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Derivatives of Spectral Function and Sobolev
Norms of Eigenfunctions on a Closed
Riemannian Manifold

XU Bin*
Department of Mathematics, Graduate School of Science and Engineering, Tokyo Institute of Technology
2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan

Abstract

Let e(x,y,A) be the spectral function and ; the unit spectral projection opera-
tor, with respect to the Laplace-Beltrami operator on a closed Riemannian manifold
M. We firstly review their history, including the asymptotic property of e(x,x,1),
the story of the birth of x; and the L>(M) — LP(M) (p > 2) mapping properties
of 3. Then we give a generalization of the asymptotic formula of e(x,x,A) to
3}"8)? e(x,y,A)|x=y for any multi-indices &, B in a sufficiently small geodesic nor-
mal coordinate chart of M. Finally, we apply this to the (L2, Sobolev L?) (p > 2)
mapping properties of x; .

1 Examples

Before giving the definitions of the spectral function e(x,y,A) and the unit spectral
projection operator X; on a general closed Riemannian manifold, let us see three ex-
amples, the first of which is concerned with the explicit computation of e(x,y,A) on a
n-dimensional flat torus, the second of which are related with spherical harmonics and be-
longs to the prelude of the birth of ;, and the third of which is on the L>(R") — LP(R")
mapping property of an Euclidean space analogy of x; .

Example 1.1. Let T" = R"/(27Z)" be the standard n-dimensional torus with the flat met-
ric and Lesbesgue measure induced from R". Let k = (ki, - - - , k) denote a lattice point in
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n
Z" and |k|? := ;k? Let @ = (6, ,6,) denote a point in [0, 27)" and k- 8 := X7 &;86;.

Then d@ = d6; ---d, gives the Lebesgue measure on T". The functions e—’g—g;—;%f—),
: n 2

k € Z", are L2-normalized eigenfunctions of the the positive Laplacian — z So? onT"
j=177]

and their eigenvalues are |k|2. Moreover they exhaust all the eigenfunctions of the posi-
tive Laplacian since they form a completed orthonormal basis of L?(T", d@). The spectral
function of T" is defined by

k- 0) exp(ik-6’)
e(8,0',1) = exp(ik-9)
( ) |k|25JL (2m)n/2 (2m)n/2

= (27)™ Y exp(ik(6—8)).
kl<a

Restricting e(@,60’, A1) on the diagonal, we obtain e(6,0,1) equals the number of the
lattice points in the Euclidean ball centered at 0 and having radius A. Moreover, we have
the asymptotic formula

e(6,0,4) = (27)"|B4JA" + O(A"), & — e,

where |By| is the volume of the unit ball B, = {x € R": |x| < 1}. .

We remark that on the open subset (—x/2, #/2)" of T" 6 = (64,---,86,) gives the
geodesic normal coordinates, whose definition will be given in Section 3. On the other
hand, 9/96y,---,d/3d6, are in fact global vector fields on T" so that for any multi-index
a, dg' becomes a differential operator on T". For a positive integer m, we set the following
notations:

@m— 1= 2m-1)2m—~3)---3-1, (-)1:=1.
We say oo = 8 (mod 2) for two multi-indices &, B € Z7 if and only if @; = B; (mod 2)
for 1 < j < n. By simple computation, we obtain the generalization of e(8,0,4),

2m)~n(—=1)e-1BD/2 3, k& if @ = B (mod 2)
0 otherwise

959Le(8, 0, A)lomer = { (

1)
It is not difficult to prove (cf Theorem 1.1.7 in [8]) the asymptotic formula
Y Ko+B — pnHah| / X0 x4 QA=) 2 oo @)
kl<a Bn '

where for a = f8 (modv2)

/2 n
OB gy = i j+Bj— ). 3
/nx x 2la+ﬁl/2r(@iﬁ+l)jl;[1( j+Bji—1) 3
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The remainder term on the left hand side of (2) can be 1mproved further. For example, if
a = f8 = 0, the remainder can be refined to be O(A"~ 2+m) (cf Theorem 11 in [2]) by
using the stationary phase method, however it is an open problem even in dimension two
to determine the precise reminder term. For general case, pléase see Ben Lichtin [9], in
which an excellent survey is given on this interesting and difficult problem.

