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Hardy spaces and generalized fractional integrals
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1. INTRODUCTION
The fractional integral I, (0 < o < n) is defined by
f)
I = —_
af(»’U) ~/R" |$ —'y'n—a
This is also called the Riesz potential. It is known that

Theorem 1.1 (Hardy-Littlewood-Sobolev). Let

l<p<g<oo, -n/p+a=-n/q
Then

I, : ’(R") — LR") bdd.
This boundedness extended to BMO(R") and Lip,(R") as Figure 1.
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FIGURE 1. Boundedness of fractional integrals

For Hardy spaces, it is also known that the fractional integral is a continuous
_ operator from H?(R") to H?(R") (see Figure 2).
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FIGURE 2. Boundedness of fractional integrals

For a function p : (0, +00) — (0, +00), let

Bt = [ it

|z - yI"
We consider the following conditions on p:

(1.1) /01 g(t-tldt < 400,
L pls) o 1.5,

If p(r) = r%, 0 < a < n, then I, is the fractional integral denoted by I.
Using I,, the author extended the Hardy-Littlewood-Sobolev theorem to
Orlicz spaces and Morrey-Campanato spaces with general growth functions.
In this article, I give a generalization of the Hardy space, and extend the
H? — HY continuity of I,.

2. ORLICZ AND MORREY-CAMPANATO SPACES

For functions 6, : (0,400) — (0,+00), we denote 8(r) ~ «(r) if there
exists a constant C > 0 such that

C6(r) < k(r) < CO(r) for r > 0.

A function 6 : (0,4+o00) — (0,+00) is said to be almost increasing (almost
decreasing) if there exists a constant C' > 0 such that

6(r) < Cl(s) (8(r) > CO(s)) for r<s.



A function 4 : (0,400) — (0, +00) is said to satisfy the doubling condition
if there exists a constant C' > 0 such that

.

~0(s) T 2~

Let F be the set of all continuous, increasing and bijective functions @ :

[0, +00) — [0, +00). Then ®(0) = 0 and lim,_, o0 ®(r) = +o00 for & € F. Let
®(+00) = +00.

w3

<2

2.1. Orlicz space. For a convex function ® € F, let

L*(R") = {f € L .(R"): / ®(e|f(z)|) dz < 400 for some € > 0} ,
)Rn.

“f”ézinf{)\>0:/nf1>(l-f(/\—m)l) da:Sl},

L3 +(R™) = {f € Lj,.(R™) : sup &(r) m(r, ef) < +oc for some € > 0} ,
r>0

Il fll®,weak = inf {)\ >0:sup®(r) m (r, §) < 1} ,
r>0
where m(r, f) = |{z € R" : |f(z)]| > r}|.
Then
L*(R") C Lok (R™) and || fllowear < [Ifll-

Ilflle is a norm and L®(R") is a Banach space. ||fl|swear iS @ quasi-norm
and L, . (R") is a complete quasi-normed space.
For a function ®, the complementary function is defined by

®(r) = sup{rs — ®(s) : s > 0}, r>0.
~ For example,

P = L®=1IP,

s LP=1P,

(r

o(r) =
®(r) ~ rP

forl<p<oo,1/p+1/p =1.

P
B(r) = 1/exp(1/r?) for small r, = L®=expl?
exp(rP) for large r,

~ r(log(1/r))~Y/? for small r, F | 1
(r) ~ = L% =L(logL)"?,
(r) {r(logr)l/l' for large r, (log L)

for 0 < p < 0.



A function ® is said to satisfy the Vo-condition, denoted ® € Vg, if

1
< — >
&(r) < 2k<I>(k7"), r >0,
for some k > 1.
If 1 <p< oo, then &(r) =r? € V,. For 0 < p < o0,

1/ exp(1/r?) for small r,
o(r) = { /P
exp(rP) for large r,

satisfies the V3 condition.

