Trace fields of genus 3 surfaces with regular fundamental polygons

愛知工業大学 中村 豪 (Gou Nakamura)
Aichi Institute of Technology

1. Introduction

Let $\Gamma \subset SL(2, \mathbb{R})$ be a Fuchsian group. The trace field $tr(\Gamma)$ of Γ is the field generated over \mathbb{Q} by the traces of elements in Γ . In [5] M. Näätänen and T. Kuusalo determined the trace fields of all Fuchsian groups of signature (2;0) with a regular polygon as a fundamental polygon. In the present paper we shall consider the trace fields for the case of signature (3,0) analogously.

2. Regular fundamental polygons and trace fields

By Euler's formula we see that there are 4 regular polygons to be a compact surface of genus three.

- 1. 30-gon with each angle $2\pi/3$,
- 2. 20-gon with each angle $\pi/2$,
- 3. 14-gon with each angle $2\pi/7$,
- 4. 12-gon with each angle $\pi/6$.

By using a computer we can show the side-pairing patterns for each polygon.

Theorem 1. There exist 927 side-pairing patterns for 30-gon, 297 for 20-gon, 112 for 14-gon and 82 for 12-gon up to mirror images.

The following is mentioned for the case of (2,0) in [5].

Lemma 2. Let Γ be a Fuchsian group of signature (3;0) with a regular 2n-gon as a fundamental polygon (n=6,7,10,15). Then Γ is a subgroup of the triangle group Λ_n of type (2,2n/(n-5),2n).

Proposition 3.(cf. Hilden, Lozano and Montesinos-Amilibia [3]) Let Λ_n^2 be the subgroup of Λ_n generated by the squares of the elements of Λ_n . Then it follows that

$$\operatorname{tr}(\Lambda_n^2) \subset \operatorname{tr}(\Gamma) \subset \operatorname{tr}(\Lambda_n).$$

Proposition 4.(cf. Hilden, Lozano and Montesinos-Amilibia [3])

$$\begin{split} \operatorname{tr}(\Lambda_n) &= \mathbf{Q}\left(\cos\frac{\pi}{2n},\cos\frac{(n-5)\pi}{2n},\cos\frac{\pi}{2}\right) = \mathbf{Q}\left(\cos\frac{\pi}{2n}\right),\\ \operatorname{tr}(\Lambda_n^2) &= \mathbf{Q}\left(\cos\frac{\pi}{n},\cos\frac{(n-5)\pi}{n},\cos\frac{\pi}{2n}\cos\frac{(n-3)\pi}{2n}\cos\frac{\pi}{2}\right) = \mathbf{Q}\left(\cos\frac{\pi}{n}\right). \end{split}$$

We denote by C_k the k-th side of the regular 2n-gon. Suppose that the polygon is centered at the origin such that the middle points of C_n and C_{2n} are real.

Lemma 5. Let F_n be a hyperbolic translation of the regular 2n-gon identifying a pair of opposite sides C_n and C_{2n} . Then the diagonal entries of F_n are equal to $1 + 4\cos^2(\pi/n)$.

A proof of this lemma is analogous to that of Lemma 2.1 in [5].

Definition 6. A side-pairing T of the regular 2n-gon is the composite $T = R_n^k F_n R_n^{-1}$ of F_n and the

Supported by Grant-in-Aid for Scientific Research (No.15740095), The Ministry of Education, Culture, Sports, Science and Technology, Japan.

rotation R_n arround the origin by angle π/n . Then T is said to be odd or even if k-l is odd or even, respectively.

Theorem 7. Let Γ be a Fuchsian group of signature (3;0) with a regular 2n-gon as a fundamental polygon. Then $\operatorname{tr}(\Gamma) = \mathbf{Q}(\cos(\pi/n))$ if all side-pairings are even, and $\operatorname{tr}(\Gamma) = \mathbf{Q}(\cos(\pi/(2n)))$ if some side-pairing is odd.

See Theorem 2.2 in [5] for a proof.

By considering the side-pairings for each polygons we have the following: Theorem 8. The polygons only with even side-pairings are listed as follows:

2n	Side-pairings	Trace field
30	$\begin{array}{c} P_{313},P_{314},P_{315},P_{316},P_{317},P_{318},P_{397},P_{398},P_{399},P_{400},\\ P_{401},P_{402},P_{403},P_{404},P_{405},P_{406},P_{407},P_{408},P_{409},P_{410},\\ P_{494},P_{495},P_{496},P_{497},P_{498},P_{499},P_{500},P_{509},P_{510},P_{511},\\ P_{512},P_{513},P_{514},P_{568},P_{569},P_{570},P_{571},P_{586},P_{587},P_{588},\\ P_{589},P_{590},P_{591},P_{737},P_{738},P_{739},P_{740},P_{741},P_{742},P_{833},\\ P_{834},P_{835},P_{836},P_{837},P_{838},P_{839},P_{840},P_{841},P_{842},P_{843},\\ P_{844},P_{845},P_{846},P_{847},P_{848},P_{849},P_{850},P_{851},P_{852},P_{853} \end{array}$	$\mathbf{Q}(\cos(\pi/15))$
20	Side-pairings in Figure 1	$\mathbf{Q}(\cos(\pi/10))$
14	Side-pairings in Figure 2	$\mathbf{Q}(\cos(\pi/7))$
12	Side-pairings in Figure 3	$\mathbf{Q}(\cos(\pi/6))$

Here, P_j denotes the 30-gon endowed with j-th side-pairing pattern in [6].

Figure 1: 20-gons only with even side-pairings

Figure 2: 14-gons only with even side-pairings

Figure 3: 12-gons only with even side-pairings

An extremal surface of genus g in the sense of C. Bavard has the regular (12g-6)-gon as a fundamental polygon. We see that every extremal surface of genus 3 admitting two extremal disks has the trace field $\mathbf{Q}(\cos(\pi/30))$ (see Figure 9).

References

- [1] C. Bavard, Disques extrémaux et surfaces modulaires, Ann. Fac. Sci. Toulouse Math. (6) 5 (1996), no.2, 191-202.
- [2] A. F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, 91. Springer-Verlag, New York, 1983.
- [3] H. Hilden, M. Lozano and J. Montesinos-Amilibia, A characterization of Arithmetic subgroups of SL(2, R) and SL(2, C), Math. Nachr. 159 (1992), 245-270.
- [4] T. Jørgensen and M. Näätänen, Surfaces of genus 2: generic fundamental polygons, Quart. J. Math. Oxford Ser. (2) 33 (1982), no. 132, 451-461.
- [5] M. Näätänen and T. Kuusalo, On arithmetic genus 2 subgroups of triangle groups, Contemp. Math. 201 (1997), 21–28.
- [6] G. Nakamura, Generic fundamental polygons for surfaces of genus three, Kodai Math. J. 27 (2004), 88-104.
- [7] G. Ringel, Map color theorem, springer Verlag, Berlin, 1974.

Figure 4: 12-gons with odd side-pairings

Figure 5: 14-gons with odd side-pairings

Figure 6: 20-gons with odd side-pairings (1)

Figure 7: 20-gons with odd side-pairings (2)

Figure 8: 20-gons with odd side-pairings (3)

Figure 9: Side-pairing patterns which induce extremal surfaces admitting two extremal disks