Example 1.2. Consider the Euclidean unit sphere S” in R"*!, and the standard positive
Laplace-Beltrami operator A on S”. The distinct eigenvalues of A are j(j+n—1), (j =
0,1,---), and the corresponding eigenfunctions are the restrictions to S” of the harmonic
homogeneous polynomials of degree j in R*1, which are called the spherical harmonics
of degree j. Moreover, the multiplicity of the eigenvalue j(j+n—1) (j > 2) equals

( "_:J ) - ( n+i_2 ), which can be comparable to j*~! as J — +o°. The proof of

the above facts can be founded, for example, in §17.5 of [7]. Let H; denote the projection
operator with respect to the space of the spherical harmonics of degree j. Then H; takes
an L? function f on S", which can be written as f = YioHif, to Hif. Let 8(r) be
the critical exponent max(n-|1/r—1/2| —1/2, 0) for Bochner Riesz means on L™(R").
Sogge [11] obtained the sharp estimates:

H i fllzrmy < 7O Fllzgsmy, 72 1, @

where the constant C does not depend on j and

& — r — ' — n—-1
) 8(r) it Xt <y < oo,

The sharpness of (4) means that the bounds can not be replaced by o(j¢(")). Sharpness of

the bounds of estimates in what follows will always have this meaning.

Example 1.3. Tomas and Stein [16] showed that forn >2and 1 < p <2(n+1)/(n+3)
then Fourier transform of an Z”(R") function restricts to the unit sphere as an element
of L2(S"~1). That is, if do denotes the induced Lebesgue measure on S*~!, then the

following inequality holds:

for f belonging to the Schwarz function space .%(R"). A straightforward calculation
involving Plancherel’s theorem for R” shows that if we define prOJectlon operators P; as

follows
P. = / i(x,8) 4 :
)= [, fEe e



then (5) is equivalent to a uniform inequality of the following form:
1P fll2ey < CAPP)| fllpmey, 1< p <2(n+1)/(n+3), A > 1.

By dual argument and interpolation with ||P; f||2 < ||f]|2, we obtain from the above in-
equality that
1Py fllLrrey < CAEO)|| £l gy, 2 S 7 S ooy A 21, 6

which can be comparable to (4).

Consider the Laplace-Beltrami operator A = —37_; 2%/ axﬁ, which is a self-adjoint
operator with domain H2(R") on L2(R"). Let E; be its spectral family. Then by Theorem
10.17 in [1], up to a constant ‘

PA = E()L+1)2 _Elz .

Next section we will define the unit spectral operator x; on a closed Riemannina manifold
as an analogy of P;.

2 Spectral function and Fourier restriction theorems on
manifold

In this section we shall give the definitions of the spectral function e(x,y, A) and the unit
spectral projection operator X , recall the asymptotic formula of e(x,x,A) as A — +oo by
Hormander and the (L2, L") (r > 2) mapping properties of x; by Sogge and explain their
interrelation.

Let M be a closed (compact and boundaryless) smooth manifold of dimension n >
2 and let P be an essentially self-adjoint and positive elliptic differential operator with
smooth coefficients in L?(M,dL), where dji is a positive smooth density. Let {Ej } be the
spectral family of P, and let e(x,y,A) (1 > 0) be the kernel of E;2. This is an element of
C”(M x M) called the spectral function of P. Let p be the principal symbol of P, which is
a real homogeneous polynomial of degree m on the cotangent bundle 7*M. The density
du defines a Lebesgue measure d€ in each fiber of T*M, which is a vector space of
dimension n. Hérmander [5] proved the following uniform estimate by using the Fourier
integral operator:

e(x,x,A) = (2m) ™" x /z-z dE x AP/™ L O(A2-1)/m) | A 5 feo 7

where B, = {§ e T;M|p(§) < 1}.

