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WELL-POSEDNESS FOR THE BOUSSINESQ-TYPE
SYSTEM RELATED TO THE WATER WAVE

AMKRERFRIBCEEZN WA #i (Jun-ichi Segata)
Graduate School of Mathematics -
Kyushu University

1. Introduction

This proceeding is a summary of the joint work [13] with Prof. Naoyasu
Kita, Kyushu University.
We consider the initial value problem for the Boussinesq-type system:

Opu + 8z + ulu =0, z,t € R,
O — O3u+ Opu + Oz (w) =0, z,t€R, (1)
'LL(O, 12) = uO(m)1 v(o’x) = vO(x), z€R.

This system was firstly proposed by Kaup (8] as a model for the dynamics
of the water wave with the surfsace tension. In the above equations, u and v
stand for the horizontal velocity of the fluid and the vertical displacement
of the surface from the equilibrium state, respectively. For detail on the
physical background, see e.g., Kaup [8].

As far as we know, there is only one well-posedness result about (1) (Here,
the well-posedness stands for the existence, uniqueness of the solution and
continuous dependence on the initial data). Angulo [1] proved the local
well-posedness of the solution in Sobolev space H%0 x H~10 with s > 3/2,
where

HZ* = {f € S'(R); [(z)*(Dz) fllrg < o0}

with (z)® = (1 4 22)®/2 and (D,)* = F~1(¢)°F. His idea is based on the
energy method in terms of the a priori estimate like

%(Ilu(t)llﬁg.o + [[v()l[a-1.0) < Clidsu(®) g (lu(®) (a0 + V() Za-1.0)-

Therefore, one requires s > 3/2 at least so that ||8;u(t)|[zg is estimated
by the Sobolev inequality. He also obtained the global well-posedness in
H®*% x H*~10 with s > 2. Furthermore, the stability of the solitary waves
is also studied by assuming the local well-posedness holds in H}? x L2.
(There is no proof given for the local well-posedness in this function space.
The authors think that it is still open, and we are inspired to minimize the
regularity of initial data.)



Our concern at present paper is to construct a solution to (1) in the
function space with less regularity than the Angulo’s assumption. The
main theorem is

Theorem 1.1. (i) Let (uo, vo) € (H2x HI O)N(Hgw1 x Hi—ho1) = X°
with s > sy + a1, s1 > 1/2 and o1 > 1/2. Then, for some T' > 0,
there exists a unique solution to (1) such that (u(t),v(t)) € C([0,T]; X %)
and (z)*u € L2(L%¥). Furthermore, this solution satisfies the smoothing

properties :
| D8 285ul| o 2y + I1D5 20l o a2y < 00-

(if) Let (u'(t),v'(t)) be a solution to (1) for the initial data (ug, vg) with
| (uh, vh) — (w0, v0)||xe < 6. If & > O is sufficiently small, then there exists
some T" € (0,T) such that '
1w, v") — (,v) s xy < Cli(wo, p) — (o, vo)llxes
1D3~Y/28, (' — w)llzgezz,) < Cll(wo,v0) — (o, vo)llxe

ID572 (" = v)llzgozz,) < Oll(udsv0) — (uo, vo) | x=-

From the view of regularity, Theorem 1.1 is the generalization of Angulo’s
work and very close to the desired H3? x L2 well-posedness problem. Our
idea to prove Theorem 1.1 is based on the contraction mapping principle

of the integral equation after deforming (1) into the system of nonlinear -

Schrédinger equations which contains the derivatives of unknown functions
in its nonlinearity (see section 2), and also we make use of the smooth-
ing properties of Schrédinger group due to Kenig-Ponce-Vega [11]. We
remark here that the direct application of this smoothing properties to the
system will demand the smallness assumption of the initial data. This is
because the nonlinear estimate like ||uD§'1/ 26:311,|| LL(L2) yields the quan-
tity [lull Ly(zss) by the inclusion LL(L%)-LP(L%) C LL(L%) and we can not
expect to make this sufficiently small only by shrinking the time interval
[0, 7). To remove this smallness assumption, we make further deformation
called gauge transform (see section 3). This idea was firstly introduced by
Hayashi [5).

