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1. Radix representation and two
generalizations

Positive base: Let g > 2 be an integer. Then
every n € Z can be represented in the form

¢
n=+ Y ng', 0<n;<g
7=0

Negative base: V. Griinwaid (1885): Let g <
~2 be an integer. Then every n € Z can be
represented in the form

¢
n= Y ng', 0<n;<g.
j=o
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You can find details and more material about
the here studied kind of questions in the fol-
lowing papers:
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1.1. B representation

A. Rényi (1957): Let g8 > 1 be a real number
and A = {0,1,---,B8]} be the set of digits.
Then each v € [0, 00) can be represented by

v =amB™+ am_16™ 1 (1)

with a; € A. This g-representation is usually
not unique.

Assuming however that
m .
0<y-) af <g" (2
1=n
hold for all n < m the S-representation become
unigue. For v € [0,1) this greedy expansion
can be given by the g-transformation

Tp(y) = By - 8]

This concept is the topics of a lot of research:
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. Description of the representations of 1,
Erdds, Joo, Horvath.

o Characterization of univogue numbers, i.e.
those g for which 1 has a unique representa-
tion, Dar6czy, Kéatai, Komornik, Loretti, Al-
louche, Cosnard.

o Connections with fractals: Rauzy, Thurston,
Akiyama.

. Characterization of those B8 which leads
to finite or eventually finite representations,
Bertrand, Schmidt, Frougny, Solomyak, Hol-
lander.

¢ Connection with radix representations based
on linear recursive sequences, Zeckendorf, Fraen-
kel, Grabner, Tichy, Pethé.

1.3. CNS polynomials

Observation: If Zy is monogenic then Zg =
Zla] for some a € Zg. This means Zg =
Z[z])/P(z)Z|z], where P(z) is the minimal poly-
nomial of a.

Moreover, {a,N'} is a CNS in Zg(,) means
nothing eise that every coset of Z{z]/P(x)Z[x}
has an etement (a representative) such that its
coefficients is bounded by |pg| — 1.

A monic polynomial P(z) = z% + pg_,x?-1 4
-+ ++pg is called CNS polynomial if every coset
of Z[z}/P(x)Z[z] has an element

ag+ a1z + - + apz” (3)
such that 0 € a; < |pg|.

1.2. CNS representation

Number rings: Knuth, Katai, J. Szabd, B.
Kovidcs, Gilbert (1960-1981):

Let Zg be the ring of integers of the algebraic
number field K.

{a,N}; o€ Zyg, N={O,.‘..,|Norm(a)l—‘1}

is called a canonical number system if every
v € Zg can be represented in the form

]
v= Y nia', n;€N.
j=0

2. Comparison of the 'properties
of greedy expansions and of CNS-
polynomials

Let 4 be the root of B(X) = X9 — b, xd~1 _
<= bg € Z[X].

Let Fin(83) be the set of positive real numbers
having finite greedy expansion with respect to
B. We say that g > 1 has property (F) if

Fin(8) = Z[1/8] n [0, ).

Property (F) CNS-polynomials
B is a Pisot number: | the absolute value of
B> 1, but its -all zeroes of P(X) are

conjugates are <1 larger than 1.

IfblZ"'ZbdZI- prd*lﬁ'“ﬁpoy
Frougny and po 2 2, B. Kovdcs
Solomyak (1992) (1981)

Characterization resulits if
b1 > |ba| + -+ by, | po > Ipal+ -+ Ipa—al,
by # 0, Hollander Akiyama, Pethd, (2002),
(1996) Scheicher, Thuswaldner




3. Shift Radix Systems

Let r = (r1,...,7y) € R% To r we associate
the mapping .
e o 28— Z% if a= (ay,...,a4) € Z¢ then let

e(a) = (az,...,aq, —|ra}),

where ra = rja; + - + rqaq, i.€. the inner
product of r and a.

Let r be fixed. We will show: r gives rise to
a Pisot number 3 with property (F) as well as
to a CNS-polynomial P iff

for all ae Z43 k> Owith 7F(a) =0. (4)

If (4) holds, we will call = a shift radix system
(SRS for short). Hence SRS is a common gen-
eralization of greedy expansions with property
(F) and CNS-polynomials.

It is clear that Dy = [-1,1] and DY = [0, 1).
To illustrate the difricmty of the characteriza-
tion problem of Dd we show an approximat'on
of DY. z ;

An approximation of DJ.