Let g be a Riemannian metric on M, which is a (2,0) tensor field such that for any
x in M, g(x) is a scalar product on the tangent space T,(M) at x of M. Let |- |, be the
norm on 7,,(M) with respect to g(x). We define a distance s on M and a positive Radon
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measure f — [, fdv(g) as follows. The distance s(x,y) of x and y in M is defined to
be the infimum of the lengths L(7) of all piecewise C! curves ¥ : [a, b] — M from x to y,
where

L= [ 15 par

While the Riemannian volume element is given in any chart by

dv(g) = 1/ det (gij(x))dx =: \/g(x)dx,

where the g;;’s are the components of g in the chart, and dx is the Lebesgue’s volume
element of R". One can also define the Levi-Civita connection V of g as the unique linear
connection on M which is torsion free and which is such that the covariant derivative of g
is zero. The Christofell symbols of the Levi-Civita connection are then given in any chart
by

n 1 n
V50 =3 Tiok, Tf; = 3 Y. & (digij+ ;g1 — digij) »
k=1 =1

where (g'/) denotes the inverse matrix of g;;. Let A be the positive Laplace-Beltrami
operator associated to g acting on functions. In any chart,

1 & n
A=—-—30i(v8Y &™)
g = k=1

Let L2(M) be the space of square integrable functions on M with respect to the positive
Radon measure dv(g). Let P be the self-adjoint extension of the positive Laplace-Beltrami
operator A on L?(M). Then applying the above result (7) to this P, we have

e(x,x,A) = (2m)™"|B,|A" +O()L"‘]), A — oo, 3)

Let ey (x), e2(x), --- be a complete orthonormal basis in L2(M) for the real-valued eigen-
functions of A such that 0 < 112 < 122 < .- for the corresponding eigenvalues, where Aj
are nonnegative real numbers. Let ¢; denote the projection onto the 1-dimensional space
Ce;. Thus, an L? function f can be written as f = pIY ;(f), where the partial sum
converges in the L2 norm. It follows from the spectral resolution of the Laplace-Beltrami
operator A that

e(x,y,A)= Y ej(®)e;0),

KjSl
by which and (8) we have the uniform estimate for x € M of the following form:

Y lemP<cart iz, : ©)
Aj€(A,A+1]

which is also sharp.



Recalling this model case §" in Example 1.2, the eigenvalues j(j+n— 1) repeat with
a high frequency comparable to j*~! as j — +oo. For a general compact Riemannian
manifold M, by the integral of (9) on M, we obtain the number of A; in (4,4 + 1] is
always comparable to A"~! as A — +oo. With the support of Examples 1.2 and 1.3,
Sogge defined . .

X:f— Y ef
Aje(A,A+1]

as the appropriate generalizations of H; and P), in [12] [13], where he also proved the
corresponding projection theorem of the form:

s fllr < CAEO)||f]l2, 2 < r < oo, (10)

where || - || is the L norm of the function on M. Moreover, Sogge proved in [13] that this
estimate is sharp. We call x; the unit spectral projection operator of A. We may consider
(10) as the Fourier restriction theorems on compact Riemannian manifold because it has
the same expression with (6). The following lemma gives the relationship between the
uniform estimate (9) of eigenfunctions and the (L2, ™) mapping property of ;.

Lemma 2.1. The uniform estimate (9) is equivalent to the (L* ,L™) estimate of X :
llxaflle < CA=D2) ]2, A 2 1. (1)

Proof. The idea of the proof is due to Sogge [11]. Let the estimate (9) hold. Without loss
of generality, we assume that f is a real-valued function on M in what follows. Since

Bf@=[ T ei@e0)f0)vaa),

Aje(A,A+1]
for any x € X, by the Cauchy-Schwarz inequality and (9) we have

2
BIGF < 3 (P 3 ([ e0)ronmmn)

Aje(r, A+1] Aje(A,A+1]
< A YiflE A=),

Let the estimate (11) hold. Taking a point x € M and substituting

fO= 2 e@e)

Aj€(A,A+1]

into (11), we obtain the inequality (9). q.e.d.
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The main ideas of Sogge’s proof to (10) is as follows. With the help of the oscillatory
integral theorems of Carleson-Sjolin [3] and Stein [15], Sogge showed in [12] and [13]

122 fllg S CA8D||f|l2, g =2(n+1)/(n—1) (12)

by using the Hadamard parametrix for A — (A +i)? and the wave operator (9/dt)% +
A respectively. Interpolating (12) with (11) and the trivial inequality ||x fll2 < ||fll2»
Sogge proved (10).

3 Derivatives of spectral function

In this section we give the definitions of Sobolev spaces and geodesic normal coordinates
on M and state our generalizations of Hormander’s results (8), (9) to the derivatives of the
spectral function and eigenfunctions.