2.2. Morrey space. For 1 < p < oo and a function ¢ : (0, +00) — (0, +00),
let

1 (1 I
Il = 300 o2 (W f (@) dx) ,
L") = {f € L2 (R") : |z, < +00}

We assume that ¢ satisfies the doubling condition and that ¢(r)r™/? is almost
increasing. If ¢(r) = r@~™/? (0 < A < n), then L, 4(R") = LP*(R"™) which is
the classical Morrey space. If A = 0, then LP*(R") = LP(R"). If A = n, then
LPA(R") = L*°(R").

If ¢(r) — 0 as 7 — 0, then L, 4(R") = {0}.

2.3. Campanato space. For 1 < p < oo and a function ¢ : (0,+00) —
(0, +00), let

1 1 1/p
Iflle,, = sup w(@—, / 1f(~’v)—f3|”dw> ,

B=B(a,r)
Loo(R™) = {f € L§, (R") : || fllz,, < +00},

where  fg= I;Tl/Bf(x) dz.

We assume that ¢ satisfies the doubling condition and that ¢(r)r™/? is almost
increasing. If ¢(r) = r®-"/P (0 < X < n+1), then £, 4(R™) = LP*(R") which
is the classical Campanato space.

If ¢ is almost increasing, then £, 4(R") = £;4(R") for all p > 1. We denote
L1 ,4(R™) by BMOy4(R™). If ¢ = 1, then BMO4(R") = BMO(R™). If ¢(r) = r¢,
0 < @ <1, then it is known that BMO4(R") = Lip, (R").

If ¢(r)/r = 0 as r — 0, then L, 4(R") = {0}.



3. BOUNDEDNESS OF I, (KNOWN RESULTS)

In this section, we consider spaces L%, L; 4 and L;4. So we assume that
®,¥ € F are convex, that ¢ and ¢ satisfy the doubling condition, that ¢(r)r”
and 9¥(r)r" are almost increasing, and that

1
/ Moit<~i-oo,
o ¢

_1_.<ﬂ(flgc for %g-i-gz.

Ay ~ p(r)
Theorem 3.1 (N [3]). Let
p(r) <P

T SO for s<r.
I
(1Y [ e a1
+o0 p(t) 7
/1“ ® (Cfor(p(s)/s)ds q)—l(l/rn)tn)t dtSC, r>0,
then

I,: L*(R") — LY .(R™) bdd.
Moreover, if ® € V,, then
IL,: L*(R") = LY(R") bdd.

In this theorem, if &(r) = r?, ¥(r) = r9, p(r) = r®, then (3.1) is equivalent
to —n/p+ a = —n/q. Actually,

Tﬂ

/&(t_)dt;_,
0

t o
T‘n

rVPre < Cr7™4 forall r>0 -n/p+a=-n/q.

and

Example 3.1. Let p, satisfy the doubling condition and

(3.2) palr) = {1/ (log(1/r))>*+*  for small

v > 0.
(logr)e—?! for large 7, *



Then

/’ pa(t) & 1/(log(1/r))* for small r,
o 1 (logr)™ for large r.

For0<p<1l/a,1/q=1/p— a, we have
I,, : exp L?(R") — exp LY(R") bdd.

We define the modified version of I, as follows:

Lf(z) = /R 1) (p(lm —yl) _ a1y — x5 ) ) dy.

-yl lyl”

Theorem 3.2 (N [5]). Let
) o oP)

Al = Y gl for s<m,
E;(SZ—E% §C|r—s|f—£g for %3552
If
o) [ Aar < cur),
[ 0090 4 ¢ o)
r t2 - r ’
then

I,: L1 4(R™) = L14(R™) bdd.
We have the following relation between L® and Ly 4:

Theorem 3.3 (N [5]). Let ¢(r) = ®~1(1/r"). Then

(3.3) L*R") Cc L'*(R"), and |fllze < Cllflle-
Moreover, if ® € V,, then
(3.4) Liea(R™) € LY(RY), and | |fllzse < Ol flloweat-

Combining Theorems 3.2 and 3.3, we have the following:

Corollary 3.4 (N [5]). Let
pr) o oPs)

rntl — 7 gn+tl Jor s<
p(r) _ p(s) p(r) 1 _s
F———Sn—f SC'T—S!F_;I fOT‘ 5_<_;S2,




and ¢ be almost increasing. If

(1)/ ()dt<c¢()

ot
[T g < 02,

then

I,: L*([R") — BMO4(R") bdd.
Theorem 3.5 (N [5]). Let

T p(2) p(r)
(3.5) / —dt <=2,
(3.6) ,”—’gl—%(f—) 50|r-s|§£_’;—)1 or %5;52
If
8(r) / 24 4; < ou(r),
0
then |

I,: £14(R™) — L14(R™) bdd.

