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Abstract

Pricing and hedging problems based on the exponential utility maximization
are considered in the incomplete market consisting of the derivative security writ-
ten on the untradable asset and the tradable asset as the instrument for hedging.
In particular, with respect to the correlation p of the two asset price processes, two
special situations are addressed: (i) p = 1, closely correlated case, (ii) p =~ 0,
almost independent case. Asymptotic expansions of the backward stochastic dif-
ferential equations for the dual optimization problems with respect to small param-
eters are studied, and approximations for the prices and the hedging strategies are
obtained in explicit forms.

1 Introduction

In Davis (2000), [1], the following special but typical situation in an incomplete market
is addressed: let S/ := (S f):e[o.n (i = 1, 2) be the price process of 2-risky assets defined
by the stochastic differential equations:

ds! =S} (o1dw (t) + uide), $4>0,
ds? = $2{o; (V1 - €dw\ (1) + edwa(0)) + podt}, 52> 0

on the probability space (Q,F,P) with a 2-dimensional Brownian motion w :=
Wnreto,ry» Wi := (W1 (2), wa(r))’ ((-)’ denotes the transpose of a vector or a matrix) and the
augmented Brownian filtration (%) ,e(0,r), Wwhere 0,02 > 0, e € [-1,1]and y;, 12 € R.
Supposing S untradable and S? tradable, and assuming € # 0, € < 1, i.e., two assets
S and S? are closely correlated:

d(s!,s% N
= —_—— = Vl-€e2 x|,
P \d(S1)d(S2) €



consider the pricing and hedging problem of the derivative security written on the un-
tradable asset S', whose payoff at the maturity 7 is given by F := h(S 1) with some
h:R, - R

Let X*" := (X[ ”),e[0 1) be the value process of the self-financing hedging portfolio,
given by

t d:s_-'z
X7 =e" (x +f m, __,") forr €[0,T],
o S2

where r is the constant interest rate, x € R is the initial capital for hedging,
(M )rejo,r) is the hedging strategy, and S? := ¢S 2,

In [1), as the hedging problem for a seller of the derivative security, the follow-
ing utility maximization problem, (which we call the exponential hedging problem,
following Delbaen et. al; 2002, [2]):

P) VE(x) := sup E U, (-F + X7)]
neA
with respect to the exponential utility function:
e
Uy(x) := - (y>0)

over an appropriately chosen space A of admissible strategies is employed. Also, as
the pricing problem, the quantity called utility indifference price: p(x, F) satisfying

(1.1) ' VE(x+ p(x, F)) = :ggE[Uv (x77)]

is proposed as a coherent price of the derivative security.

To attack the problem (P), a duality method is employed, which is well established
for utility maximization problems (cf., Karatzas and Shreve ; 1998, [6], for example).
For the value function v¢(z, y) (. y) € [0, T]1xR,) of the dual problem (cf., (3.7) for the
precise definition), a dynamic-programming equation is derived and the existence of its
smooth solution is checked in the setting of [1]. Moreover, the following relations are
obtained.

Theorem 1.1 (Theorem 6.1, 6.4 and 7.3 of Davis, [1])
1. For the optimal value of the problem (P) and the utility indifference price defined by
(1.1),

U, [e’Tx s Sé)] ,
Y

e—rT Uz — 2
E
0 —_—
hold for any x € R, respectively.
2. An optimal strategy of the problem (P) is given by

—rT _
o= e_{’“ L - I—EZZ—;va‘(t,S,l)S,‘}.

Ve(x)

p(x,F)

v Lo
3. As € | O, the value function has the expansion
(12) ¥y = yE°[h(st)ls; = ]—~("i—) (T -1

+5212-ZVar° [h (S7)187 = y]+ O
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Here, E°[*|] denotes the conditional expectation with respect to the minimal martin-
gale measure P°, defined by the formula:

dP° =&, (_#2 —r (‘\/1 - 2w + €W2)) s

-;i_F 7:,.- a;

Var’[#]-] := E°[(»)?|-] - (EO[*|-])2, and O(e*) depends on the value (1, ).

In particular, we are interested in the expansion (1.2). From a practical viewpoint,
it is an effective and useful expansion: it gives nice, intuitive approximations of the
value of the problem (P):

2
log V¥(x) — log Uy [e'Tx - E°[n(s})] - 2T—7 (’-‘%-’-) - é%vw [n(s ;)]] = O(eh),

and the utility indifference price:
P F) =T {E" (s ] + 2 var® [h(s})]} + 0.