The regularity and weight constraints on the initial data as in Theorem
1.1 are given by the estimate of (so called) the maximal function associated
with Schrédinger group, i.e.,

U@ lwsey S Clldllano + Idllaee),
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where U(t) = exp(itd2) is the Schrodinger one-parameter group. This
estimate is almost optimal. Namely, we know that it fails if s < 1 (see
remark in section 4).

It seems difficult to obtain the stability result stated in Theorem1.1(ii)
only by the energy method which is the main idea in [1] In our argu-
ment, however, we largely relies on the contraction mapping principle for
constructing the solution and so Theorem 1.1 (ii) is derived as a by-product.

We close this section by introducing several notations. The quantity
| - |lx denotes the norm of a Banach space X. B(X) denotes the bounded
linear operators on X. Let LE(L%) and Lf.(LE) be the function spaces
L2(R; L"(0,T)) and L"(0, T; LE(R)), respectlvely The fractional order de-
rivative DZ stands for F~1|¢|° F.

We often use 2x 1 vector valued functions like f (t, z) = (f1(t, 2), f2(t,2))

and we let || T lx = [|f1llx + | f2llx. The prOJecmon Pj (j = 1,2) is defined
by Pj f fj- The inhomogeneous part / U(t—t')F(t')dt' is described as
GF.

2. Transformation of the System

In this section, we transform the system (1) into the nonlinear Scroddinger
system. Let us proceed in two steps.

(Stepl) Decomposition in the Fourier space. Let n(§) € C§° (R) with

1 i<y,
’7(5)‘{ 0 if 6] >2,

and let

v Fln(é)Fv (low frequency part of v),
v® = F Y1 -n(€))Fv (high frequency part of v).

We easily see that v = v(® + v(), Then, (u,v®,v(?) satisfies

Bsu + 6™ + ubu + v ) =
8™ + (1 — F-1nF)(~8%u + azu + Bz (uv® +uvh))) = (2)
8,00 + F-lpF(—83u + Opu + 8z (uwv® +uv®)) = 0.

w= 71y (s / * () dy).

we write



Then, the first two equations in (2) yield

Oyu + 82w + ubyu + f =0, 3)
Oyw — O2u + ubyw + g =0,

where

f o= 8,99, |
g = u+u® +FInF(u—u—uBw+ v9)).

Note that f and g do not cause the loss of derivative. Since the symbol

of 871 F~1(1 — n)F does not have a singularity at £ = 0, this operator is
bounded on the weighted Sobolev spaces and so w € Hgv* if v € Hzb*.
This is why we made the decomposition in Fourier space.

(Step2) Diagonalization. We next diagonalize the system (3). Set

(s0) =75 (¢ D () =2()

Then (3) is transformed into the nonlinear Schrédinger system:

u®) —i02 0 u(l) ne f 0
% (w(l)) + ( 0 ¢6§> (w(1)> +ud; (w(1>) R (9) B (0)' @

For the simple expression of (4), we let

(1) 1
1) _ U _ U
= (&) = (i),

where (V) denotes the complex conjugate of w(). Then, @") satisfies

8@ — 128D + A(u)aa® + f =0, (5)

o= 3 9)m-an()

Hence, Boussinesg-type system (1) is transformed into
(5 TW 2T + Aw)E TV + FW =0
(AR ——
higher order lower order
8w — ?zf_lnf(aﬁu —u—u(Ozw + v(l))l =0,

lower;dgr
=(1) — 1) _ 1 ( uotwo
aW(0,z) =15 = 25 s +75)

L 0®(0,2) _=_'v((f) = F~nFu.

where

(6)
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3. Gauge Transform

If we simply apply the Kenig-Ponce-Vega’s method [11] (Their proof
is based on the contraction mapping principle via the associated integral
equation) to (6), the smallness of the initial data will be required even for
showing the local well-posedness. To overcome this difficulty, we introduce
the gauge transform. Let ¢ € C§°(R) which will be taken close to up in
H#0 N H5121 later and '

0% 1o/2 0
—1?(2)—_—( 0 €%/ 70 = K(p)wW,

where .
& lp= f o(y)dy.
-—00

To explain how to control the nonlinearity, we, for a while, consider the
following simple equation:

8 + 826 + wdu® = 0. (7
N s
heavy
The equation (7) is equivalent to
i0u® + 82u™) + i(u — 9)Bpu™) + ipdu® = 0. - (®
negﬁrgible heafvy

Set u(® = ¢ '¢/24(1), Then, multiplying €= #/2 to (8), we see that

iBu® + 62u® %’awu(z) + %wzu(z) — ipe®" /29,0
o heavy
+i(u— go)@zu(21+%gouu(2) - %cp2u(2) + :égaewg 2 20,u(11 =0.
negligible heavy
" Thus, the heavy term is canceled and we have

i0u® + 2u® + i(u — )8u? + (—}2— e — %cp2 + —;-tpu> u® = 0.

~ s

lower
Since ¢ is smooth, the last term in the above equation does not cause the

loss of derivative. We can not replace ¢ by ug since one of our aim is to
minimize the regularity of the initial data.



Let us return to our original case. By the precise computation, #® and
v satisfy
18, + 8282 +iA(u — )87 + fB) (o, 7®,0¥) =, )
8w ® — 8, F~1nF (82u — u — u(Bew + v19)) =0,

where f@ (¢, 72 ,v®) = B(p,u)@? + iK(p) F) with
o _fu—e O
A('LL 4/’) - ( 0 U — (P) )

_ 1 (—2i0z0 — ¢* + 2pu 0

105 p/2 0

Note that fm does not cause the loss of derivative.
The relation between (u,v) and (@2, v®) is invertible. In fact, (u,w) =
R1Q 1K (o) 1@®, where ‘

=4 1) (0)-6)

n—1
L (et o
K((p) —-( 0 6—58;19—0'/2 .

Hence (u,v) = (u,8,w +v®) € C([0,T]; X*) if and only if (@@,v®) €
c([0,T); H3°n HE:21). Therefore, the solutions to (9) with the initial data
@®(0,z) = K(p)QR(uo,0; " F (1~ n)Feo),

v0(0,2) = FlnFuw.

is immediately transformed into the solution to (1). Hereafter, let us mainly
seek for the solution to (9).

and

4. Derivative Loss and Smoothing Effect
The equation (9) is rewritten as the integral equation:
@ = U)I(0) - G{A( - p)8:a® —ifP(p,7®,0)},
t
o = vO(0)+ fo 8, F~ F (62 — u — u(Bew +v0))(¢)d¥. (10)

To overcome the regularity loss in the nonlinearity, we apply the smoothing
effect of the linear Schrédinger group. This kind of smoothing effect is firstly
shown by Kato [7] for the KdV equation. Later on, Kenig-Ponce-Vega
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[11] (also Bekiranov-Ogawa-Ponce [2]) obtained the Schrédinger equation
version described below.

Lemma 4.1. [2, 11] Let p € [2,0] and q € [2,00). Then, we have
1Dy PU @) llp ey < CTYPlllze,
ID;~%/9GF| 1z, CTY9||F 232y,

<
llaxGFlngo(L%) < C”F”L;(Lf})

The next lemma, states the estimate of maximal function associated with
Schrédinger group. It determines how large regularity we have to impose
on the initial data.

Lemma 4.2. Let s > s1+03 > 1,51 > 1/2, 04 > 1/2 and p > 0 sufficiently
small. Then, we have

D) (=) U@ llraegey < Clllgso + 1%l ggzes),
{z)* GFll gy < CcT/?|| D5~ 2F llzycz2)

where ||fllx+v = inf{llgllx + [hlly;g +h = f}.

Proof of Lemma 4.2. We only prove the first inequality. The second one
follows from the similar argument and simple application of the Strichartz
estimate [18, 20]. Let f(t,z) = U(t)¢(x). Then, it satisfies

7'81.‘]‘. =- :%f’ v
A (an
Multiplying (z)®! on both hand sides of (11), we have
i8((z)* f) = —02({z)* £) + 2(Be(z)*")Be f + (82(z)™) .
Rewriting the above relation by Duhamel’s principle, we see that
(@)1 U)p = U(t)(z)*¢ — 2G(8:(x)* 8, f) — iG(83(z) f).  (12)
According to (12), we see have
I{Dz){z)** U ()¢l 2 (L30)
< UKD (z)* ¢l razsey + 21G{D=)* (8:(2)**)0:U (¢) ¢l 13 (£3)

 +HIG(D)*(82(2) U ()l La e
= I+ I+ Is.