Remark 3.1. Since 1,1 is a constant, I, is well defined as an operator from
L1,4(R") to L1,4(R").

Corollary 3.6 (N [3]). Let

o0 p(t) p(r)
(3.7) / O < ot
(38) A 2O <o - 2D for L<tco

and, ¢ and 1 be almost increasing. If
o) [ 2 e < oy,
o ¢ -
[0 vt

— 3

then
I, : BMO4(R™) — BMOy(R"™) bdd.



Example 3.2. Let

_ J1/(log(1/r))>*t  for small r

(3.9) pa(r) = { (log 1Yo for large r,  © 0,

" _ f(og1/r))™*  for small r,
19 #aln) = {(108 r)’ for large 7.
Let
| _ J1/exp(1/r?) for smallr,

o) = {exp(r ?) for large r, > 0.

Then

e (logr)~/7 for large r.

! (._1._) ~ {1/(108(1/7‘))1/" for small r,

Hence we have

1 T palt
> (;'7) /0 - t( : dt ~ ¢-1/ptas

¢s(r) /Or Bg_t@ dt ~ Ga+a(r).

(0<p<g<o0) 0<B<y< o)
exp LP exp L9 BMO BMOy, BMOy,
IPa . fl’a N
-l/p+a=-1/g | a=§8
jpa _ fpa
-1/p+a=0 i B+a=x
I, X
-l/p+a=p

FIGURE 3. Boundedness of generalized fractional integrals



4. HARDY SPACE DEFINED BY GENERALIZED ATOMS

Definition 4.1. Let ® € F, 1 < ¢ < 400 and r/99~}(1/r) be almost de-
creasing. A function a on R” is called a (®, g)-atom if there exists a ball B
such that

(¢) suppaC B,

() lall, < |Bpg (ﬁ) ,

(idd) / a(z) dz = 0.

We denote by A(®,q) the set of all (¥, g)-atoms.
A function a on R" is called a (®, g)-block if there exists a ball B such that
(i) and (43) hold. We denote by B(®,q) the set of all (®, g)-blocks.

Definition 4.2. Let ® € F,1 < ¢ < +oo, r'/99~1(1/r) be almost decreasing,
U € F and U be concave. We define a space Hy;! = Hp'(R™) C 9’ as follows:
f € HJ(R™) if and only if there exist sequances {a;} C A(®,q)

and positive numbers {);} such that

(4.1) f= ZAjaj in®" and ZU()\J-) < +00.
J J

In general, the expression (4.1) is not unique. We define

||f”H3'9 = inf {U—l (E U(AJ)) f= Z)\jaj in D’} R
J J

where the infimum is taken over all expressions (4.1).
We also define a space By = Bo'(R™) C D' by using (®, ¢)-blocks instead
of (P, ¢)-atoms.

If U € F is concave, then
cU(r) <Ufer) for 0<c<1.

Hence, for positive numbers r and s,

U(r+s)=;—§_—sU(7‘+s)+ri

sU(r+s) SU((r)+U(s).
So we have
d o <Ut (Z U(,\j)) :

H3*(R™) is a linear space. Let d(f, g) = U(||f—-g||Hg.q) for f,g € H}(R™).
Then d(f, g) is a metric and Hg’q is complete with respect to this metric. Let



I(r) =r. Then ||f|| g*s is anorm and H} is a Banach space. We have similar
properties for B,‘ﬁ"?.
For ¢ = oo, we denote Hp? = HE.
For ®(r) = 1/U(1/r), we denote Hy? = H®4.
For ¢ = 0o and ®(r) = 1/U(1/r), we denote Hj? = H®.
If &(r) =r?, n/(n+1) <p <1, then H* = HP.
We have
l<gpg<gppLoo = Hg’qz (Rn) C Hg’ql (Rn),
U(r) < ®(Cr) forall r>0 = HYYR")C Hy'R"),
V()< CU@r) for 0<r<1 = HMR") c H3R",
for all concave function U € ¥, Hy*(R™) c H{*(R"),

where the inclusion mapping are continuous.
For 1 < ¢ £ 00, LY, is dense in By?. Let

288, ®) = { £ € Liomy(®): [ 1(0) a2 =0}

g0 3 i .9
Then Ly, is dense in Hy™.