4. Relation between SRS and CNS-
polynomials

This is a more delicate question.

Let P(z) = pgz? + pg_12%~t +--- + po € Z[a]
with py = 1. Every coset of Z{z]/P(z)Z[z] has
an element of form v

Ao+ Az + - +Ad_1z _f?-A,-ez. (5)
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3.1. Relation between SRS and g-
expansions

Two basic definitions. Let
D9 = {r €RY|VaeZ93k > 0:75(a) = 0} and

Dy = {reR%|vaez?: {r¥(a)}xs0
is ultimately periodic} .

Now we can formulate the connection between
SRS and greedy expansions.

Theorem 1 (Hollander,1996). Let 8> 1 be
a Pisot number with minimal polynomial X -
biX4=1 ... by 1 X —by Set

T1 1)
T b7 4+ bjp1B 2+ - + by,
(2 £ j <d). Then B has property (F) if and

only if (rq,...,12) € Dd-—l'

Let Z'[z) = {A(z) € Z[z] : deg A < d} and

: d-1
T(A) = Y (Aig1 = gpig1) T,
=0
where Ay = 0 and ¢ = [Ap/po].

Then T : Z'[x] — Z'[z) and
A = ag 4+ zT(A), with ag = Ap — gpo.

This backward division process can become:
e divergent A(X) = —1 for P(X) = X2 +
4X 42 -

k
Tx2+ax+2("1
6 or

yooee

) = -1,X + 4,-2X - 8,4X +

e ultimately periodic A(X) = -1 for P(X) =
X2_2X 42

T)k(i..2x+2("1) =-1,X-2,X-1,X-1,... 0r

. can terminate after finitely many steps
A(X) = -1 for P(X) =X2 42X +2
“1=14+z2+ 23+ z4.
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Let

N(P) = {A : TE(A) = A for some £ > 0}
denote the set of periodic points of the map-
ping Tp.
We always have 0 € M(P). With help of this
set we define

Cg = {(pﬂvpl’- e vpd-l) € Zd :
N(X4+pa_1 X+ .-+ po) = {0}}
Ca = {(po,P1,...,pa-1) € 2% :
Txaypy ) Xd=14...4p N3S ONly finite orbi

Clearly, we have Cg C Cy.
The elements of Cj will be called CNS polyno-
mials.

It is convenient to replace Tp by the conjugate
mapping .
Tp : 2% — Z2 defined as

Tp(A) = (A1 - qp1, ..., Ag—1 — QPd—1) —9Pa):
where A = (Ap,...,Aq_1) and ¢ = |Ao/po)-

where A = (Ay,...,Ag). The mapping rp will
be called Brunotte’s mapping.

Theorem 2. Let P(X) = X%+ pg_1 X% 1 +
o4 p1 X +po € Z[X]). Then P(X) is. a CNS
polynomial (or belongs to CS) if and only if

= (1 Pdi-1 21 0
r 25’ po""'po)epd'

4.2. c3 for small d’s

o C={pg : po =2} V. Grinwald

o (3 ={(po,r1) : —-1<py <popo> 2}
Kiatai, Szabd, B. Kovacs, Gilbert.
e Conjecture of Gilbert, 1981: (pg.p1,p2) €
¢ if and only if
(1) po22,
(1) p220,
(#i) p1+p22 -1,
(i) pr~p2<pPo~2,
PO — 21 if P1 S Ov
(v) pp<{po-1, if 1<p1<po-1,
PO, if  p1 2 po.

and

ts}.

4.1. Affect of a new representation

H. Brunotte (2000) and K. Scheicher and J.
Thuswaldner (2001) observed that the basis
transformation
{l,m,._.,zd"l} — {wy,...,wq},
d "
w; = E pixz+]~d—1
i=md—j+1

of R implies a nicer and much better applicable
transformation than Tp is. Indeed, if

' d
A(x) = 3 Ajwj;, then
=1
d-1
Tp(A) = —twg+ Z Aj+1wj, where
i=1
[PlAd -+ PdAIJ
Po
Hence, Tp implies the mapping 7p : Z9 — Z¢

p1Ag+ - '+PdA1J)

t

rp(A) = (Az, e Agy — l

Po

Visualization of Gilbert's conjecture, pg = 44.



i S
: "ii!iﬂt‘

L e nm« e
ESRT o - BENEMINION .