Let (g"/) denote the inverse matrix of (g;;). For k a nonnegative integer and u €
C*=(M), V¥u denotes the kth covariant derivative of u (with the convention VOu = u). As
an example, the components of Vu in local coordinates are given by (Vu); = dju, while
the components of V2 in local coordinates are given by

(V2u);j = a,%u— > I"ffjaku . (13)
k=1

We define the length |V*u| of V*u by
|V"u|2 = Zgiljl e -gi"j"(Vku)i‘...ik (Vk“)jl---jk .
where the sum is taken for 1 <iy, -« ,ig, ji,- -, e < n.

Definition 3.1. The Sobolev space H; (M) is the completion of C*(M) with respect to the
norm

k . 1/r
ol |y == (2/ |V1u|’dv(g)> ,1<r<es,
j=0M

k
gy = Y sup [Vu(x)], r=oce.
j=0xeM

Sometimes we also write C¥, H¥ instead of H,:‘,H,f
The following result is well known.

Proposition 3.1. H[(M) does not depend on the Riemannian metric. And H*(M) is a
Hilbert space.



We also need some preliminary knowledge about the geodesic normal coordinates on

' d
the Riemannian manifold (M, g). A smooth curve ¥ is said to be a geodesic iff V%Z d_zl =0.

In local coordinate, this means that forany k= 1,--- ,n,
M@+ Y THYO)Y) ) @) =0,
1<i,j<n

which is a second order nonlinear ordinary differential system. Fof a point pin M and a
tangent vector V in the tangent space T,(M) of M at p, there always a positive number
a > 0 such that the above system has a solution 9y (¢) for ¢ in (—a, a) with #(0) = p and

E?—};}/—(0) =V. pand V are called the initial point and the initial velocity of the solution
geodesic 1 (t) respectively. On the other hand, since M is closed and then is complete
with respect to the distance s, by the Hopf-Rinow’s theorem any geodesic on M can be
defined on the whole of R.

A geodesic ¥(r) is minimizing locally, i.e. the length L(¥]y, ,,]) of the geodesic arc
Yl 1) €quals s(¥(t1), ¥(22)) if |[t1 — 2| is sufficiently small. The injectivity radius injy(p)
at p is defined as the largest r > O for which any geodesic ¥ of length less than r and
having p as the initial point is minimizing. The injectivity radius injys of (M, g) is then
defined as the infimum of injy(p), p € M. It is a positive number by the compactness of
M. The exponential map exp, at p in M is the map from T}, (M) to M defined by the map
exp,(V) = W(1). Up to the identification of T,(M) with R”, it is smooth and it defines
geodesic normal coordinates at p on

Bp(inju(p)) = {g€ M :s(p, q) <inju(p)},
in which a point g has the coordinates V € T,,(M) with
exp,V=gq.
The preimage of Bp(injmu(p)) by exp,, is a neighborhood of 0 in T,(M). Let
¥ ={(q9,p) EM xM :5(q,p) <inju}.

Globally there is a neighborhood ¥ of the zero section {0} x M in the tangent bundle TM
and a well-defined diffeomorphism

¥ 3 (V,p)— (exp,V,p) €W .

Taking a point p in M and fixing it, we can see Bp(%ian) X Bp(%ian) C¥#.In
what follows, let (X, x) = (B,(ginju)), exp,*) be the geodesic normal coordinates on
B, (%inja). In particular, x(p) = 0. We will generalize Hormander’s result (8) by consid-
ering the derivatives of e(x,y,A) on the diagonal of X x X.
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Theorem 3.1. In the geodesic normal coordinate chart (X ,x) of M, for multi-indices
o, € Z the following estimates hold uniformly for x € X as A — oo:

Cp ap ATHOTBl L O(Ae+BI~1)  if ¢ = B (mod 2)
asB — 0, ?

ax ay e(x’y,z')ix=)’ — { " O(/l"+|“+m“) otherwise, (14)
where for multi-indices a, B such that a = B (mod 2),

CraB

= (@) (~1)(al-18)/2 / 9B gy

= (~pyla-ignz__Il=i(%+5;— DU
n-n/22n+|a+p|/2r(J£‘+_§M +1)

In particular, if a = B, then the following estimate holds uniformly for x € X as A — oo:

2 ,aaej(x)I2= n,aa‘n+2la|+o(ln+2|a|-—l), (15)
A.JSX.

where Cn,a = Cn,a,a >0.

