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-1 Introduction.

(Equations). We consider the nonstationary Navier-Stokes equations in R® (n > 2):
(NS) { u; — Au+ (u, V)u+ Vp =10, divu=0 in R*x(0,7),

U|¢—0 = Uo, divug =0 in R™.
Here, u = u(z,t) = (ul(z,t),v%(z,t),...,u"*(z,t)) and p = p(x,t) stand for the unknown
velocity and unknown scalar function, respectively; uo is a given initial velocity. Through-
out this paper we do not distinguish the space of vector-valued from scalar functions.
The existence of the locally-in-time solution to (NS) is well known when the initial
data in L?, see [16] or [11]. It should be noted that L> solution is also constructed by [8]
and [12].

(Function Spaces). Our purpose in this paper is to construct the locally-in-time so-
lution to (NS) with nondecaying initial data. The spaces which we treat are larger than
L*. Before stating our results, we should recall several Besov type function spaces used
in this paper; see [25].

Definition 1. Letn>1,s€R, 1 <p< oo and 1 < g < 00. An inhomogeneous Besov
space is defined by

B: (R™) ={f € &';|If; B4l < o0},

1ime =W P [Tz ] if a<o
Pk £ L)+ sup sy 2l x i 1PNl if g =oo.



Here, (3, ¢;) is the Littlewood-Paley dyadic decomposition of unity, and S’(R") is the
space of all tempered distributions. Throughout this paper we suppress n > 1 and R™.
Following J. Johnsen [14], we call s the differentiability-exponent, p the integral-exponent
and ¢ the sum-exponent. We next define its homogeneous version.

Definition 2. Let s€e Rand1 < p< oo and 1 < ¢ < 00. A homogeneous Besov space
is defined by

B:, ={f e 2,||f; B:,|| < oo},

0o . /g
1B = [ Ew 2l £ 2710] " if g <o,
1 Ppall = : _
SUP_ro<j<oo 27%||@; * f; LP|| if q= o0,

where Z' is the topological dual space of
Z={feS; D*f(0) =0, Vo € N3}.

Here, f is denoted by the Fourier transform, and we denote Ny = NU {0}, where N
is the set of positive integers. It is well known that the homogeneous Besov space can be
regarded as subspace of &’ if either s < n/p or s = n/p and q = 1; see [6] or [20]. We
hereafter only treat these spaces with exponents satisfying this condition.

We also define several associated spaces. We set that e = Gy denotes the solution—
operator of the heat equation; G; is Gauss kernel denoted by Gy(z) = (4nt)~"/? exp(—-%’z).
One extends €' from S to &' in usual way. Unfortunately, e’ is not a continuous (Cp)-
semigroup in Besov spaces if integral-exponent or sum-exponent is infinity. We note that
ecf — fin B; , need not hold for general element of B} . Thus, in order to construct
the solution which is continuous up to initial time, we have to set the small space.

Definition 3 (small Besov spaces). Let s€ R, 1 <p< oo and1 < q < 0. A small
inhomogeneous Besov space is the subspace defined by

b, ={f€B;,; ¢°f > fin B, ast |0}

Assume in addition that (in order to operate €*®) these exponents satisfy the condition of
either s <n/p or s =n/p and = 1. A small homogeneous Besov space is defined by

b;,q ={fe B;,q; erf — fin B;,q ast | 0}.
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It is easy to see that the small Besov space is a closed subspace .of Besov space, so it
is Banach space. Let é;‘q be the closure of S with respect to the norm of By, (see e.g.
[25]). By definition our spaces satisfy

B4 Clpq C Byyg
Of course, these three spaces agree each other if p and ¢ are finite. But otherwise these
spaces are different from each other, for example, if s < 0, p = 0o and ¢ < oo, then

B G

s
oo,g # V00,9 T Boolq.