Also, both quantities E°[h(S1)IS} = y| and Var® [K(S})IS} =] are fairly “com-
putable”. ’

Further, we are interested in the approximation of the optimal strategy, which is not
mentioned in [1], and is studied in [10]: under an assumption, the strategy 7 defined by

- e—rT Ha—r
™= [ a3
S 2
-V1 -eza—:s,‘a, (yE0 [h(s%‘)lsll =>’]+€2%V3-r0 [h(S})IS,l =y]) L:S,‘]

satisfies the relation
(1.3) log V(x) - Iog E [Uy (~F + X37)| = O(e*) ase | 0.

In the present paper, we extend the above analysis to (i) stochastic mean-return-rate
case, and (ii) € =~ 1: almost independent case. Instead of treating the dynamic program-
ming equation, we analyze the associated backward stochastic differential equation
(abbrev. BSDE, hereafter), which is the approach in Rouge-El Karoui (2000), [9]. Fol-
lowing [10] by the author, we compute the asymptotic expansion of the BSDE with
respect to €, which suggests a systematic approach to obtain the expansions such as
(1.2-3).

The organization of this paper is the following. In the next section, the setup is
introduced and in Section 3, the relation between the dual problem of the exponential
hedging problem and the BSDE having a quadratic growth term in the drift is reviewed.
Main results are explained in Section 4, and their proofs is demonstrated in Appendix
A. Section 5 is for stating conclusions.

2 Setup

We extcnd. the setup in Introduction in the following way. Let (Q,F, P%
2 Qi F*, P°) be the product of Wiener spaces, i.e., Q; := Co([0,TL,R), F' :
B(Q)) and Pf’ is the Wiener measure, the law of the i-th canonical Brownian motion
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w) = (W?(t)) 0.1 The filtration (Fy)repo.1) := (F; X F¥)iejo,r; is the augmented natu-
ral filtration. Sometimes a random variable X on (Q;, !, P,) is identified with X o j
on (Q, F, P), where j) : Q 3 w := (w),wy) — w) € Q, is the projection onto the first
probability space.

We start with the stochastic differential equation:

as; =S!|odwd@) + {/11(t)— Vi —62%27(1)_—0}‘”}’ §>0,
2

ds? =52 0-2(\/1 — e2dwi(1) + edwg(t)) + rdt] ) §5>0.

Here, 0),03 > 0, r € R, and € € (-1,0) U (0, 1) are constant, while y; is a bounded
ﬁ‘-prcdictable process, i.e., gy : [0,T]1 x Q) 3 (t,w;) — u (t,w;) € R is measurable
with respect to the predictable o-algebra. Further, as the condition for u;, we impose
one of the following

(2.1) y, is a bounded ¥!-predictable process. Further, us(¢,-) € Dy, for all
t € [0,T], where Dy, » is the completion of the space of Wiener polynomi-
als in the first probability space: P := {F := ¢((fi - wr,....(fu - W?)r); ¢
polynomial in n variables, f; € L3([0,T]), i=1,... , n} with respect to the norm:
IFl12 = NFll2y + | Sy 058((f - WO, - . 'w?)T)ﬁ(')an([o.T]xgl)’ and it
has the bounded Malliavin derivative for ¢ € [0, T}, i.e., D) su2(2,-) € L™(2;,R)
for s, € [0, T], where D, .(-) denotes the Malliavin derivative in the first space.

(2.2) u, is a bounded deterministic procesé.

Next, let P be the probability measure defined by

dpP | _ VT = 2,0 0 . e
2P0 ﬁ.-&,(f/l( l—ezdwl+edw2)) = A,? where A := .

From the Girsanov theorem, the process w := (w;, w;)’, given by
!
wi(®) = Wi - V1 - ezf Adu,  wa(l) i= wi(t) — ef/l,,du
0 0

is a (P, #;)-Brownian motion, and (§!, ) satisfies

ds} = §Hodwi () + i (dr}, si>o,
ds? = 52 {02 (V1 - €dwi() + edwy(1)) + (e}, S3 > 0.

We regard P as the “real world” probability measure, S', the price process of the
untradable asset, and S 2, that of the tradable asset, respectively, therefore, PP is inter-
preted as the so-called minimal martingale measure.

Note that the filtration (%)e0,7 is not generated by the P-Brownian motion w in
general, but that the following martingale representation theorem holds with respect to
w.