Remark 3.1. Since e(x,y,A) = ¥3,<1 €j(x)e;(y), an immediate and interesting conse-
quence of Theorem 3.1 says that if A is sufficiently large, then in the geodesic normal
coordinate (X, x) the function ¥ <3 9% i(x)9Pe;(x) with & = B (mod 2) is positive (neg-
ative) iff |a| — | B can (not) be divided by 4.

Remark 3.2. Let (¥, x) be an arbitrary coordinate chart in M and ¥ be a relatively compact

subset of ¥. Then Theorem 17.5.3 of [7] claims that the following uniform estimate holds

for (x,y) €Y xY:
|0 e(x,3,A)] < CA™M, 2 > 1. (16)

Theorem 3.1 refines this rough estimate on the diagonal of X x X for the geodesic normal
coordinate chart X.

Remark 3.3. Since M is compact, considering a finite covering of geodesic coordinate
charts on M, we obtain from (15) that

2 llefllor=0A™#*1), & — oo,
Aje(A,A+1]

Using the same idea in the proof of Lemma 2.1, by the above estimate we can prove the
(L?, C*) mapping properties of x;, of the following form:

2afllce < CA™Y= £, A > 1. (17)



4 Outline of proof of the @ = 3 case
of Theorem 3.1

4.1 The Hadamard parametrix

Let & be the self-adjoint extension of 1+ A in L*(M) with D5 = H*(M). Let
cos(tv &) be the wave operator associated with &2 defined by

cos(tVP) = /Owcos(t\/ﬂ)dE“ ,

where E,; is the spectral family of &. Since the spectral function &(x,y,A) of 2 has
the relation with e(x,y,A) of A as &(x,y,A) = { e(x.3, \/2_’2__1(; gi ;[:), 1) , for the
proof of Theorem 3.1 we only need to consider &(x,y, A ) instead of e(x,y,A). For simplic-
ity of notations, in the following of this section we still write &(x,y,A) to be e(x,y,A). By
the standard computations (cf Section 17.5 of [7]), the wave kernel K(t,x,y) € 2'(R x
M x M) of cos(tv/2P) is the Fourier transformation with respect to T of the temperate
measure dm(x,y,T),

m(x,3,7) = /&) (sgn 7) e(x,|7])/2 . (18)

We remark that K(t,x,y) is even with respect to ¢.

In the following we shall review a remarkably simple and precise construction due to
J. Hadamard, which gives the singularities of the wave kernel K(¢,x,y) with any desired
precision. All the details of this construction can be found in § 17.4-5 of [7].

Let the distribution ¢ (a € C) on R is defined to be x4 /T'(a+ 1) for Rea > —1 and
is defined on the other values of a in C by analytic continuation so that dx$ /dx = xj’r'l
(cf (3.2.17) in [6]). In particular, x? is the Heaviside function and y7% = 8" for
k=1,2,---. In R; x R} we define the homogeneous distributions Ey, (v € Z) of degree
2v + 1 —n with support in the forward light cone {(z,x) : ¢t > |x|} by

E, = 2——2v-—1n.(1—n)/2x:+(1"")/2(t2 —x3), t>0. (19)
We have
(8%/01* = 3,32 |x5)Ey = VEy_1,v # 0; (9%/9* — 3,37/ 9x5)Eg = 03 (20)

—20Ey/dx = xEy_;. 21

With some abuse of the notation we shall write Ey(t, |x|) instead of Ey (t,x) in what fol-
lows; when ¢ = 0 this should be interpreted as the limit when ¢ — +4-0. Moreover it follows
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from the proof of Lemma 17.4.2 in [7] with the notation (3.2.10)’ of [6] that
Fy(t) := 9(Ev(2,0) — E\(2,0))

272V g1=m)/22v=r /T(y 4 (1 —n)/2), ifniseven
= { 21 g(l=n)/22v=n /(v 4+ (1 —n)/2), if nis odd and 2v >n
(=1)k2-2v=kg(1-n)/2 §(2K) /(2k — 1)11, if n =odd and n — 1 —2v = 2k > 0,
: (22)
where Ey is the reflection of E, with respect to the origin of R;.
Recall the notations X and # appearing in the above section. Let X = {g € M :
inf,ex s(p,q) <c}andputc= %in Jjm in what follows. Then X€ x X C # and the geodesic
coordinates on X can be extended onto X°. By the Hadamard construction (cf §17.4
in [7]), there exists a sequence of smooth functions Uy(x,y) (v =0,1,---) in # with
Uo(x,x) = 1 such that for