Indeed, non-zero constant function belongs to bZ, ,, however, it does not belong to é;,q.
It is also easy to see that by , # B, , if and only if ¢ = co. Moreover, one can prove that
small Besov space is equivalent to the space of closure of B;j;] with respect to the norm
of B; ;i€ by, = F;,‘g-l”';B; Al The space WIA;B’.’ all i called little Besov space. In [2] H.
Amann characterizes the little Besov spaces, see also [23, Appendix]. However, in the

homogeneous version b , is new space.

(Main Result). Our goal is to prove the existence and uniqueness of locally-in-time
smooth solution to (NS) when the initial velocity uo belongs to by , or I.);,q with s < 0. We
are now in position to state our main results.

Theorem 1. Assume thatn > 2, n < p < 00,1 < g< o0 and 0 < € < 1-n/p,
and assume that the initial data ug € b;5(R™) satisfying divug = 0. Then there exists a
positive constant Ty and a unique u satisfying

/% € C([0, Tp); b72°(R™)) forall 0 <y <1,

g 2]

92y € C([0, To]; LP(R™)) forall e<d <1,
such that (u(t), Vp(t)) is a unique classical solution to (NS), provided that
Vp(t) = > VR:Rjui(t)w (t),
i,j=1 ) .
where R; = 0;(—A)~Y2 is the Riesz transform.

Remark 1. (i) In our result ¢ = oo is included, the space b, ¢, includes L” spaces for
p < 00 and BUC for p = oo for any € > 0. Here, BUC represents the space of all bounded
and uniformly continuous functions.
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(Figure of L?, B¢, or B, <, spaces)

Bl ; open (BMO™Y; [18))

(¢=1-n/p)

B, ¢, for n < p < o0; [20], [21]

b, e for n < p < oo; (3]

B% _: open

00,007

________

BY, o; [19] » Ours |

________

B ; [10]

1/p

L*=; 8], [12]

L? for n < p < o0; [11]

Figure 1:

(ii) Similarly, one can also construct the locally-in-time solution in i); o With assumption
of n<p<oo,1<g<0and 0<e<1—n/p Of course, we get the properties of the
solution by replacing function spaces by their homogeneous version.

(iii) In [3, Theorem 6.1] H. Amann shows the local solvability of Navier-Stokes equations
in bi™? for n < p < 0. So our results on this paper for n < p < oo is given by
interpolation theory easily. In the case of p = oo Theorem is new.

2 Known Results.

We mention several known results on the solvability for the Navier-Stokes equations in
L. Previous work by T. Kato [16] in 1984, in whole spaces he showed the local existence
with initial data in L”(R™), and Y. Giga [11] also obtained the local existence with initial
data in LP(R") for n < p < oo; see Figure 1. The local existence for L™ initial data (or
BUC initial data) is also constructed by M. Cannone [8] and Giga~Inui-Matsui [12] in
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general dimension. Our results include of theirs, in the sense that the space of initial data
contains theirs.

There have already been several results on solvability in Besov spaces. In 1994 Kozono—
Yamazaki [20] obtained the solution in B;go forn < p < oo with @« = 1 —n/p. The
spaces B; o are important since these spaces are scaling invariant. Cannone-Planchon [10]
showed that in Bgm, and they also obtained that in same spaces as Kozono—Yamazaki’s
results. By the way, in the inhomogeneous case H. Amann [3] showed that in b 3.
Although Kobayashi-Muramatu [17] also obtained that in f?;j&, there seem to be no
results when the space of initial data does not decay at space infinity. Our results is the
first results handling nondecaying Besov space as the space of initial data.

Recent work by Koch-Tataru [18] introduce the new space of BMO~*(R™) which is the
space of all first derivatives of BM O function, and related localized space BM O7'. They
show the existence of time-local solution of (NS) in this space, and they also construct
the time-global solution with small data. We note that BMO™1 is very closed to Bz,
and B;,l’oo is important for us to investigate the self-similar solution, see [8]. The present,
work is inspired by their work.

