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Abstract

We derive the various estimates in the scale invariant Besov spaces for the modified 3D
Navier-Stokes equations with the dissipation term (—A)%u, 0 < a < %. We also prove the

small data unique existence and global stability of a global-in-time solution in Bzg, 1_2°.

1 Introduction and Main Results

We are concerned with the subdissipatiire or hyperdissipative Navier-Stokes equations.

Bu+ (v Viu+ (-A)*u+Vp=fR¥xRy,0<a< 3§,
(SNS)q ¢ div u =0,
U(O,.’B) = uO(x)i

where u represents the velocity vector field and p is the scalar pressure. J. L. Lions[24] proved
the existence of a unique regular solution provided a > %. This modified Navier-Stokes equa-
tions are the most studied ones from the numerical point of view. If a = 1, then above system
reduce to the usual Navier-Stokes equations. For the Navier-Stokes equations, Kato[19] proved
the local in time existence with initial data L™(R") and Giga[18] showed that local in time exis-
tence with initial data in L?(R™) with n < p < oo. Kato and Ponce[20] proved the local in time
existence with initial data in some Sobolev space. For the global existence with small data,
Kato[19] proved the existence of global solution in C([0,00); L3(R3)) if ||lug||zs is sufficiently
small. After Kato’s work{19], there were many important improvements using the scaling in-
variant function spaces. Especially, pioneered by Chemin[11], Cannone-Meyer[6] and Kozono-
Yamazaki[23), initial value problem of the Navier-Stokes equations in some Besov spaces were
extensively studied ( see also [3] and [4]). Especially, Cannone[4] generalized a classical result
of Kato on the global existence in C([0, 00); L3(R3)) to the case that |lugl| Byg is sufficiently

small with3<g<occanda=1- %. Recently, Koch and Tata.ru[22] showed the global in time

existence with initial data in BMO~!(R"). It is worth of mentioning that there are many recent
improvements using the notion of the Besov spaces and Triebel-Lizorkin spaces(see (7], [8] and
references therein). Recently, Cannone-Karch[5] proved some existence and uniqueness theo-
rems of global-in-time solutions with external force and small initial conditions in some Besov
type spaces in the hyperdissipative cases by using the heat kernel property . We also mention
that the authors of the current paper recently proved the small data global existence in the
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scaling invariant Besov spaces for the supercritical dissipative quasi-geostrophic equation[9].
This two dimensional supercritical dissipative quasi-geostrophic equation has a similar struc-
ture with the three dimensional subdissipative Navier-Stokes equations. Considering scaling
analysis, we find that if u(z, t) is a solution of (SNS)q, then ux(z,t) = A22~1u(Az, A2t) is also

-34+1-2 C .
a solution of (SNS),. Thus Bf, a, 1 < p, q < oo are scaling invariant function spaces. Our
first main result of this paper is the global existence and uniqueness result for the initial value

B
problem (SNS), with the initial data small in B§, % norm. Precise statement is as follows.
Theorem 1 Let o € [0,2) be given. There exists a constant € > 0 such that for any
5_
up € B3, % and ”uOHB%'z"‘ + 5 “f(t)“Bg_:adt < €, the IVP (SNS), has a global unique
2,1

2,1

5_
solution u, which belongs to L°°(0,00; B3, 2o

é'—zav zf%SaS%
$-2a-6, f0<a<g,
5 549 5_6y, if0<a<i,
L*(0,00; BZ,) N LY(0,00; B3, a)ﬂC((O,oo);Bgl), where v = { g . 21’ <f ~ 5 2
' ' ! 3 'l,f 3= a < 1
any 62 > 0. Furthermore, the solution u satisfies the following estimates

t C t dt
2 IOl +C [ 10l g

< (Il g [ 171 g ut) 2 (€ [ Tl g )

Our second main theorem below is concerned with the global stability of the solution of
(SNS)q in the case a > % For the stability of the usual Navier-Stokes equations, Beirdo da
Veiga—-Secchi[1] and Wiegner[27] obtained LP-stability with p > 3 near the L*(0, oo; LP12)-
solution. Ponce-Racke-Sideris-Titi[25] proved the H!-stability of mildly decaying global strong
solutions to the Navier-Stokes equations. Recently, Kawanago[21] proved L3-stability of the
solutions near L5(0, co; L®)-solution.

Theorem 2 Let a € [1,3) be given. Assume that u! is a solution of the IVP (SNS)q with an
5_ .5 -
external force f1 satisfying u' € C([0,00); B3, 2“) NLY(0,00; BZ,) and f' € L'(0,00; B, za).