N
(’(’D(taxay) = %Uv(xay)EV(t’S(x’y))

with the positive integer N sufficently-large, the followings hold:
(i) For (t,x,y) € (—c,c) x #,

K(t,x,y) — 0(&(t,%,y) = &(1,%,)V/8(y) e V3. (23)
(ii) For (¢,x,y) € (—c,¢c) x X* x X,

ey (K (8,%,) = (1, x,y) = é‘(t,sc,y))\/g(y))| < ClefN-n-lel,
| o) < N-n-3. (24)

4.2 The derivatives of the wave kernel

Let @ = (o1, - ,0), B = (B1,+,Bn) € Z!, be two multi-indices. In the coordi-
nate chart (X x X, (x,y)) of M x M, we shall consider the singularities of the distribution
8,?8){3 K(t,x,y)|x=y with respect to ¢ at the origin of R;. By (23), we know

%K (t, %) h=y = 32P(A(E(t,x,Y) = &(1,%,9))VED) ) xmy
+ CN-n-letBl-34erm | (25)

By the above equality we know that 8;"8}? K(t,x,y)|x=y is the sum of a continuous func-
tion of (¢,x) € (—c, c) x X and finite homogeneous distributions of ¢ with coefficients
of smooth functions of x € X. We call the distribution summand of ax“BfK (t,%,9)]x=y
with the lowest homogeneous degree the principal singular term of afafK (t,%,)|x=y-
Thoroughly analyzing the derivatives

93P (A(Ev(tsx3)) ~ Evlts(x))) _, x€X,
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we obtain the following

Lemma 4.1. Let o, B be two multi-indices such that a = B (mod 2) and let (t,x) be in
(—c, ¢) x X. Then the principal singular term of 8fc7yﬁ K(t,,Y)|x=y is qa.p v/ 8(*X) F_|a1p|/2(t),
where q, g is a constant only depending on n, a, B and is positive (negative) iff || — | B|

can (not) be divided by 4. Moreover, if n is even, 8xa8)? K(t,x,y)|x=y equals the principal
singular term plus

(n=2)/2
Z Fy(t) x a smooth function of x + a smooth function;
1-la+pl/2

ifnis odd, ax“ayl’ K(t,x,y)|x=y equals the principal singular term plus

(n—1)/2
F,(t) x a smooth function of x + [t| x a smooth function .
1-|a+B|/2
Remark 4.1. Suppose that o = 8 (mod 2) does not hold. We also can determine the
principal singular term of d& 8)? K(t,x,y)|x=y. Precisely speaking, if |a+ B3] is even, then it
is Fi_|q+p|/2(t) times a smooth function of x; if |& + B is odd, then itis F_, (4 g)(¢) times
a smooth function of x, where r(a, B) equals either (ja+ B|—1)/2 or (Jae + B| —3)/2.

4.3 The Tauberian method

In this subsection we shall prove the o = B case of Theorem 3.1. Firstly we need a
Tauberian lemma.
It is well known that there exists an even positive function ¢ in .(R) such that

Jo@ar=1, suppé < (~1,1).

For a positive number &, let §¢(7) := ¢(7/€)/€.

Lemma 4.2. (Tauberian lemma, cf Lemma 17.5.6 in [7]) Let 1 be a nonnegative number
and x in [0, 1]. Let a be a positive number and ag, a) be two real numbers > a. Letv be a
function of locally bounded variation such that v(0) = 0 and |dv(7)| < My(|T| +ao)'d7.
Let u be an increasing temperate function with u(0) = 0 such that

|(di—dv) % 02(7)| < My(|7] +a1)¥, TER. 26)

Then »
[u() —v(9)] < C(Moa(|| +a0)" +Mi (7l +a)(I7l +a1)") @)

where C only depends on 1 and x.
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PROOF OF THE & = 3 CASE OF THEOREM 3.1

Step 1 We shall show that there exists a positive number C, o only dependent on n and o
such that (15) holds in the follows. '