The author guesses that those researchers who obtained the local existence of the
solution with initial data in B; ¢ wanted to get the solution in B;fw. Then they studied
that along this line, but they could not achieve it. While we intended to achieve it along
the axis B;foo tending € — 1 since we have already obtained L*> solution, however, we
could not. The solvability in B;foo is still open. The author was informed of a recent work
of Kozono—Ogawa—Taniuchi [19] closely related to ours. They also proved the existence
of a unique solution to (NS) with initial data in B, ., but which space is contained by
ours. However, the solvability in Bgo,m is also still open.

3 Estimate for products.

We consider the integral equation:
t
(INT)  u(t) = ePup — / V - e 2P (u ® u)(s)ds,
)

where u @ u is a tensor whose ij—component is u‘u?; P denotes by n X n matrix operator,
its ij—component is &;; + R;R;, where &;; is Kronecker’s delta. We call the solution of
(INT) mild solution. Once we get the mild solution, it is easy to see that the mild solution
satisfies (NS) in classical sense.



g3

A crucial step in getting the mild solution is to estimate for bilinear terms, that is, we
have to estimate the Besov norm of the integrant of (INT). Herenow, we shall establish a
Holder type inequality to state it in the next proposition.

Proposition 1. Leta > 0,1 < p,q < o0, and let 1 <r,s < 0o satisfying1/p=1/r+1/s.
Let 0> 0, 6§ > 0. Then there exists a positive constant C = C(a, p,q,1,s,0,0) such that

1£9: Bll <C[(V* + D115 Bl llgs Ball + 1175 B21l llgs B}
+ 2NN + {155 B s Brgll + 11£: Bl lgs B =11}]

™q rq

for all N € Ny, 0 < 6 < o, f and g belong to intersection of all inhomogeneous Besov
spaces in Tight-hand-side, respectively.

Remark 2. (i) In the last term of above inequality the sum of differentiability—exponents
do not coincide with those in other terms. It is too strong in appearance, but it is compen-
sated by coefficients 27V¢ of the inequality. We shift differential to dyadic decomposition,
then this term appear.

(i) One can prove similar inequality in the homogeneous Besov spaces. Let exponents
be the same as in Proposition 1. Then

1£95 Brall SC[(N® + )15 B2l llgs B2l + 1153 B2 llgs BLI1}
+ 2NN L D{15; B llgs Bagll +11£: Bl llgs BRI}

.q r.q
+ 27N+ D){I1f; BZf0N Mlgs Bzl + 1165 B;2 | Hg,B}’,;“"‘SH}]-
(ili) Holder type estimates, for example
”fg) II < C{Hf pl,qll‘ ”g? pg,q2||+”f’ pg,qz” ”g‘) PI,QIH}

have been proved by [22, §4.4.3 Theorem 1, §4.5.2 Corollary, and so on| with several
restriction of exponents. However, we want to use such estimate for p = p; = py = 0o and
a > 0 which is unfortunately excluded. So we prepare the present version of the Holder
type inequality.

For the proof of Proposition 1 we prepare two lemmas. Next is paraproduct lemma
which is similar as Bony’s paraproduct lemma [5]. We shall use the convention that
fi=dexf,q=d*g, fy=1*f and gy = 9 * g as well as aV b= max(a, b).
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Lemma 1 (paraproduct lemma). Let j € N. Let f,g,fg € S'. Then

v {(fi+D_f)-(m+D>_a}
k=1 =1

2 2
=px{ > fa} + o {3 fum} + 9 {D_ ha} +v*{fim},
k=1 =1

{k121; [k-1|<2}

and then

¢; * {(fy + ka) (g + Zgz)}
k=1 =1

j+2 j+2
=¢ix{ Y. fat+eix{ D fimb+six{ D fa}
(k.)ES; k=1v(j—2) I=1v(j-2)

+ (851 + 032)¢5 * { faga}
where S; = S} + S? + S3;

S}={(k1) eN% k,012j, k-1l <2},
S?={(k,l) eN% k <j, |l—j| <2},
sz{(kal)ENz’ 1<, |k—J|52}

Proof. We shall verify whether ¢; *(frg:) = 0 for given j, k and I. We consider its Fourier
transforms and obtain