Lemma 2.1 Let G € LXQ,F,P). Then, G = E[G] + [ (¢C) dw, holds for some
2-dimensional predictable ¢© such that E [j(;r |¢f;|2 dt] < oo,

Proof. Since A7G is PP-integrable, A7G = E°[A7G] + [ (SYaw? = E[G] +
Lr(a//f' Y dw? holds for some 2-dimensional predictable € such that LT WO 2dt < oo.



216

Let HS := E’[A7GIF;] = E[G] + [ (¥S) dw}. Then,

_ EYAGIF] _ ‘ [HS
E[GIF] o =EG1+ fo d( AM)

G _ G -1 _
E[G] + f Vi~ Hyoy (@) - 1) (Vl — e2dw,(u) + edwz(u))
0

Ay
is observed for ¢+ € [0,7] from the Bayes rule and the Itd formula. By letting
% = AL {wG - HSo} (uy - r)} ( vi- ez,e) , the lemma follows since the martin-
gale [(¢®)dw is square integrable: E [ j(;r I¢ﬂ2dt] = Var[G] < o0. 3
Let F be the payoff of a derivative security maturing at T having the form F :=
A(S') with A, a bounded measurable function on the space C([0, T], R,). We assume

that the functional F(-) : Q; 3 w; — F(w;) = h(S*(w;)) € R belongs to D, » and that
it has the bounded Malliavin-derivative, i.e.,

23) - D,FelL”(Q;,R) forallze[0,T].

We then address the optimization problem (P) over the space of admissible strate-
gies:
, T
A= {n : predictable, E [ f |7r,|2dt] < oo}.
0

3 Duality and quadratic BSDE

In this section, along the lines in Rouge-El Karoui, [9], we review the duality method
to attack the problem (P) and its relation to the BSDE for the dual problem, which has
a quadratic growth term in the drift.

First, prepare a notation

Notation 3.1 for the process A, A denotes the process defined by A, :=eA,

and vectors: - , '
de :=(Vl—ez,e) and df :=(e,—V1—62)
to recall the expressions

20, (didw, + Adt)  with A:=E2L

ds? =

- 3
and X;" = x+ f n,02 (didw, + A,du) .
0

These imply, for each v, an element of
D= {v := nd}; n: bounded, predictable} ,

that we can define the equivalent martingale measure P on (Q, ¥7) by the formula:
14
ap =& (-— f(/lde -v) dw) =: Z,
Fi :

‘ dP
and that the process Z¥X*” is a martingale for all 7 € A and v € D, so, in particular,
E [Z;X;'”] = x holds since E [SUP:e(o,n ]Z,"Iz] < oo and

r
E[ sup |}??~"|2} < CIE[ f |7ru|2du] <o
0

t€[0,T]
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from Doob’s inequality and the boundedness assumptions of o, A and v.
Next, for f,x € R, and y > 0, denote

- 1
(53, /) = Uy(=f + 0 =yx and [,0):=(U;) " 0) = == logO)
to see the relation

sggu,(x;y,f) = uy(f+ly(y);y,f) = —)’(f“

l+logy)

Moreover, for r € A and x € R,y > 0, observe the inequalities

G E[U(-F+Xp)]-yx < infE[U,(-F +X7") -yZ1 X
< infsup Efuy (X752, F)]
< infE [y (F + 1, (yZ¥) ; yZ&. F)]

to obtain the minimization problem

D) V()= inf E [y (F + 1, (vZ}) : yZ}., F)]
called the dual problem of the primal problem (P), and to deduce the inequality
(3.2) Ve(x) < inf (V<(y) + yx).

y>0

Indeed, the equality can be established in (3.2) and the following expression is aob-
tained.

Theorem 3.1 (Theorem 2.1 of Rouge and E! Karoui, [9]) It holds that
(3.3) Vé(x) = U, (e’Tx 1 sup{E'[yF]1-H (P"IP)}) ,
Y veD

where E”[-] denotes the expectation with respect to the probability measure P¥ and

4Q d )
H(QIP) := { E[dP log 3‘%] ifQ <<'P,
+00 otherwise

is the relative entropy of Q with respect to P.

Remark 3.1. The duality relations similar to (3.3) have been obtained for more general
semimartingale S and for other choices of the set of admissible strategies A by Delbaen
et. al. in [2] and by Kabanov and Stricker (2002), [4].