Theorem 4.1. Let1<g< o0, 1/g+1/¢ =1, ® € F, ®! satisfy the dou-
bling condition, r'/9®~1(1/r) be almost decreasing, U € F and U be concave.
Assume that

U(rs)
sup 06) =0 (r—0).
If
1
¢(r) = o1 (L)’
then

(BE*(R™)" = Ly o(R").
If (r)/r = 0 as 7 — +o00, then ¢(r) = 0 as r — 0. Hence
(BS*®™)" = {o}.
Remark 4.1. For B = B(z,r),



1

Theorem 4.2. Let 1 < ¢ < o0, 1/g+1/¢ =1, ® € F, r'/9~1(1/r) be
almost decreasing, U € F and U be concave. Assume that

U(rs)
oi‘:& TG =0 (r—0).
If
1
¢(r) = ;’—‘6?1—(?)’
then

(B3 ®™) = Lo 0(®Y).
If &(r)/r™/(™*1) 5 0 as r — +o0, then ¢(r)/r — 0 as r — 0. Hence
(#37(®™)" = {o}.
Example 4.1. If ®(r) = r, then ¢(r) = 1. In this case, we have
(Hy*(R")" = BMO(R").
Example 4.2. For § € R, we define a function ®5 € F as follows

.. r (log(1/r))™"  for small r,
4.2 P =
(4.2) s(r) {r (log r)? for large r.

Then @4 is concave for 3 < 0, and @ is convex for 3 > 0. In this case, we
have

B4~ (r) r (Iog(l/r))ﬁ for small 7,
g r (log r)~ﬁ for large .

By~ (i) N {r“” (log(1/r))™  for small r,

™ r=" (logr)? for large r.
Let
(log(1/r))™®  for small r,
4. =
(43) ?s(r) {(log 7‘)‘j for large .
Then .
¢—p(r) ~

T (2
If B <0, then ¢_g is almost increasing and

(4.4) (H;Eﬁ"'(mﬂ))* = BMO,_, (R").
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If B> 0, then ¢_p is almost decreasing and

@ ’ n * n
(HS*"(R™))" = Ly g, (R,
Proposition 4.3. Let ®,q,U be as in Definition 4.2. If

1 1\ U (@)
— <Pz} <1’ <
TiCn) S d (T) < ) for 0<s<r<+00,

U(rs) < CU(r)U(s) for 0<r,s<1,

then
HJ*(R™) = Hy"™(R").

Example 4.3. Let n/(n+1) <p; <p2<1and

rP1 for small r,

&(r) = 1/U1/r) = {m

for large r.

then
H<1>,q (Rn) — th,oo (Rn) .

5. PROOFS OF THEOREM 4.2

To prove Theorem 4.2, we state the following lemma.

Lemma 5.1. Let

- U(rs)
0<sl<)1 U(S)

-0 (r—0).
Ifte (H,?"‘(R"))*, then

el = sup {J(H)| < [l pe < 1} < oo,

Proof of Theorem 4.2. Let g € Ly 4(R"). For a (9, g)-atom a, ag € L*(R")
and :

[ @@z = [ a(a)(ota) - g5},
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where suppa C B = B(z,7). Then

| [ a@)g(@)ds < ol ( [ lat@) - gl dm)l/q'
<1807 () ([ 19to) - gal” o) o
~ |Blo™! (I—IIB—I) (157 /. lot@) - gal” dz) "

1 (1 s\
~ 57 3 —g5l7d < .
pYe ( B] fB lg(z) — gsl fv) <liglle,,
For f € LR, (R™), fg € L*(R™). Let