Fls * {(dx* ) - (dr* 9)}] = b5 - {(®ef) * (4d)}-

Then it is enough to estimate the support of cfb,- - (¢k * ¢y). We have
s = (85 (1 ) (©) = $:(©) /R $(& — m)di(m)dn,

and observe that ®.; equals zero if (j, k, 1) satisfies the following conditions:

either 21 4 27+ < 91 (3.1)
or 1 oktl < ol-1 - (3.2)
or 2kt ol <oi-1 (3.3)

The proof is now complete. -



85

l=Fk+2
l=k-2
B, S!
Jj+2 :
P T
]__2 :____g Bl > (3.1)
§ B; & (3.2)
Bs .53 B, B; « (3.3)
: k
0 j—237 j+2

Figure 2:

Similar paraproduct lemma is found in [Bon]. He calculates the support of (¢x * f) -
(é1 * g) to show that ®,4; equals zero for the indices in B; and B,; see Figure 2. We also
calculate ¢;  {(¢x * ) - (41 * g)} and show &, = 0 in B;. This procedure is not included
in [5], so our lemma is different from his results. In order to state the next lemma it is
necessary to study the part corresponding Bs.

Its homogeneous version are essentially known by those who study nonlinear wave
equations in several papers, e.g. [22]. The authors of these papers calculate ®;5 = 0 in
some indices, after using Bony’s paraproduct lemma. However, they do not write ®;; = 0
in Bj explicitly. We fix j and prove that ®;4; = 0 for arbitrary k and I. Thus we are able
to describe the situation clearly in Figure 2.

The next lemma yields Proposition 1. This is one of the most general form of Holder

type inequality in inhomogeneous Besov spaces.

Lemma 2 (Holder inequality). Let 1 < p,g < oo and @ > 0. Leti = 1,2,...,12;
1 < 7,8 < oo satisfying 1/p=1/r;+1/s;, and let p; € R, 6; > 0 and 0; > 0. Then there
exists a positive constant C = C(a, p, q, 73, Si, pi, 0, 0:) such that

195 Bpgll < C(N? + DIL(f, g) + C(N + 1)2"MIL,(f, g),
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where

(£, 9) = |If; B2 lgs Bl + 115 Bzl lg; Beztsl|
+ 117 BER21 lgs B,

(£, 9) = |If; B2t lgs Bl + 11 fs Bl Hlgs Bosis ™|l
+ |1£; B2 g Bors ||+ 11F; BEE || 9 Bofll
+ 1£; B2E2N llgs Bi2 ool + 11f; B2 ool 1195 Boos ||
+1£5 BZR ol 1lgs BEL || + 11 f; BEL ol |lg; Bon
+|1f5 B2 || Nlg; BEE2|

712, 812,00

for all N € Ny, 0 < 8 < o, i, i; €R, f and g belong to intersection of all Besov spaces
in right—hand-side, respectively.

Proof. We may assume that ¢ is finite without loss of generality, since we give the proof
for the case ¢ = oo is obtained by a standard modification of that for finite q.
By the definition we have

1595 Byall =[ 3227118+ (Fa); L711 Y (o) 27

j=1
[o ] . o0 oo l/q
=[ 3o 2l {3 f+ - (e + o} 2]
j=1 k=1 1=1
= {O fe+ fi)- O a+a)}i L7l
k=1 1=1
Applying Lemma 3, we observe that
o Jj+2 j+2
< [22"’"”% «{ Y fa+ > fiat > ke
J=1 - (kD)ES; k=1v(5=2) 1=1v(§-2)

+ (651 + 5jz)fu9u}; Lpllq] v

2 2 o
Hiwx{ Y fam+ D fa+ ) hat hah Pl
k=1 =1

{k1eN; k—1|<2}

We set ||¢;; L|| = Co (independent of j) and ||3; L|| = C;. By using 1%-Minkowski and
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LP—Young inequalities, we get

1£9: Bzl
Jj+2
<cf[Srl Y sasrrlr]” + [szn > Aol
i=1 (k1)ES; E=1V(j-2)
Jj+2 q
L[Sz S o]+ [ 3 2 2] )
j=1 1=1v(5-2) Jj=1

2 2
ra{l ¥ Frgis D21+ 11D fogis 211+ 1S fugs 2711 + 11 g 2711}
k=1 =1

{kJeN;b-1|<2}
=Co(hi+L+13+14)+ Ci(I; + Iy + I3 + I).