For the computations of the value V¢(x) and the optimizer, one can solve the BSDE
for the value process of the dual problem. Recalling that the filtration (F;)efo,r} iS
weakly w-Brownian (i.e., Lemma 2.1 holds), we can apply the results in Rouge and El
Karoui [9] to obtain the following.

Theorem 3.2 (Theorem 4.1 and 4.2 of Rouge and El Karoui, [9]) Denote Z,‘:T =
22, 2 =722 and T =T —tfor0 <1 < T. Let

essinf E [uy (F + 1, (yZ7):yZ}7. F) | 7]

~rr
= X {— esssup E” [’}'F —1ogZ,"Tl7",] +(1 +logy - r‘r)}
4 veD ’

—IrT
=: Zey— {=Yf + (1 +logy - rr)}.
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There exists E€ € Hi’z = { f : 2-dim. predictable; E [ fOT If,lzdt] < oo} such that
(Y€, E°) satisfies

(34 dY; = FELdi+(E) dw, Yi=oF,
1 2
where f(6€) = (8- (6d)}+ado,

and (-, ) denotes the standard inner-product in R%. In particular, n* € A satisfying

-rT _ .\/ )
(3.5) = "’Y {"2(22 . 10 < af(z)} forallt € [0, T]
2 2

is an optimizer of the primal problem (P), and v* := (d+,E)d? attains the infimum of
the dual problem (D). Further,

(3.6) Vé(x) = U, (e'Tx - 3;2)

holds.

Remark 3.2. The existence and the uniqueness of the solution (¥, Z) of the quadratic
BSDE (3.4) in the space HY x H%’z, where HY := {f € L*([0, T] x ); predictable}
is ensured by Theorem 2.3 and 2.6 of Kobylanski (2000), (7], (cf., Appendix B of [9],
also).

On the other hand, in [1], Davis solves the dynamic programming equation for the
value function of the dual problem:

(3.7) V(t,y) = esssupE” [yF—logZ,‘:T | s} = y]
veD

T
= esvis;)JpEv [yh(s’,)- %f, {14ul? + vul?) du | s} =y],

recalling the relation

T T
1
t t
where
w' = (wlwy), wi=w+ f (Aude = v,) du
0

is a 2-dimensional P*-Brownian motion, and obtains Theorem 1.1, as we explained.

4 Results

We focus on the following two situations:

i exl1 : closely correlated case, with the conditions (2.1,3),
(i) 6:= V1-€2 <« 1 :almostindependent case, with the conditions (2.2-3).

Regarding the solution (Y*, £€) of the BSDE (3.4) as (Y*¢, £%¢), where we define
@.1) ayy© = g(6E0,¢)dr+(E7F) awd, YE<=9F,

where g(,£,€) = %{/if—(é'.dﬁ)z},



(recall that € is contained in w?® := w + ( f Adu)d.), we compute the asymptotic expan-
sion of (Y€, 2¢€) with respect to € at 0, and that of (Y VI-(@)?V1-6 = V1=, ”‘52)

with respect to ¢” at 0, which yield the expansions including (1.2-3).

4.1 Closely correlated case

First, consider the case (i) with the assumptions (2.1) and (2.3). Let (60 y0e 50,50 ‘) =
(Y° €, =0 ‘) and introduce the BSDEs:

@2  d(lr)= ((a;:?f) o -0)dr+ (BLED) awde, aLrie =0,

using the functions g; defined inductively

8o (tffoi EI) g(t$é016,)

i-1
and  gi(t,(¢)je0,...€)

Z (34.-;&--1 (t s E Veso,..i-1 E') ,«f'i“)

j=0

Formally, it is expected that (a;, Y0€, 4, E'.O'f) is the i-th derivative of the solution of
(4.1) with respect to the parameter ¢ at 0 and that a “Taylor expansion™:

4.3) Y“—Za‘yﬂf m-—Z £0eS

i=0

which satisfies

(4.4) dye" = {g (t.if'", )+R""}dt+§f"’dw?, Ye" = yF
with RY" = Zg:( :,:?‘ J 0""",,0)€ —g(,:f',e)

gives an “approximation” of the solution of (4.1), if R;""(w) = o(€") is “small” enough.
We have not been able to check the differentiability of the solution of the quadratic
BSDE (4.1) with respect to €, (note that the standard results on the property, stated in El
Karoui et. al. [3], for example, cannot be directly applied), however, an approximation
result on the quantities (4.3) can be shown under our assumptions (2.1-3), as we will
see. :

Define the functional H € L™ (Q;, F 1) by

1 T
H(w) = 7F @) - 5 fo Ao

to observe the following.

