$\langle q, r \rangle$ -number systems and algebraic independence

Shin-ichiro Okada and Iekata Shiokawa

Keio University, Yokohama, Japan

This is an announcement of our results in [9].

let q and r are integers with $q \geq 2$ and $0 \leq r \leq q-1$. In the $\langle q,r \rangle$ number system, every integer $n \in \mathbb{Z}$ is uniquely expressed with base q and digits $-r, 1-r, \cdots, 0, \cdots, q-1-r$; namely,

$$n = \sum_{k=0}^{k} \delta_k q^k, \quad \delta_k \in \{-r, 1 - r, \cdots, q - 1 - r\}, \quad \delta_k \neq 0 \text{ if } n \neq 0,$$
 (1)

where \mathbb{Z} should be replaced by $\mathbb{Z}_{\geq 0}$ and $\mathbb{Z}_{\leq 0}$ if r=0 and r=q-1, respectively. The usual q-adic expansion is the $\langle q,0\rangle$ number system. Symmetrically, in the $\langle q,q-1-r\rangle$ number system -n is uniquely expressed as

$$-n = \sum_{h=0}^{k} (-\delta_h) q^h, \tag{2}$$

where δ_h are as above (cf. [3], [5]).

Furthermore, taking the negative base -q, we have the $\langle -q, r \rangle$ number system, in which every $n \in \mathbb{Z}$ is uniquely expressed as

$$n = \sum_{h=0}^{l} \varepsilon_h(-q)^h, \quad \varepsilon_h \in \{-r, 1-r, \cdots, q-1-r\}, \ \varepsilon_l \neq 0 \text{ if } n \neq 0$$
 (3)

(without exception on r). In the $\langle -q, q-1-r \rangle$ number system, we have also an expansion of -n similar to (2).

An arithmetical function $a_r(n): \mathbb{Z} \to \mathbb{C}$ is called $\langle q, r \rangle$ -linear, if there is an $\alpha \in \mathbb{C}^{\times}$ such that

$$a_r(nq+t) = \alpha a_r(n) + a_r(t) \tag{4}$$

for any $n \in \mathbb{Z}$ and $t \in \mathbb{Z}$ with $-r \leq t \leq q-1-r$, where \mathbb{Z} is replaced by $\mathbb{Z}_{\geq 0}$ and $\mathbb{Z}_{\leq 0}$ if r=0 and r=q-1, respectively. By definition, $a_r(0)=0$. Using the expansion (1), we have

$$a_r(n) = \sum_{h=0}^k a_r(\delta_h) \alpha^h, \tag{5}$$

and so $a_r(n)$ is determined by the coefficient α and the initial vector

$$\mathbf{a}_r = (a_r(-r), a_r(1-r), \dots, a_r(0), \dots, a_r(q-1-r)).$$
 (6)

It follows from (2) and (5) that

$$a_{q-1-r}(-n) = \sum_{h=0}^{k} a_{q-1-r}(-\delta_h)\alpha^h.$$
 (7)

An arithmetical function $b_r(n): \mathbb{Z} \to \mathbb{C}$ is called $\langle -q, r \rangle$ -linear, if there is a $\beta \in \mathbb{C}^{\times}$ such that

$$b_r(n(-q)+t) = \beta b_r(n) + b_r(t) \tag{8}$$

for any $n \in \mathbb{Z}$ and $t \in \mathbb{Z}$ with $-r \le t \le q-1-r$. We have $b_r(0) = 0$ and

$$b_r(n) = \sum_{h=0}^{l} b_r(\epsilon_h) \beta^h, \tag{9}$$

using the expression (3), so that $b_r(n)$ is determined by the coefficient β and the initial vector

$$\mathbf{b}_r = (b_r(-r), b_r(1-r), \dots, b_r(0), \dots, b_r(q-1-r)).$$

For $b_{q-1-r}(n)$, we have an expression similar to (7)

Examples. We give some examples of $\langle q, r \rangle$ -linear functions using the expression (1) of $n \in \mathbb{Z}$, where \mathbb{Z} should be replaced by $\mathbb{Z}_{\geq 0}$ and $\mathbb{Z}_{\leq 0}$ if r = 0 and r = q - 1, respectively.

1. The sum of digits function in the $\langle q,r \rangle$ number system defined by $s_{\langle q,r \rangle}(n) = \sum_{h=0}^k \delta_h$ is $\langle q,r \rangle$ -linear with the coefficient 1 and the initial vector $(-r,1-r,\ldots,q-1-r)$. Delange[1] proved for the ordinary q-adic sum of digits function $s_q(n) = s_{\langle q,0 \rangle}(n)$ that

$$\frac{1}{N} \sum_{n < N} s_g(n) = \frac{q - 1}{2} \log_q N + F(\log_q N), \tag{10}$$

where F(x) is a continuous, nowhere differentiable function of period 1, whose Foureir coefficients are given explicitly. Flajolet and Ramshaw[3] and Grabner and Thuswaldner[4] studied these phenomena in the $\langle q,r \rangle$ number systems and in the -q adic ones, respectively