L T R

EBERETHRIEITESEKININIL

A,

!Zlhhmﬂ‘h!l!!i!i’!'}lﬂli!ilhh
EEEEEN

mrm;mm

r«!ﬂ l‘émhMNiiiiﬁi‘é'l'li’ﬂhﬂ if

RTITHE S E SR RRATS RIS HAEER

BTG AU R I )
i i

Bl

39
SR
2. lli!ii"

i ii T

TR
:Hl.mﬂi‘
REERIRIEXE™ .
Sl

Hn“i

Cg for pg = 44.

5. Basic properties of SRS
For a matrix M denote the spectral norm by
|IM}|. For a vector v, |iv|| shall denote the

Euclidean norm.

For r = (r1,...,74) € Dy let

0 1 o .- O

R:= : . .o 0 . (6)
0 v .o 0 1
-—rl —T2 . e “ e ‘.Td

temma 1l.Letde N. Ifr=(r1,...,79) € Dy

then the spectral radius of R is less than or

equal to 1.

In the opposite direction we get the following
resuit.
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(946,474)

C§ for pg = 474.

Lemma 2. Let r € RY such that the spectral
radius p of the matrix R given above is less
than 1. Thenr € Dy.

It is not to hard to prove the following state-
ment

Theorem 3. The sets Dy and DY are Lebesgue
measurable.

5.1. Convexity property of 7r

Theorem 4. Letry,...,rx € R% and a € Z¢ be
such that rr,(a) = --- = =, (a). Lets be any
convex linear combination of ry,...,r. Then

we have ts(a) = 1y, (a) = --- = 7, (a).
Corollary 1. Let ry,...,rx € R have the same
period, i.e. -rfl(a) =...= 'r,fk(a),l =0,...,q

and a = f (a). Then ifs is lying in the convex
hull of ry,...,1x the mapping s is periodic and
has the same period as Tr,.
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For example, it is easy to check that for the
plane vectors r; = (g-g-}r, 23).r2 = (33, —%—g%)

and r3 = (32%,3I%) the corresponding map-

pings have the same period (-2,1);3,-2,1,1, -2,

hence the corresponding mapping for any point
lying in the rectangle r3, o, r3 have this period.

5.2. Brunotte’s aigorithm

To decide r € CJ Brunotte gave an algorithm,
which was realized independently by Scheicher
and Thuswaldner. We give here a generaliza-
tion for DJ. ‘

Theorem 5. Suppose that there exists a set
E c Z¢ satisfying

(#) E contains 2d elements of the form
(o,...,0,%1,0,...,0).

(%) m(E)ur(E) C E, where1¥(x) = —1r(—x).
(i) For each a € E there is some k > 0 such
that 7k(a) = 0.

Then r € DY.

6. Lifting theorem

Let d e N and

(@144 --18444) € 29, (0<ji<L-1), (7)
with ar41 =01,..-,8L 44 = Qq.
For which r = (r1,...,74) € R? these vectors

form a period = of D;7 By the definition of ¢
this is the case if and only if the inequalities

0<riayj+ - +rgagyj+agrjr1 <1 (8)
hold simultaneously for all 0 < j < L—1. They

define a (possibly degenerated) polyhedron, which

will be denoted by P(x).
Since r € D9 if and only if 7+ has O as its only
period we conclude that

DI =Dy\ | P(x)
770

An example: Letr= (%,—-%)

Starting from Ep = {(£1,0),(0,£1)} and us-
ing that

7(1,0) = (0,0),7+(-1,0) = (0,1),7+(0,1) =
(1,1),

7v(0,—-1) = (~1,0) we get

Ey = m(Eg)ury (Ep) = Eou{(0,0),(1,1),(~1,-1)}.

Now

n(1,1) = (1,0),%(-1,—-1) = (-1,1), hence
we may take

E2 = Tr(E]_) UT:(El) = El U {(11 —1)’ (_11 1)}
Finally because

n(-1,1) = (1,1),7(1,-1) = (-1,0), we get
that

E = E, proves r € T§.

where the union is extended over all families of
vectors 7 of the shape (7). We call the fam-
ily of (non-empty) polyhedra corresponding to
thés choice the family of cutout polyhedra of
Dy.

Let 7 be a period of C4 or Dy which corresponds
to a non-degenerate cutout polyhedron. Then
we call # a non-degenerate period. We will
show that we can “lift" a non-degenerate pe-
riod to higher dimensions.