F=Y e, U (Z: U(wn) < 2fllgger

We can show
/f(x)g(a:) dr = Z/\j /aj(x)g(x) dz

Then

\ [ 1@s(@) dz

<C (Z !Ajl) lgllc, ,
B (Z U(A) ) lglle,., < 2CIfllgpallolc,,

Conversely, let £ € [ HY9(R" " Fix B=B z,r). For f € L¥%(B), let
U

a(z) = {'Bil/qq’_l (!Té'l) Nfll," f(z) zeB
0 z ¢ B.

then a is a (®, g)-atom. Therefore, by Lemma, 5.1, we have

|€(a)| < |2l

i.e.

If(f)l 1/q ' 1 —1~ ' . e w0 »
i< (180 () ~lemiBe, g€ 1)

Since L%°(B) is a subspace of LY(B), by the Hahn-Banach theorem, we have
I€llzs e < Clielio(r)|BIM.
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Using the duality (L9)* = LY, we have
P e L(B) st.
() = [ f@hP@) dz, 1K) < ClAG)IBIY
Let ¢%(z) = h®(z) — (hB)p, z € B. Then
0®)5 =0, 9%l (s < Clltlig(r)|BI7
()= [ 10WP@d = [ [0 @ ds, §e1(B)
For every ball B, we have gZ as above. For the class {g®}p,

Jge LY (R®) st. foreachball B, g—gp=g® onB.

loc

And we have
9€ Lyo®), llglc,, < Cliel,
o) = / f(z)9()dz for f € L0 (R™). O

6. CONTINUITY OF I, ON HARDY SPACES

In this section, we assume that &, ¥, U,V € F, that ! and ¥~ satisfy the
doubling condition, that U and V are concave, that 1 < ¢ < oo, 1/¢+1/¢' =1,

and that
1
4
/ B(—)dt < 400,
o ¢
1 p(s) 1 s
— <=L f —< =<2
rEFORMRE S
In Theorems 6.1 and 6.2, let
p(r) p(s)
g < Csn+1 for s<r,
™ 8" rntl 2°r

Theorem 6.1. Let

ot (l)/ f@dtscvl (-1—), r>0,
™) Jo t rh

Virs) <CV(r)U(s), 0<rs<l,



and 0 < 30 <1 s.t.

+00 1 1/6 1 18
[ (2)) razon (v (1)) ro
g tn ro

-1/6
__p(r) (\p-l (-};)) s almost decreasing.

Let
+o00
p(t)
[ —tT- dt < +o0.
Then
I, : H2(R™) = HY(R") conti.
From (6.1), we have
VC1 >03C; >0 st. 0<s,t<C=V(st) < CV(s)U(2).

Theorem 6.2. Let V¥ is conver, and

o1 (i) / p—(ﬂdt <Ccyt (—1—) , >0,
rn o ¢ rn

+o0 n+lgp-—1 n
/ \If(p(t)" ki (1/T))t”‘1dt_<_(], r>0.

t""'l

Then
I, : H}(R") — LY(R™) conti.

Example 6.1. Let

1/(log(1/r))2*!  for small r,
6.1 o(r) = 0,
(6.1) Palr) {(log rye-1 for large r, @z
r (log(1/r))™®  for small r,
6.2 d =
(6.2) 5(r) {r (logr)? for large r.
Then

- 1 " pa(t) a1
q’ﬂ 1(;;)\/(; aTdtN¢ﬁ+a ;“; )

and the assumptions of Theorems 6.1 and 6.2 are satisfied. So we have the
following continuities in Figure 4.

15
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I B<y<0<é<e)
H2s H® H! H;Ps L2
B+a=0 | oa=e
,5+a=6 '6+a=g
B+a=c¢

FIGURE 4. Continuity of generalized fractional integrals

In Theorems 6.3 and 6.4, let

Theorem 6.3. Let

P! (—1—>/ f)—(-12)-dt5 cy! (-}—>, r >0,
™) Jo t ™"

V(rs) <CV(r)U(s), 0<rs<1,

and 0 < 30 < 1 s.t.
+00 1(1/tn) (1/6)-1 .
- <
/r (( 1(1/1-")) T dt<C, r>0,
p(r e ~
( gl ( )) is almost decreasing.