Then there exists a positive constant €g = eo(||ud| gz-2, [|ul |l .§ ) such that if lud —
. 2,1 Ll(O,oo;Bz,l)

) N L1(0,00; Bi,) N C((0,00); BE,) with 8 =

for 61 > 0. Moreover, for any o > 0, u also belongs to

for

- .5
ugllég_m < €, there ezists a unique global solution u? € C([0, 00); B3, 20l) N L(0,00; B3 ;) N

2,1
5_
C((0,00); B,) of (SNS)q with initial data v} € B, -
Using the similar method originated from Fujita-Kato[17] and Kato[19}, we can improve parts
of Theorem 1 in the case 3 < & < 5 as follows.

Theorem 3 Let o € (%, %) be given. Suppose 1 < p < 5&‘3—_—1— There ezists a constant € > 0

. 3412
and § > 0 such that for any up € Bjeo * |luoll 3+1-30 <€ and 5 || £l §41-20 < d, the IVP
BP:°° BP'W

. 311 2a
(SNS)q has a global solution u € C([0,00); Bpoo )
We remark that if p > 525 and o > 3, then we can obtain similar small data global existence
results in the Besov type spaces following the idea in [4]. We outline the key steps of proofs of
Theorem 1-3 in the section 3. The details of the proofs of Theorem 1-3 are in [10].
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2 Function spaces

We first set our notations, and recall definitions of the Besov spaces. We follow [26]. Let
S be the Schwartz class of rapidly decreasing functions. Given f € S, its Fourier transform

F(f) = f is defined by
1 -4
F© = G [t r@)a.

We consider ¢ € S satisfying Suppp C {£ € R* | 1<) <2}, and ¢(§) > 0if § < ¢] <2
Setting @; = p(277¢) (In other words, p;(z) = 27"90(27 z).), we can adjust the norma.hzatmn
constant in front of ¢ so that

D #i®) =1 VEeR"\{0}.
JjEeZ
Given k € Z, we define the function Sy € S by its Fourier transform

Sk =1- ) @)

JZ2k+1

We observe
Supp ;N Supp ¢ =0 if |j — j/| > 2.

Let s €R, p,q € [0,00]. Given f € §’, we denote A, f = ga, * f. Then the homogeneous Besov
semi-norm || f|| Bs, is defined by

= [1,00)

L[ ey e 11 1% ifq
”f”B;’»a {Supg (2%l *Jf"L’ -

The homogeneous Besov space B;,q is a quasi-normed space with the quasi-norm given by
-l Bs For s > 0 we define the inhomogeneous Besov space norm ||fl|ls; of f € & as

€
Q.

1-2
Ifllss, = I£llze + IF Bs - For the simplicity, in the following we denote Bs and Bp,+ *
' »q

by B; and Bp, respectively. If (p,p,7) € [1, 00, we denote
”””E;,(B;,r) = ||(2%|| Aqul| Lo(0,7;27)) gz |lim (z)-

We denote briefly L>°(0,00; BS,) by L®(B o) We denote (—A)% by A for the notational
simplicity. Taking the d1vergence opera,tlon on the first equation of (SNS),, we have the
formula

~Ap =) 8;0u(uiuk) + div f.
dik

This enables us to define the general subdissipative Navier-Stokes type equations

O+ A%y = Q(u,u) + f, R3 x ]R+; 0<ac< -i-,
u(0, z) = uy,

with Q(u,u) = —div(u ® u) + 33, , VA™19;0;(w/u¥). This general equations of the usual
Navier-Stokes equations was studied by Chemin[14].
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3 Outline of the Proofs

The main ingredients of the proofs of Theorem 1-3 are the followings.
(i) Commutator type of estimates

(ii) Moser type of inequalities in the Besov spaces

(iii) Heat kernel type estimates

(i) Commutator type of estimates

Proposition 1 If s satisfies s € (_%r_ -1, %], then we have

i, Aglwllzs < cg279+D lull, gl
p,1

with quz cg < 1. In the above, we denote
(ii) Moser type of inequalities in the Besov spaces

Proposition 2 Let s > 0, g € [1,00], then there ezists a constant C such that the following
inequality holds :

1 £ollzg , < C (IFzm lgllsy, , +lgllzr Iz, )
for homogeneo'u.s Besov spaces, where p1, 71 € [1, oo] such that g 1- pll + -pl; =+

Let sy, 33 < X > such that s1 +s2 >0, f € B;,l and g € Bp,l. Then fg € B;,

I fg||B;11+,,_%L < Clifl g, lgllgza -

Proposition 3 Let -+ o 1 %. Set 512 = 81+ 82 — %. Ifs; < % and 81 + s3 > 0, then we
have
1R, v)llzp 11y < Cllell g @ lvllze2 (say- (1)

(iii) Heat kernel type estimates

Proposition 4 Let o > 0 be given. There ezists a constant C > 0 such that

[le=tA* nuouB. : 2)

uoll .,

ie(s ,+»)