By the equality (22) and Example 7.1.17 of [6], there exists a positive constant Dy, y
such that F,,(¢,0) with 2v < n is the Fourier transform of

d _
E(Dn,v(sgnc)lﬂ" 2") . (28)

Let Cp,0 = 2gq X Dy, |- We shall apply Lemma 4.2 with a = 1/c = 4/inj and

u(t) = (1/2)Va(x)(sgnt) 3, 19%;(x)]> = (1/2)V/8(x) (sgn7) 97 de(x,3, 7))l x=y
A<t

v(t) = Cpave()sgnt|t™t2/2.

It is clear that (T1) holds with 1 = n+2|ct| — 1. By (16), u(7) is an increasing temperate

function with u{0) = 0. We connect u(7) with the wave kernel K(¢,x,y) by the following
claim.

Claim 1 The Fourier transform of

d
= (V0 (sen1) 98P e(x,3,111)/2)
with respect to 7 can be written by
IFPK(t,x,y)+ Y, Py(y)0)oPK(t,x,y),
¥<B

where Py(y) (v < B) are smooth functions of x depending on the metric g of M. In partic-
ular, du(t) equals

(afa;‘K(r,x,y) > Py(y)azay“mx,y)) -
y<a x=y

Proof of Claim 1: We argue by induction with respect to the nonnegative integer |c + B|.
The case of o = B = 0 follows from (18). We denote the Fourier transform of w(7) by
F{w](t). Since

Fl(d/d7)V/g0) (sgnt) &,0¢ 9 e(x, 3, 17)/2](r)

= 9,,F[(d/dv)\/g0) (sent) 07 af e(x,y, |7)/2](¢)
— d),108(v/8()) Fl(d/d7)/g0) (sen7) 970 e(x,y, |7])/2](z) ,



the left part of the induction argument can be completed by direct computation.

By Claim 1, (28), Lemma 4.1 and Remark 4.1, when ¢ in (—c, c), the principal singular
term of du equals that of 09K (t,x,y)|x=y, which is the Fourier transform of dv; the
other singular terms are Fourier transforms of |t|"+2|“f"2f ~! times smooth functions of
xfor1=j<|a|+(n—1)/2. Hence (du —dv) * ¢, is the sum of the regularizations of
these functions and a bounded function. Then we use the idea in the proof of Theorem
17.5.7 in [7] to show that (26) holds with ¥ = max(n + 2|ct| — 3, 0) as follows.

By the choice of a = 1/c and ’

(du — dv) * ¢a(t) = F~![(du ~ dv) §a)(%), suppda C (—c,c),

we have
|ol+(n=1)/2 ,
l(du—av)xgo(t)] < C Y @axertHel=21(g)
j=1
< Ca* (14 [t)) (7)
< C/R(l+|t|)"‘_2(1+]t—‘t|)"dt
< c/R(l+|t|)-'f-2(1+|t;)~(1+|r|)*dt
< C(1+1)*.
Therefore by Lemma 4.2, we obtain
lu(A) —v(A)] < cartlel=1 3 > 1. (29)

Step 2 Since the constant C, o does not depend on the Riemannian manifold M, we only
need to consider its computation on a particular closed Riemannian manifold. In fact, we
have done it on a flat torus in Example 1.1 and obtained its value in (1), (2) and (3).

S Sobolev norms of eigenfunctions

In this section we generalize Sogge’s result (10) on the (L2, L") mapping properties of
2 to its (L?, Sobolev L") ones. Moreover, we give an example of the Sobolev norms of
certain spherical harmonics.

Theorem 5.1. Let k be a nonnegative integer and 2 < r < oo, Then the following estimate
| laflly < CAEOH|fllz, A > 1, (30)
holds and it is sharp. In particular, for a single eigenfunction e j(x) the following holds:
k
“ej”H,: < CA'_]E(’)+ ) A > 1’

which in general can not be improved in the sense of the following example.

13
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Example 5.1. Let M" be the unit n-sphere S" of the Euclidean space R"*1. Let Z,, be the
zonal harmonic function of degree m with respect to the north pole and Q,, the spherical
harmonic defined by
Om(x) = (x2+ix)™ .