We shall estimate each term.
We present estimates for I; and I, only, since other terms can be estimated in a similar
(and easier) way. First we estimate I;. We divide S; into three sets, we have I; < 372 . J,,

. . 1/q
with I = | 552, 29°9)] S0 pem figis L2]17]
We start to estimate J; by recalling definition of S}:

k+2

5 < [Z 290(3" S i feqs 2.

k>3 1=1v(k-2) -

We divide the sum into three parts with respect to indices j and k of middle-middle,.
middle-high, high-high frequency. For all positive integer N

k+2
<S[DD 2> > I fugn L7}
1<j<N F<kSN I=1V(k—-2)
k+2
HIDD 2D D lifegs L2190
1<G<N k>N 1=1V(k—2)
_ k+2
+[Z 2’“"{2 Z || frgs; 7| |}9]Y/1,
i>N+1 k>3 1=1V(k—2)

=Jum + Iy + Jug.

[Jmm estimate]. We use exponents 1 < 7,5 < 00, 1/p=1/r+1/s and p € R to get

k+2

JMMS[ Z 2.1'GQ{ Z 2—kp2kpufk;Lr” Z ”g_l;Ls”}q}l/q

1<5<N J<k<N 1=1V(k-2)



Since j < k and k — 2 < [ < k + 2, we obtain that 27¢ < 2% and 27 < 22I¢l . 21,
We also observe that 2¥e)||fi; L7|| < sup, 25@+9)||fi; L7|| = ||f; B£2]| and similarly
27%|gi; L°|| < llg; B;%||- Combining these estimates yields

T <ONS5 B2 g B3zl 3 1]1/q-{ > 1

1<5<N 1<k<N

<C(N? + DIIf; BEE llgs B4

[Jmy estimate] Let r, s and p be as the same exponents as in Jyp estimate, and let
0 > 0. We obtain
k+2

S <[ Y 2 Y messgrersa )l Y flga 1)

1<j<N k>N 1=1v(k—2)
k+2

<c[ {2 ™IsBETl Y llg B}

1<j§<N k>N I=1v(k-2)
<C27N(N + 1)||f; B2t Vg5 By 4|

[Juy estimate] Let r, s, p,d be as the same exponents as in Jyu estimate. We obtain
' k+2

. . 1/q
Iy < [22‘1&1/22J(a+5/2)4{ Z“fk;Lr” Z Hgl;L.gH}q] /
2N k2j I=1v(k-2)
k42 1/q

< C[Z 2—.754/2{ Z 2—k5/2Hf7 Bp+a+6” Z ”9; Bs—,goll}]

>N k>4 I=1v(k-2)
< Ol Bo lgs Byl [ 2] 30 22)

>N k>N

< C27M||£; B2 Nlgs B,

mooll-

The estimates for J; and J3 are basically the same as that for J;, so we do not present

the details. .
We next estimate I. Let 1 <r,s<oc; 1/p=1/r+1/s, 0 >0, 6§ >0and s €R.

We observe that

j+2
L[S 2 Y 2 I llgs LI} 1.
i1 k=1v(i—2)

Note that ||gy; L*|| < ||g; B¥ || for all u € R to get

<C||f; BZE2l 1lg; Bhwsll-

Similarly one can estimate all of other terms. The proof is now complete. O



We note that if ¢ is infinite, above estimates holds with (N2 +1) and (N + 1) replaced
by 1. We mention the proof of Remark 2—(ii). We can also obtain its homogeneous
version by dividing the sum into six parts with respect to frequencies of j and k, these
are low-frequencies, middle-frequencies and high-frequencies. This proof parallels that
of Lemma 2.