Lemma 4.1 1. The solution of (4.1) at € = 0 in the space HY x H;'Z is given by
1 (T ;
Y€ = EO {'yF -5 f; Adu [ 95] . 2% = E° (D HF],

and E3%(t) = 0 fort € [0, T].
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2. (6LY%¢, 8LE0) = 0 fori=1,3.
3. The solution of (4.2) with i = 2 in the space HY x H?’z is given by

17
82 Y%« Var® [yF— 3 f A2du ] 9‘;},
!

RE@ = 2{E°[HD\HIF,) - E° [HIF;) E° [Dy HIF])

I}

and P2 EY*(t) = 0 for t € [0, T,
We now extend the expansions (1.2-3) and Theorem 4 in [10], as follows.

Theorem 4.1 Assume (2.1) and (2.3). Define ™2 := ( T, ) 10,17 € A by the formula

ez _ €T @ -r V1-€
(4.5) n,_y[agafaz{

2% + — aﬁ, :?"(t)}} .

Then, the relations

O(eh)

'Y‘ = Sk %a@x"’-‘

L=([0,T}xQ)
and log V(x) - log E [Uy (~F + Xi'?g)]

O(e*)
followase | 0.
Corollary 4.1 Assume (2.2-3). For the utility indifference price,
P, F)=e"T {E"[F] + 52%’Var°[p]} +O0(* asel0
holds for any x € R.
It is observed that the pric'e is always higher than that in perfectly correlated (¢ = 0)
case (by neglecting O(e*)-term), which is intuitively clear.
4.2 Almost independent case
Next, consider the case (ii) with the assumptions (2.2) and (2.3). Let § := Vi-& =

0,6" := /1 — (¢’)? ~ 0 and denote

V2= yVi-ervitg | 0. gVieRVI® g d; = 2

We compute the asymptotic expansion of the BSDE:
4.6) a7’ = h( L2, 5’)4: " (:f'“’ ) dw?, Y54 = 4F,

where h(1,£,6) = g(ne, Jl—(é’)):%{lﬁ—({,z‘;f},

=)= (7.2")

with respect to &' at 0. Let () 7, 03Z 7"°,E) and introduce the BSDEs:

(4‘7) da(ly??s = h ( ’ (aé'-:-‘:"?‘a), 0 N ) (66"‘t ) dW?, gl?.(;:a = 0:
J=0,....i



using the functions &; defined inductively

ho(1,6%,6") = h(1,£,8)
i-1

..... : Z (Bgrhi- (t, (€ Yec0...-1,6' ), €)

7=0
+0g hi-1 (t s (€ k=0, i1 5') .

(=%
=
—_—
P
—
i
&
L
>
~—
]

We observe the following.
Lemma 4.2 1. The solution of (4.6) at 6’ = 0 in the space Hy X H%‘z is given by

E° [eF Dy ,FIF]
E0[eF|F]

-y 1 (T =06
Y,” =logE® [e’FIT,] -3 f ABdu, E @)=y
t

and By°(1) = 0 for t € [0, T].
2.(3,7",9,5) = 0fori=1,3
3. The solution of (4.7) with i = 2 in the space HY X Hi‘z is given by

F
3‘25,??‘6 = -2 {yw ~log E° [e"ﬂ?‘,]} ,

EY [e"F|F,]
2RI = -2y Eo[e”FFDx,:FITz]_Eo[e”FFlﬁ]Eo[eyFDl,:Flﬁ]}
&= - ES[e"F|F,] ES[e7F|F 12 ’

and B8, (t) = 0 for t € [0, T).

Using the above lemma, we obtain the following.

Theorem 4.2 Assume (2.2) and (2.3). Define #2 := (y'r;"'z)rel oz, € A by the formula

5 e Tl —r 6 (=05 6% ., =04
(4.8) #? = " [‘-‘i;%— + {.:l ) + —z-ag,.:l (t)} i
Then, the relations

2
“YW - L7 = 0(6*)
L={[0,T]x£)
and 1ogVV'F(x) - 10g E[U, (-F + X5*)] = 0(*)

followas 6 | 0.

Corollary 4.2 Assume (2.2-3). For the utility indifference price,

Vi@ _ e’ E°[e" F)
pV(x, F) = {(1 +6%) log E%[e"] - 62775‘@77]-} +0@6* asé6l0
holds for any x € R.