Definition 1. Let

1r:(al,...,ad);ad+1,...,aL (9)
be a non-degenerate period of length L of C4
or Dy. Then we call

l('”) : (01,62,--.,ad+1);ad+2,...,a[, (10)
the lift of m tod+ 1.

Note that » and !(r) have the same period
length L.



Theorem 6 (Lifting Theorem). Letd > 1 be
an integer.

(i) Letpg > 2 and let © be a non-degenerate
period for Cy. Then = is also a non-degenerate
period for Dy. More precisely, there exist py,. ..,
p4_1 € Z such that (pg,...,pg-1) € int (P'(m))
and

(i”—di ,?1) € int (P(m)).
Po PO PO

(it) Let « be a non-degenerate period of Dy.
Then its lift XA := l(xw) is a non-degenerate pe-
riod of C44 for each sufficiently large pg. More
precisely, for all (r1,...,7q) € int(P(x)} there
exists e > 0 such that for all (pg,...,pg) € Z¢t1
with

<e

we have (pg,...,pq) € int (P'(N)).

Theorem 7. Fixn e N, n> 3, and setr =
(zn,yn) € R? with

1 2n+1
=1l nd 1= —— ,
Tn 1 2n2+z" a Yn 2n(n 1)+un

where |zn),|un| < 1/n*. Then (n is a non-
degenerate period of 7.

Since we can select n arbitrarily large and the
length of the period {n is 4n + 1 the previous
theorem implies that there exist non-degenerate
periods of arbitrarily large length for Da.
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7. Long periods

Consider the following family of edges.

ap: (~k—=1,-n+k) — (—n+kk+1)
(0<k<n—-1),
Br: (~n+kk+1) —» (k+ln+1—k)
(0<k<n-1)
Yo ! (1,n+1) - (n+1,1),

v (k+1Ln+1-k) (n4+1-—k,—k)
(1<k<n-1),
711: (n+ 111) d (1,—11),

8 : (n+1—-k,~k) = (=k,—n-—1+k)
(1<k<n-1).

Wwith these edges we form the cycle

¢n © a0BeY0mn~-1Pn-1Yn-10n—10n—2 - . - @181 7101.

“ Note that &; ends up in (—1,—n). In this node

ag starts. Thus ¢n is indeed a cycle. We won-
der whether there exists r := (zn, yn) € D3 such
that 7r has (n as a non-degenerate period. This
is done in the following result.

By a direct application of the Lifting Theorem
we obtain.

Theorem 8. Let d > 2 be an integer, fixn €N,
n > 3. Then there exist some r € R% such
that 19-2(¢n) is a non-degenerate period of Tr.
Since we can select n arbitrarily large and the
length of the period 19=2(¢n) is 4n 4+ 1 this
implies that there exist non-degenerate periods
of arbitrarily large length of Dq and Cgqyq.

Corollary 2. Fixn € N, n > 3, and setd > 2
and

r=(0,...,0,2n,yn) € R% With zn,yn as in The-
orem 7. Then 1972(¢n) is a period of Tx.
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8. Critical points

Definition 2. Let x € Dy.

e If there exists an open neighborhood of x
which contains only finitely many cutout poly-
hedra then we call x a regular point.

e Ifeach open neighborhood ofx has nonempty
intersection with infinitely many cutout poly-
hedra then we call x a weak critical point for
Dy.

o If for each open neighborhood U of x the
set U\ DY can not be covered by finitely many
cutout polyhedra then x is called a critical
point.

We will show the existence of critical points for
each d > 2. This shows that there is no way
to characterize either of the sets D9 by finitely
many cutouts if d > 2.

Lemma 3. Let x be a weak critical point for
Dg4. Then x € 8Dy.

Lemma 4. Let {zn},>1 and {yn}n>1 be se-
quences with zq < 1, yn < 0, limz, = 1,
limyn =0 and 1-zn = o(yn). Let {am},n>1 be
a sequence of integers such that la;| < K for
some constant K. Then there exists N € N
such that

O0< g 1Z2n+ayn+a;41 <1 (11)
can not hold for all i ifn > N unless a; = 0
for all 1+ large enough. Thus nonzero periods
whose elements are bounded by K can not oc-
cur in Dg for T(o.. 0,zny) if 7 IS large enough.

Theorem 9. Letd > 2. ThenK, = (0,...,1,0) €

R¢ is a critical point of Dy.

Problem 1. Characterize the critical points of
Dy. Can one show that for a given d there exist
only finitely many critical points?