4 Sketch of proof of Theorem 1.

In this section we describe the sketch of the proof of Theorem 1. The local existence of the
solutions for this type is often proved by the method called iteration, saying, successive
approximation. The method is standard when we construct an L? solution, see [16] and
[11], and also by using this method L* solutions are constructed by [12]. Since we handle
the small Besov space, we can prove the continuity of approximate sequence in time, in
particular continuity up to initial time with values in small Besov space.

Letn > 2,0<e<1/2and 1 < ¢ < oo since other cases can be proved by a similar
argument. Assume that an initial velocity uo belongs to bz,. We define the successive
approximation by setting {u;(t)};>1 inductively as u;(¢) = e*uo and

: t
uj11(t) = ePug — / V - et=92P(u; ® u;)(s)ds.
0

We shall conclude that the approximation {u;(t)};>1 have a unique limit function by a
priori estimate. It is easy to see that u(t) satisfies (INT) for ¢ € [0,7p]. The uniqueness
is obtained by Gronwall’s inequality (see [13]) easily.

On this paper we only make sure that u; belongs to B, since it is key estimate in
this proof. We show the following lemma:

Lemma 3. There ezists a positive constant T such that
v/ 2u,-(t) € B, with sup |lu;(t); B |l £ 2K,
0<t<T

and sup t"/3||u;(t); BL|| < 2CKq
<t<T

0 9
forallt € 0,7}, >1 and v € (0,1]. Hére C is a constant independent of j, ug and T.
Proof. Let 0 <t <T < 1,7 €[0,1] and we put K] = K](T) defined by

K! =

7= sup ¢/%||u;(t); BLgll-
<t<T

0< g
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We start to estimate the linear terms. By Young’s inequality we have

ol 1/q
e ug; Bzl = [k * (Geoe uo)s L] + [ 30270115 x G+ uo; L= 1)

i=1
=, . 1/q
< 11Ges LM [l % os 1| + O 3 I(—A)"2Grs L7271 % wo; LI
j=1

By L? — L4 estimate (see e.g. [12]) we have

X . 1/q
< Il » s L=+ G2 [ 3 275 w s LI

=1

S Ct—‘Y/zKO’

since t < 1. In particular, we note that if v+ = 0 then we can choose these constants
C = 1. We thus obtain
K< Ky, and K] <CK,
for all v € (0, 1].
The next is to estimate the bilinear terms. To begin with, we prepare as follows; there

exists a positive constant C such that

IV - £ Bl < ClIf; Bl
foralls € R,1<p<oo,1<g<ooand fe Bitl. Thus, for all v € [0,1] and
0 < s <t < T we have

IV - e®4P (u; @ us)(s); BLogll < Olle® P (u; ® uj)(s); By ™|l
< C|IIUT = &) 2Pel =22 || (u; ® u;)(s); Boag”ll-
Here, ||| - ||| stands for an operator norm from L*° to L*. Using Proposition, we get
< C(t - 8)" 2 |(u; ® u;)(s); Boogll
< Ot — 8)" 0 (N + 1) |y (s); Bigll [Jus(s); B
(N + D27V (s); BIN Hlus(s); Bl

Here we may choose arbitrary number N ~ e~ log(||uj(s); BL5l| + 1), whose setting is
similar to [7] and [13], thus we obtain

< Ot — sy 72 ({Log(llus(s); Biogll + 1)} + 1) llus(s); Bisill lus(s); Bl
+ {1og(llus(s); Blagll + 1) + 1}llus; B
< CK;(t — 5)~09/25~12(1og 571)?,
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where K; = K?K}{ log(K} +1) + 1}2 + Kf/z log(K} +1). The last inequality is yielded
by the definition of K and the assumption of T' < 1.
Therefore we obtain
K], <CK, + CK; sup t'/? /t(t — 8)" 092 (log s71)25~1/2gs
o<t<T 0
<CKy + CK;(log T~)*T/?~</2,

Since € < 1, we now take T enough small, so we obtain Lemma 3. O
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