- 2. For any given $t = -r, 1 r, \dots, q 1 r, e_{tr}(n)$ denotes the number of the digits t appearing in the $\langle q, r \rangle$ -expansion (1) of $n \in \mathbb{Z}$, which is $\langle q, r \rangle$ -linear with the coefficient 1 and the initial conditions $e_{tr}(s) = 1$ if s = t; = 0 other wise. Flajolet and Ramshaw[3] proved Delange-type results for $e_{tr}(n)(-r \le t \le q 1 r)$ and applied them to the study of the summeatory functions of $s_{\langle q,r \rangle} = \sum_{t=-r}^{q-1-r} t e_{tr}(n)$.
- 3. The radical inverse function in the $\langle q,r \rangle$ number system defined by $\phi_{\langle q,r \rangle}(n) = \sum_{h=0}^k \delta_h q^{-h-1}$ is $\langle q,r \rangle$ -linear with the coefficient q^{-1} and the initial vector $q^{-1}(-r,1-r,\ldots,q-1-r)$. Furthermore, for any given permutation σ of $\{-r,1-r,\ldots,q-1-r\}$ with $0^{\sigma}=0$, the generalized radical inverse function defined by $\phi_{\langle q,r \rangle}^{\sigma}(n) = \sum_{h=0}^k \delta_h^{\sigma} q^{-h-1}$ is $\langle q,r \rangle$ -linear with the coefficient q^{-1} and the initial vector $q^{-1}((-r)^{\sigma},(1-r)^{\sigma},\ldots,(q-1-r)^{\sigma})$ (cf. [8] Chapter 3).
- 4. For any given $p \in \mathbb{Z}$ with $|p| \geq q$, the bases change function $\gamma_{pqr}(n)$ is defined by $\gamma_{pqr}(n) = \sum_{h=0}^{k} \delta_h p^h$, which is $\langle q, r \rangle$ -linear with the coefficient p and the initial vector $(-r, 1-r, \ldots, q-1-r)$ (cf. [2]).
- 5. The linear function cn $(c \in \mathbb{C}^{\times})$ is (q,r)-linear with the coefficient q and the initial vector $c(-r, 1-r, \ldots, q-1-r)$.

Examples of $\langle -q,r\rangle$ -linear functions can be constructed similarly as above by using the expression (3).

Recently, Kurosawa and the second named author[6] gave a necessarily and sufficient condition for the generating functions of (q,0)-linear functions and (-q,0)-linear ones to be algebraically independent over $\mathbb{C}(z)$. We note that the generating function of a(n) = cn given in Example 5 is

$$\frac{z}{(1-z)^2} \in \mathbb{C}(z).$$

We state our theorems. Let $\alpha_i, \beta_i \in \mathbb{C}^{\times}$ $(1 \leq i \leq I)$ satisfy

$$\alpha_i \neq \alpha_j, \ \beta_i \neq \beta_j \ (i \neq j, 1 \leq i, j \leq I).$$
 (11)

For any fixed q, let $a_{ilr}(n)$ $(1 \le l \le m(i))$ and $b_{ilr}(n)$ $(1 \le l \le n(i))$ be (q, r)-linear functions and (-q, r)-linear ones with coefficients α_i and β_i , respectively. We consider the generating functions

$$f_{ilr}(z) = \sum_{n=0}^{\infty} a_{ilr}(n)z^n, \quad f_{ilr}^*(z) = \sum_{n=0}^{\infty} a_{ilr}(-n)z^n,$$

$$g_{ilr}(z) = \sum_{n=0}^{\infty} b_{ilr}(n)z^n, \quad g_{ilr}^*(z) = \sum_{n=0}^{\infty} b_{ilr}(-n)z^n,$$

which converge in |z| < 1 by (4) and (8). We put

$$a_{ilr} = (a_{ilr}(-r), a_{ilr}(1-r), \ldots, a_{ilr}(q-1-r)),$$

$$\boldsymbol{b}_{ilr} = (b_{ilr}(-r), b_{ilr}(1-r), \dots, b_{ilr}(q-1-r)).$$

For any vector $\mathbf{c} = (c_1, c_2, \cdots, c_q)$, we write $\overleftarrow{\mathbf{c}} = (c_q, c_{q-1}, \cdots, c_1)$.