Let us use the well-known estimate (Constantin-Saut [4], Sjolin [15] and
Vega [19])

IU@Yll2 sy < Crllvpllgzo for o >1/2.
Then, we have
I < Clléllgzie,
I < Cl(0z)™ )T )Pl e sraroy
Clldll gz

On the other hand, applying Lemma 4.1 to I and making use of the fact
that [(Dz)®, 8z(x)*!] is the s1 — 1th order pseudo-differential operator (see
Stein [17], chapter VI), we see that

IA

I < CTY?|(Dg)/?+¢(0:(z)**)0:U ()9 ll 2. (12)
< C(l[(8a(2)*) D3/ *+¢8:U (1)8ll L3 22) + 161l rze)
< C(IDY*+U)¢llzgay + 19l gz0)
< Cléllgzo,
where 1/q > a; — 1/2. Hence, we obtain Lemma 4.2. [

Remark. The regularity condition in the first estimate of Lemma 4.2 is
almost sharp. Indeed, we consider the smooth function ¢ € Ce(-1,1).
Set ¢n(z) = €™Fp(x). Then it is easy to show that ||@n|lms = O(n®) as n
tends to oco.

On the other hand, we have

U@l < 1 [ € +3E —ndtllzsa)
< | [ e €ty ey
We take t = z/2n. Note that 0 < z < 2nT. Then it follows that
Uenlam = [ |[ e de
= o [ | [ hea

= O(n!) as n — 0o.

dz

dr

Consequently, the inequality
U@ Ny ) < Clidllas,
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fails if s < 1. It is still open whether the case s = 1 holds or fails.

5. Contraction Mapping Principle

In this section, we give the outline of the proof for Theorem 1.1. The
main tool is the contraction mapping principle in terms of the smoothing
properties of U(t) and G. For simplicity, we only consider the case s €
(1,3/2). Let us introduce the function spaces.

Maglllye = llglllsnstiar + 1119l smootn + 119]llmazim
where
glllinitiat = 1{D2)°gllLge 22y + (D) (2)** gll Lgo12)
Mglllsmooth = I{De)* 28zl 10(z2)
1glllmazim = (D2)*(z)*'gllLarge), (> 0 is small).

We show that the map (®,¥) defined by
2 = (@?,00)
= U)a?(0) — G{A(u — 0)8,@® — if P (p,a®,v®)},
v® = (@, v9)

t
= w(0)+ /o 8, FInF (0% — u — u(Bpw + v©)) () dt,

is the contraction on Sy, vo,0, Where the closed set Sy, w0, 18 given by

@ lyz + I[{D)yvO|linitiar < 2C (o, v0),
Suowop = { (@2, 0y, (=) (v — )|z zge) S P ,
and || (Dx)s—lmax'u' 2 ”Lg°(L?r) <p

with the metric |||(@®,v®)|lly; = @@ llyy + {D2)v|llinitiar. Note
that Syouep 7 ¢ if ¢ is sufficiently close to ug in H*% N H** and p > 0
is small enough.

We first show that the map (@, ¥) is from Sy, into itself. In fact,
Lemma 4.1 yields

ID®leozay < ClE®|gso + CUDE V2 Alu ~ )87 1y 13,
+CT“f(2)”L39(H;-°)- (13)

The first term in (13) is bounded by C||(uo,v0)}|xs, where the positive
constant C does not diverge as ¢ — ug in H3% N H5 (This convention
will be continued in what follows). To estimate the second term in (13),



we use the chain rule for the fractional order derivative (see Appendix in
[12]), i.e.,