Then there exists a positive constant C independent of m such that the following inequal-
ities hold:

1Zmllag;/11Zmll2 2 CmE O+, 2(n+1)/(n—1) < 7 < oo;

1|2/ l1Qmll2 2 Cm* O, 2 < r < 2(nt 1)/ (m - 1),

For the proof of Theorem 5.1, we cite a well known elliptic estimates as following

Proposition S.1. Let u be a smooth function on M, 1 < r < o and k a positive integer.
Then the followings hold

ko ko
llual g, < C ZOHAJuHr, |lllug,,, < C 20 1ATul| g7, (31)
j= j=
where the constant C only depends on the metric g of M and k.

Let u be a real valued smooth function on the Riemannian manifold M. The gradient
grad u of u is defined to be the dual vector field of one form du = Vu by

g(gradu, V) =du(V)
for arbitrary smooth vector field V on M. In the coordinate chart (X, x)
lgradu| = |Vu| =Y g*udpu (32)

we define the L? (1 < p < =) norm of grad u as

1/p
lgradu, = ( / lgradu(x)|? dv(M)dz) " .
M
Then
[l | gz = |1l p + || gradu||, ,

where f ~ g means that there exists a positive constant C depending only on the metric g
of M such that g/C < f < Cg. By Proposition 5.1, we have the following

Corollary 5.1. Let u be a smooth function on M, 1 < r < o and k a positive integer. Then
the following relations hold.:

k . k . .
I |z, Q.Z‘Z)IIA’uHr, el .., ~ EE)(IIA’ullr+IlgradA’ullr), (33)
]: J:

where f ~ g means that there exists a positive constant C depending on k, r and the metric
g of M suchthatg/C < f<Cg



PROOF OF THEOREM 5.1: By (17) we can let 2 < r < . By Corollary 5.1, we have
only to prove the following estimates hold for j =0,1,---:

18923 £llr < CAP*€0) £z, |grad Aga £l < CAZFIHEO)] £,
and they are sharp. By the duality, we need only to prove the estimates
18723, ll2 < CA* 40| £, ||grad Ay fll2 S CAPH+O| 7|l (34)

hold for 7 = r/(r— 1) and they are sharp. The dual version of Proposition ?? says that
the following estimate holds and it is sharp:

123 f1l2 < CAZO| £l . (35)
The proof is completed by the following relations:
A7 22 fll2 = A% |22 fl2, |lgrad Ay flla = A% |2 £l - (36)

The first relations follows from

Muf= Y Alelf).

Aje(A,A+1)
The second one can be deduced from the equality
/M grade;(x) - grade;(x)dv(M) = 547

derived by the Green’s formula.

6 A remark on Dirichlet boundary value problem

Let N be a compact Riemannian manifold with smooth boundary dN. On N we consider
the Dirichlet Laplacian Ay with respect to the Dirichlet boundary value problem

Ayu=f, x€ N° u(x) =0, x€dN.
Let {e?’ (x)} 51 be the real normalized eigenfunctions of Ay such that
ANe?’(x) = ujzeljy(x), xeN°; €¥(x) =0, x € IN;

where 0 < 1.112 < 1.122 < --- are the eigenvalues of Ay. Similarly we can also define the unit
spectral projection operator Xy ; associated to Ay. In particular, when N is a bounded
region in R”, by studying the heat kernel of Ay, Ozawa [10] proved

5 |24

) av

2 _ . Ant2

+0(A"12), as A — oo, (37)

" ey

15
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for every x € dN, where v is the unit outward normal derivative at x € dN. For the general
Riemannian manifold N with boundary dN, Grieser [4] and Sogge [14] proved that the
estimate (11) holds for xy 3, by which Xiangjin Xu [17] used a clever maximum principle
argument to show the estimate

Nawafllciany < CATHD2) £l a0y - ‘ (38)

The results of Ozawa and Xiangjin Xu stimulated me to think of Theorem 5.1. We con-
clude the note with a problem on the spectral function of Dirichlet Laplacian.

Problem Can we show the analogy of Theorem 3.1 in the geodesic coordinate chart with
respect to the submanifold dN in N? In particular, for integer k > 0 do there exist the
corresponding nonnegative constants Cy 4 such that the following equalities

2

okel
2 ai,lgx) = G A" +O(A™ 1), 4 — o0, x € ON,
Hj<A
hold ?
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