Theorem 1.1. The functions $f_{ilr}(z)$ $(1 \le i \le I, 1 \le l \le m(i), 0 \le r < q-1),$ $f_{ilr}^*(z)$ $(1 \le i \le I, 1 \le l \le m(i), 0 < r \le q-1),$ $g_{ilr}(z)$ and $g_{ilr}^*(z)(1 \le i \le I, 1 \le l \le m(i), 0 \le r \le q-1, 2r \ne q-1)$ are algebraically independent over $\mathbb{C}(z)$ if and only if the following conditions (i) and (ii) hold;

(i) each one of the sets of vectors $\{a_{ilr}, \overleftarrow{a}_{ilq-1-r}; 1 \leq l \leq m(i)\}\ (1 \leq i \leq I, 0 \leq r < q-1)$ and $\{b_{ilr}, \overleftarrow{b}_{ilq-1-r}; 1 \leq l \leq n(i)\}\ (1 \leq i \leq I, 0 \leq r \leq q-1, 2r \neq q-1)$ is linearly independent over \mathbb{C} ,

(ii) if $\alpha_i = q$, then for any r with $0 \le r < q - 1$

$$(-r, 1-r, \ldots, q-1-r) \notin \operatorname{Span}_{\mathbb{C}} \{a_{ilr}, \overleftarrow{a}_{ilq-1-r}; 1 \leq l \leq m(i)\},$$

and if $\beta_i = -q$, then for any r with $0 \le r \le q-1$, $2r \ne q-1$

$$(-r, 1-r, \ldots, q-1-r) \notin \operatorname{Span}_{\mathbb{C}}\{b_{ilr}, \overleftarrow{b}_{ilq-1-r}; 1 \leq j \leq n(i)\}.$$

Remark 1.1 To prove the theorem, we use a criterion of algebraic independence over $\mathbb{C}(z)$ of functions satisfying certain functional equations (cf. [7] Corollary of Theorem 3.2.1), which enable us to reduce the algebraic dependency over $\mathbb{C}(z)$ of our functions to the linear dependency of them over $\mathbb{C} \mod \mathbb{C}(z)$. So we actually prove that the functions in the theorem are algebraically dependent over $\mathbb{C}(z)$ if and only if, for some i and r, $f_{ilr}(z)$, $f_{ilq-1-r}^*(z)$ $(1 \le l \le m(i))$ are linearly dependent over \mathbb{C} , $g_{ilr}(z)$, $g_{ilq-1-r}^*(z)$ $(1 \le l \le n(i))$ are linearly dependent over \mathbb{C} , $g_{i} = q$ and $g_{i} = g_{i} = g_{i}$

Remark 1.2 The conditions (i) and (ii) in Theorem 1.1 imply that $m(i), n(i) \leq q$ for any $i, \alpha_i \neq q$ if m(i) = q, and $\beta_i \neq -q$ if n(i) = q.

Theorem 1.2. Let the functions $f_{ilr}(z)$, $f_{ilr}^*(z)$, $g_{ilr}(z)$, and $g_{ilr}^*(z)$ satisfy the conditions (i) and (ii) in Theorem1.1. Assume that α_i , β_i , $a_{ilr}(n)$, and $b_{ilr}(n)$ are algebraic for all i, l, r and n. Then, for any algebraic number α with $0 < |\alpha| < 1$, the numbers $f_{ilr}(\alpha)$ ($1 \le i \le I, 1 \le l \le m(i), 0 \le r < q-1$), $f_{ilr}^*(\alpha)$ ($1 \le i \le I, 1 \le l \le m(i), 0 < r \le q-1$), $g_{ilr}(\alpha)$ and $g_{ilr}^*(\alpha)$ ($1 \le i \le I, 1 \le l \le n(i), 0 \le r \le q-1$) are algebraically independent.

If we fix r = 0 in Theorem 1.1 and Theorem 1.2, we have the results of Kurosawa and the second named author[6] mentioned above. In their proof, they used another criterion ([7] Theorem 3.5) of algebraic independence of functions over $\mathbb{C}(z)$.

References

- [1] H. Delange, Sur la fonction sommatoire de la fonction "somme des chiffres", Enseign. Math. (2) 21 (1975), 31-47.
- [2] P. Flajolet, P. Grabner, P. Kirschenkofer, H. Prodinger, and R. F. Tichy, Mellin transforms and asymptotics: digitals sums, Theoret. Comput. Sci. 123(1994), 291-314.
- [3] P. Flajolet and L. Ramshaw, A note on gray code and odd-even merge, SIAM J. Comput. 9 (1980), 142-158.
- [4] P. J. Grabner and J. M. Thuswaldner, On the sum of digits function for number systems with negative bases, The Ramanujan J. 4 (2000), 201-220.
- [5] D. E. Knuth, The Art of Computer Programming, vol. 2, Addison Wesley, London, 1981.
- [6] T. Kurosawa and I. Shiokawa, q-linear functions and algebraic independence, Tokyo J. Math. 25 (2002), 459-472.
- [7] Ku. Nishioka, Mahler functions and Transcendence, LNM 1631, Springer, 1996.
- [8] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conf. Ser. in Appl. Math. 63, Philadelphia, 1992.
- [9] S. Okada and I. Shiokawa, Algebraic independence results related to (q, r)-number systems, preprint.

Author's address: Department of Mathematics, Keio University Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan, e-mail: s_okada@math.keio.ac.jp e-mail: shiokawa@math.keio.ac.jp