Then
I,: Bp™(R™) = By °(R") conti.



Theorem 6.4. Let ¥ is convez, and

o1 (-L)/ E-(thSC\I!“l (i>, r>0,
rn o 1 rm

+00 nFH—1 n
/ \If(p(t)’"q) (1/r ))t"'ldtsc, r> 0.

t’n
Then
I,: B™(R") = LY(R™) conti.
7. PROOF OF THEOREMS 6.1-6.4

To prove the theorems, we define molecules and state propositions.

Definition 7.1. Let ® € F, 1 < ¢ < o0, and 0 < § < 1. A function M on R
is called a (®, g, §)-molecule if

() 3zeR st MO |fb(| - —2) M) < +oo,
(7.1) g
(41) /M(m) dz =0,
where 1
b(r) = (r'/1@71(1/r)) .
Let )
N(M) = N*9(M) = inf || M| [[b(] - —21") M ()],
Proposition 7.1. Let

o1 (l>/ Bgﬂdt <cy! (i> , >0,
rn 0 t rn

~1/8
(7.2) 0<3<1 st plr) (\Il“l (i)> is almost decreasing

Tn+1

(7.3) /1~+oo p(t) dt < +o0.

Ifa € A(®,00), then I a is a (¥, 0o, 8)-molecule and N'(I,a) < C, where C is
independent of a € A(®, o).

Remark 7.1. If we omit (7.2) and (7.3), then I,a satisfies (¢) in (7.1) for each
a € B(®,00), and N (I,a) < C, where C is independent of a € B(®, ).

Proposition 7.2. Let0 <36 <1 s.t.

(7.4) / " (\I:‘l (t—")) t~ldt < Cr® (\Il“ (r—")) , r>0.
r

17
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If M is a (¥, q,0)-molecule, then M € H,*(R"), and
VC1>03C; >0 st NV(M) < Cr= ||M]gee < Co.
Remark 7.2. 1If we omit (7.4), then we have a similar result for By (R™).
Proof of Theorem 6.1. Let
feLEn®Y), [fllmg <1,
f=2_ Yo {a} C A@,00),
j

o (w09 < aieg
J
By Proposition 7.1 and Proposition 7.2, we have

Loj =Y Xkajr, {ajk} C A(Z,00),
k

yv-! (Z V(A,-,k)) < C independent of j.
k

We also can show that

Lf =Y Xl
J

Then we have
Lf =Y Ak
.k

Since A; < 2, Ajx < C, we have

SV SCIUMNV () <O XU) <20 U (Iflsg)

Hence

V(I fleg) <CU(Ifllsg) for Nfllug <1 O

Proposition 7.3. Under the assumption of Theorem 6.2, if a € A(®,0),
then

Lae L¥(R"), and |[La|v<C.
where C is independent of a € A(®,00). '

Proof of Theorem 6.2. Since HE C H?, we show I, : Hf — LY. Let

FELTA®Y, f=3 XNaj, >INl <2fllag
J J



We can show

Lf=Y Ml
J
By Proposition 7.3, we have
1ofllze <3 NHTasllpe < CY Xl < 2C fllgp. D
J J

8. ATOM WITH VANISHING MOMENTS UP TO ORDER N

Definition 8.1. Let ® € 7,1 < ¢ < +oo, N = 0,1,2,--- and r*/9®~(1/r)
be almost decreasing. A function a on R" is called a (@, ¢, N)-atom if there
exists a ball B such that

() suppa C B,
1
i a Vag-1 | —
@) el <1810 (7).
(idd) / a(g)z®ds =0 for o] < N.

For N =0, a (®,¢,0)-atom is simply called a (®, g)-atom. A function a on
R" is called a (9, g)-block if there exists a ball B such that (i) and () hold.
We denote by A(®,q,N) the set of all (®,q, N)-atoms. We also denote by
A(®,q,—1) the set of all (, g)-blocks.