If u is a solution of
Bu+A*?u=f, R3xR,,
u(0,z) =0,

then we have

lull g (gg+22y < Cllfllz2(5): (3)
and
“u"‘ﬂl s+2a(1+-p% -Plf)) < C"f"LPZ(B.), . | . (4)

where p1 2 pa.
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For the proofs of Theorem 1-2, we define the following two iterating sequences.

div 4"t =0,

atun-(»l + (um - V)un-H + AZogn+l Vpn+1 — fn+1, R3 x Ry, 0<2a< -g—,
@
u™(z,0) = ugti(z) = Locni1 Bqio, ™ =3 0cniy Ao,

and
QU™ + (UM . V)ul — (U™ . W)U 4 (ul - V)UPH!
(11) +AYH L Pl = il RIXR,, 1<a<d,
div Untl = 0,
UQ,z) = Eq5n+1 (Aqutl) - Aquﬁ), M= Zq$n+1 Ag(f 1- f 2)-

The first equation of (II) is an iterating linearized equation of the differences u! — u2. By
using the commutator type of estimates, the Moser type of inequalities in the Besov spaces
and Gronwall’s inequality, we have the following inequalities for (I)

o0
sup [u"tl(t ,_Q+C/ u (@) 5 dt
o2 IO+ [ 1O g

+1 % et [
< { flug ._a+/ " ,_a)exp<0/ u™(t)| . dt). 5
(157 s+ [ 15700 ) exm (02 [ Il ®
By using the induction, we have
sup ([ (@) §-2a + C1 / lu*1(@)|l g dt < Me, (6)
0<t<oo B3, 0 Bia

for some M > 0.
For the estimates of the solution of (II), we have

sup U™ Ol g0+ 2 [ IO g de
0<t<co Bj 2 Jo B3

31
< (10 g [0 g ) (00 [l ). )
2,1 2,1 2,1

By the induction we have the similar results for (II). Thus we have the uniform estimates of
the solutions of (I) and (II). To show the existence, we consider the equations of the differences
of the solutions of (I) and (II), i.e. Ju™t! = 4! — u® and U™ = U™*! — U™, respectively.
We obtain the following equations of the differences

3t5u"+1 + (u" . V)5un+1 + (6u" . V)un
) +AZ5un+ + Voprtl = 57+ R3IxRy, 0<2a<8,
div dumt! =0,
Ju""'l(:c, 0) = An+1‘uo,
and ,
88U — (U™ . V)6U™! — (sU™ - V)U™
+A20 UL 4 (U - Vyul + (ul - V)SU™! + VP = 5t

div 6U™H =0,
6U(0,z) = (Ant1uf — Ant1u}).

(r)



118

Similarly to a priori estimates, we have for 7 satisfying 7 = max{0,1 — 2a}

sup Néu"“(t)n ~sa-n + O f [6u" (@) 5,4t
0< Bg,

n+l n+1 ~ "
("5’“ I 2120_,, +/0 of IIBzg‘l_za-,,dt) exp (Cs/o lju (t)||B§1dt)
+01 o 16Ol genn [ g tesp (0 [T g ). )

and

o0
sup [6U™( ,_a+c/ UML) .5 dt
0 U0+ G [ IO g
00 o0
< 5U"+1.-a+/ 8" g sdt+C U™ (t ._,,/ U“._dt)x
< (1005 gona + [ 1650 g+ Cro s OO g [ 107 e

2C1260 ol ) 1
exp( o exp (C13|l "Ll(o,w;égl) + Crallu ||L1(0’°°;B§ .

Choosing ¢ sufficiently small and using the 1terat10n argument, we conclude that »™ and U™

converge to u and U, respectively in L*(0, 00; B 1_2& N LY(0, oc; Bz . "). This is the end of

the sketch of the proofs of Theorem 1-2.
To prove Theorem 3, we consider following iterating sequences

Bywni1 + APway1 = Q=N ug, e 4 ug) + 2Q(e~ uo, wn) + Q(wn, wn) + fat1,
R¥*x Ry, <a<3,
wn+1(0,2) =0

Using Proposition 4, we have for p > max{ggﬁ, 2},

||wn+1“L°°(B,,) < C||Q('wn,w,,)|| (3%+1—4a)
+C"Q( _tA an'wn)” §_+1 2a(3&)

—tA2e A2e .
+C’||Q(ev uo, €~ u0)||ﬁu.3pg+x_4ae.;.l) + Cllfnsill iz,

By using Proposition 3, we obtain
||wn+1"1,oo(1'3 ) S ClS("'”ﬂ"J,co(B,) + ||'"'0||B )2+ |[fn+1“L1(Bp)-

Choosing appropriately small € and § such that |luol|g, <, lwill poo(s,) < € and 4C1ge?+6 < e.
Then we have [|wn|| o (g,) < € for all n. Using the similar argument as in the proof of Theo-

rem 1 and 2, we have w, — w in C([0,00); Bp). This is the end of the sketch of the proof of
Theorem 3. o
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