IDS(f9) — (DS£)g — F(DFNrazay < CUDZ fllze ey 1 D229l 122 232y
where 0,01,09 € (0,1), 0 = 01 + o9 and pj,r; € (1,00) (j=1,2) with
1/p1+1/ps =1and 1/r + 1/ro =1/2. Let f = A(u—¢) and g = Ogh =
8,@®. Then, for some 8 € (0,1), we have
ID5™2(£8uh) |2 (22,

< |IF(DEY20:h)l| g 22y + CIDS 2 £l 21 oy I Dahll o2y

< CUND2Y*fllase) + DY Floywoey D) "2 fllgozay)  (14)

< (D2)*~ 28l go(zzy + (D) bl S50 [{D2) 20kl o 2,

where s—1/2 = 0p/2+(1—0)(s—1/2—p/2), 1/p1 = 6/1+(1—6) /o0, 1/p2 =
(1-6)/146/c0, 1/r1 = 6/c0+(1—0)/2 and 1/ry = (1-6)/c0+8/2. Note
that, to show (14), we used LP2(L7?)-boundedness of the Hilbert transform

(see Stein [16], Chapter II) and the interpolation inequalities. The third
term in (13) is easily estimated as

17 Plpqazey S Coll+NIE@D, 0Dl (15)

where C, > 0 may diverge as ¢ — up in H30N H3121, By the combination
of (13)—(15), it turns out that
|12l ee(zz0y < Cliuovo)llxe + CL(p, T)C(uo, v0)
+TCy(1 + 20 (1o, %)%, (16)

where

L(‘Pa T) = I“u - ‘P[”ma:z:-im + I”'u' - ‘P”Ifnamim(zc(uo’vo))l_o
< p+6°(2C(uo, )’

By Lemma 4.1 and the argument similar to the derivation of (16), we see
that

1®lllsmootn < Cll(uo, v0)llxe + CL{p, T)C (0, v0)
+TC¢(1 + 2C (ug, ’vo))2. (17)

By Lemma 4.2 and the Strichartz type estimate in the weighted norm
spaces, we have

181 o (zzrety + 1 @llmazim < Cll(uo, vo)llxe + CL{e, T)C(uo,v0) -
+TPC,(1 + 2C (uo, v0))*. (18)
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It is easy to see that
(D) llinisiar < Cll(u0,v0)l|xs + TC(L +2C (o, v0))*.  (19)
Then, combining (16)-(19), we have
(@, V)llly, < Cll(uo,v0)llxs + CL(p, T)C(uo, %)
+TPCH(1 + 2C (uo, v0))*. (20)
Let (&, 7;) = (3@, o), ¥(@?,0{)) (5 = 1,2) for (B, v}") € Sugu,-
Then, similarly to (20), we gain
(21, T1) = (B2, ¥a)lllyy .
< (©M(p,T) + CTAN@D,0P) — (@, oIl (21)
where i
M, T) = 1E?)mooth + 2C (o0, 90))* T oot
+lluz — @lllmazim + [luz — @ll1Eazim (2C (uo, v0))*~*
< 20+ 20°(2C (uo, vo)) ' 2.

We next show that |||PLR™1Q ™ K () "1 ®—0|||lmazim < p and |||2|||smooth <
p and that we can take p > 0 as small as we like by choosing ¢ € CP(R)
and T > 0 suitably. This follows from the lemma given below (The proof
is omitted).

i

Lemma 5.1 Let (Z®,v®) € Syo,00,0 and 0, ¥ € C§°(R). Then, there exist
some @ € (0,1) and B > 0 such that
I”PIR—IQ—IK(‘P)—IQ — ¢||lmazim
< Cll(uo = ,v0 — ¥)llxs + CoT? (1 + Cluo, v0))?,
”l‘I’”’smooth :
< C(|l(uo — 9,0 — B)lixs + (w0 — @, v0 — )| C (w0, v0)*~*)C (o, 0)
+CpTP(1 + C(uo, v0))>.

Lemma 5.1 suggests that we can choose p > 0 sufficiently small by letting
(¢, ) close to (ug,vp) in X*® and taking T' > 0 small enough. Hence, by (20)
and (21), (®, ) is the contraction map and the existence of the solution
follows. The uniqueness and stability of the solution are obtained by the
standard manner.
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