
fo < in ( cdid, —cididy )

Proof. Suppose ¢, > ¢1 > ¢ = +++ > ¢p_1. Then di(1 —t/er) > -+ = dp1(1 — t/cp_1)
and so

max;—i,.p-1di(1 —t/c:) < di(1 —to/c1)

m?x minj:l,..;,p—l d‘,(l —_— t/dj) - d _1(1 — to/Cp—1) ) (34)
Also Sy ]
m?xg;j%f:—t;z‘; = i (3.5)
e dp(1 —t/cp) dy(1 —to/cp)
\1 ~ /G o1 —10/Cp
X (0 =t/ey 1) = &1 (1 —tofer )’ (3.6)
Hence if

ax ( di(l—to/c))  dp(l —to/cp) ) <h
dp-1(1 — to/cp)’ dp1(1 —to/Cp-1) ) ~ dp
or equivalently

Clcp—l(dp—l - dp) CP—lcp(dldP—l - dg))

to < min ,
0= ( C1p1— Cp-1dp ' Cpllidp1 — Cp1d}

we have Gl —t/e) _ d
max; a;\l —1t/¢ 1

< =
mtax minj dJ(l —t/C]) - ,dp,

which proves part (i).
Ife; <cp <+ < ¢, we have

di(l—-t/c;) _d; .
Z0=2/e) < Z fori < j 3.7
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e di(1-t/c) _ di(l—to/c;)
i\ TG il —to/ci .
< . .
mta'x dj(l —t/cj) - dj(l — tO/Cj) for i > Vi (3 8)
Hence if A= to)e) ;
i\l —lo/Ci 1
max [ ——L 22 ) < 22
>J (d,-(l _tO/Cj)) = d,
or equivalently : |
. [ cicj(did; — didy, )
to <
0= ( cdid; — cidid, )’
we have
max 22X di(l - t/e)  d
t min;d;(1 -t/¢;) ~ dy
which proves part (ii). -

In the next section, we will show that it is always possible to find a condition improving
(simple) generalized Bayes minimax estimator.

4 Minimaxity and stability

In this section, we show that the results of the previous two sections can be combined
to give simple generalized Bayes minimax estimators which simultaneously reduce the
condition number relative to the least squares estimator.

Note that it seems generally desirable to have ¢; < --- < ¢, since this implies that
the components of X with larger variances get shrunk more. See Casella (1985) for an
expanded discussion of this point.

Our first result below shows that we may find generalized Bayes minimax condition
number improving estimator satisfying ¢; < - -- < ¢, whenever Y {d;/d;} —2 > 0.

Theorem 4.1. Suppose p > 3 and > {d;/d1} —2 > 0. If dy > dy, let 7. be the unique
root such that y_{d;/d,}" = 2 and let .. be any value in (1,n,). If dy = ds, let 1., be any
value > 1. Then if ¢; = (di/d;)™ ! and o € (0,uy] for

uy =2(n+2)7" (Y {d/di)™ -2)

o cidyd; — c;jdid,
72 a+1 I?f}x (c,-cj(d:dj _Jd‘dp)) ) (4.1)

the estimator éSB of Corollary 2.4 is generalized Bayes, minimaz and condition number
decreasing, further ¢; < --- < ¢p.

and if
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Proof. Since (d;/d;)" is strictly decreasing in 7 if d;/d; < 1. There exists exactly one
root 1, of 3_(d;/d1)" = 2 if dy/d; < 1 and that root is strictly larger than 1. If d; = d;
> (d;/d;)" > 2 for any n > 0. Hence nu > 1 and ¢; = (d1/d;)™*! is monotone non-
decreasing in . Also from Corollary 2.4 we have minimaxity provided

S-{di/ei}
Ocas e (max{m/q} ’2>

= 2 (Ttd/ap -2) =u. (> 0)

Also by Theorem 3.1 since ¢; < ¢ < +++ < ¢, the generalized Bayes estimator will have
reduced condition number provided

. [ cici(did; — didp)
< 4.2
=iy ( N R (4.2)
Since to = o/ {y(c+1)} (recall § = (I — a/{y(a+1) +w}C~')X), the condition number
of (4.2) is seems to be equivalent to (4.1). , O

There remains the case where Y {d;/d;} — 2 < 0. This case corresponds to the case
where no spherlcally symmetric estimator (¢; = ¢z = - -+ = ¢p) and therefore no estimator
with ¢; € ¢2 < -+ - < ¢, can be minimax (e.g. See Bock (1975)). Our solution while less
pleasing in a sense than Theorem 4.1 nevertheless allows a simple minimax generalized
Bayes estimator which reduces the condition number and hence increases the stability.

Theorem 4.2. Suppose p > 3 and Y. {d;/d1} —2 < 0. Ifp > 4 let v, € (0,1) be the
unique solution of 3 7_1{d;/d1}* = 2. Let v,. be any value in [0,v,). If p =3, choose
Ve =0. Then if ¢; = (di/dp—1)' ™ fori=1,2,...,p—1and ¢, > ¢, 0<a < u_, for

u_=2(n+2)" (Z{d,/d P —24 cld")

and

Y2

ax ( C1dp—1 — Cp1dp  Cplidp-1 — Gp1dp )

c16p-1(dp-1 — dp)’ Cp16p(didp—1 — 7))’
the estimator of Corollary 2.4 is a (simple) generalized Bayes minimaz condition number
improving estimator.

a-}-lm

Proof. It is easy to see as in Theorem 4.1 that v, v.. can be chosen as indicated. In this
case, Corollary 2.4 implies minimaxity provided

2 ([ S{di/) cudp \ _
0<asn+2(max{d,-/c,-}_2)— (Z{d,/d} -24 — )—-u_(>0).

i=1
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Theorem 3.1 (i) then implies since ¢, > ¢; > ¢3 > -+ > ¢,_1 that our estimator is
condition improving if - is chosen so that

max ( Cldp—-l - Cp—ldp cpdldp—l - cp—ldz )
C16p-1(dp-1 — @p)" Cp-16p(didp1 — d2) )

o
>

= a+1

O

We note that versions of Theorems 4.1 and 4.2 are valid also for the broader class

of generalized Bayes minimax estimators of Theorem 2.3. We omit the straightforward
details.
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