Definition 8.2. Let ®,U € F and U be concave. We define a space
Hp*N(R") ¢ D' as follows:

fe Hg’q’N(R") if and only if there exist sequances {a,;} C A(®, ¢, N)
and positive numbers {),} such that

(8.1) f= Z’\ja‘j in®" and ZU(AJ-) < +00.
J J

In general, the expression (8.1) is not unique. We define

1fllzzg = inf {U - (Z U(,\,.)) FEDIPVIE 9} :
J J

where the infimum is taken over all expressions (8.1). For &(r) = 1/U(1/r),
we denote Hy?" (R") = H®eN (R").

Hp*N(R™) is a linear space. Let d(f,g9) = U(|f - glng,q,N) for f,g €

Hp %Y (R™). Then d(f, 9) is a metric and Hy"*" (R") is a complete with respect
to this metric. '

&) =, n/fn+N+1) <p<n/(n+N), N=0,1,2,--, then
H@,q,N(Rn) —_ H(b,oo,N(Rn) — Hp(Rn)_

18



20

In the following, we assume that ®, ¥, U,V € F, that ! and ¥~ satisfy
the doubling condition, that U and V are concave, that 1 < ¢ < oo, 1/g+1/¢' =
1, that N = —1,0,1,2,--, that

1
/ Mdt < +o00,
0

t
1 P( ) 1_s
4SS C for 2 - < <2,
p(r) p(s)
ey < Csn+N+1 for s<r,

and that, if N # —1, then p € C¥(0,+00) and

o) _ 5~ g u)(u—v)e

'“[" lal<N |

where Q4 = (_lﬁll;ll)(a)_

Theorem 8.1. Let

$! (—1-)/ ﬂ@dtgc\lf'l (i) r>0,
rh o ¢ rh

V(rs) <CV(r)U(s), 0<rs<]1.

v+ P(v]) 1
<C|u—-'v| .|_'U|"+—N+i- for 5

Let NN < N,

+00
p(?)

and 0 < 30 < 1 s.t.

(8.3)

too 1)) , 1))\
/ N (\p—l (r)) t1 dt < OrN (w (_)) e,
r n Tn

-1/6
p(r) (‘I"l (l)) s almost decreasing.

.rn+N+l 0
If N' = —1, then we omit (8.2) and (8.3). Then
I,: HYN(R") - Hp™N (R")  conti.

The proof of Theorem 8.1 is the same as Theorem 6.1. To prove the the-
orem, we define molecules with vanishing moments up to order N, and state
propositions.



Definition 8.3. Let € F, 1< ¢< 00, N=0,1,2,---,and 0 < f < 1. A
function M on R” is called a (®, ¢, N, §)-molecule if

(1) FzeR" st (M0 [b(] -~z M ()L, < +oo,
(id) / M (2)||z]" dz < +oo,
(142) /,M(z)x"‘ dz =0 for |a.| <N,
where |
b(r) = (rl/qé'l(l/r))_l.
A function M on R" is called a (®, g, —1, 8)-molecule if (i) halds. Let

N (M) = N (M) = inf [IM]I5° [[b(1 - —21") M ()|

8
"

Proposition 8.2. Let N' < N and

&t (—1-> / E—(—tldt < Ccyl (i> , >0,
rn o ¢ rn

-1/6
0<3I9<l st —-ELQ—— ¥l —1—- / 18 almost decreasin
b TnrNFL n g

If N' # -1, we assume that

+o0
/ _p_(?l_ dt < 400.
1

tN—N’+2

Ifa isa (®,00,N)-atom, then I,a is a (¥, 00, N, §)-molecule and N'(I,a) < C,
where C' is independent of the (®, 00, N)-atom a.

Proposition 8.3. Let 0 < 3 < 1 s.t.
oo -1 ny\ (1/6)-1 v
/ V((%—_%—j—i%) )t-ldtgc, r >0,

+00 1 1/6 ’ 1 1/6
s [ (5 (1)) e om (5 () oo

If N = —1, then we omit (8.4). If M is a (U,q, N, 0)-molecule, then M €
Hy*N(R"), and

VC, >0 3Cs >0 s.t. N\I',q,N,G(M) <Ci=> ”M”H“f'q'N < (..
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