From (A.3), 6,25.?0’6 < 0 follows, which implies p V=% (x, F) < ‘—;’1 log E%[e”F] +
0(6%), i.e., the utility indifference price is always lower than that in perfectly indepen-
dent (6 = 0) case (by neglecting O(6*)-term).
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4.3 Examples of F

Let (u1, 42) be deterministic (and bounded). The following are examples of F satisfying
(2.3):
(a) European put: F(wy) = (K - Sp(w))* (K > 0) with D F(w) =
~o1S H@D) 51 wnsk)-

(b) European calls spread: F(w,) := (SIT(wl) -K)" - (S‘T(wl) -K)*, (K} < K3)
with Dy F(w)) = 018 1 (@) g <5 wpska)-

In these cases, prices and hedging strategies in Theorem 4.1-2 and Corollary 4.1-2 can
be computed by using the conditional lognormal distribution function of S}..
Moreover, we can treat path-dependent type options, in principle. For example,

(c) alookback option: F(w)) := (K - Mh(w))  with M} :=mingoy S}
satisfies condition (2.3). In fact, we can observe that D) ,F(w;) =
—mMT(wl)l (Mu(wl)«,l(,q(w,ﬂf), Here, ¢(*) is the time attains the minimum of the
P°-Brownian motion w°() on the time interval [0,T], i.e., min,o,r) W, Ot,w) =
w? («(wy), wy), which is uniquely determined for a.e. w; (cf., Remark 2.8.16 of Karatzas
and Shreve; 1991, [5]), and 7°(?) := jg {ul(u) - V1 - €o10; (uaw) - r) - ?}du

The expression follows by letting G(w,;) := § (‘, exp (0'1 Mmilye(o,7] w‘l’(wl)), by recalling
the relation Mj.(w1) = G(w; + 1), and by observing

G(w, + €¢9) - Glw;) _ fT d¢,
€ B 0

a1 Gl o — o dt

lim

-0

for all ¢ € C!([0, T1), (cf., Example E.4 in Appendix E of Karatzas and Shreve [6], or
Example 41.13 in Chapter IV of Rogers and Williams; 2000, [8]). Further, denoting

1 S (1)
m, (w;) = n}m Wi, i + 1) = b_—urgar}]l g{ “S(‘, and m = m(l)',,

and letting (u;,u2) constant, we see, for a bounded / : R —~ R and J(-) :=
IC) exp(a1 (N <oy 10trrs )

E° [1(m}-)D ,FIF]
= "O'IS Eo [I(mT) CXp (O-lmT) 1{.‘i“ exp(can)SK} {m}>m, ;) | T]
= - SLEY [ (b A @t mp) L <pmal)

a=wl(ey+1 () b=m;

from the Markov property of the process (w‘l’(t) + n°(t), m!)ero,r)- Therefore, we can
compute prices and hedging strategies in Theorem 4.1-2 and Corollary 4.1-2 using the
distribution of m}._,, whose explicit form is known (cf., Example E.5 of Appendlx Ein
[6], for example).

5 Conclusion

The exponential hedging problem is addressed in the incomplete market consisting of
the derivative security written on the untradable asset and the tradable asset as the in-
strament for hedging. The correlation p of the two asset price processes, or /1 — p? is
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regarded as a small parameter, and the asymptotic expansions of the backward stochas-
tic differential equations for the dual optimization problems with respect to the param-
eters are studied. Explicit expressions for the expansions are obtained with the help of
the Clark-Haussman-Ocone formula, which yield approximations for the utility indif-
ference prices and the optimal hedging strategies.

A Proofs

In this appendix, we give the proofs of Lemma 4.1, Theorem 4.1, and Lemma 4.2.
Those of the rest are omitted since Corollary 4.1-2 are deduced from Theorem 1.1 di-
rectly, and the proof of Theorem 4.2 is similar that of Theorem 4.1. Actually, Lemma
4.1 and Theorem 4.1 have been obtained in essential forms in [10] (cf., proofs of
Lemma 1 and Theorem 4 in [10]), though we show them for our completeness.

A.1 Proof of Lemma 4.1.
1. Suppose &, E2€ = 0, then
dy)c = —,lzdt + 2w, Yy =yF
is observed. The expression for Y% and the relation
EC(HIF,] = YO* + f =% w)dwd(u) forte[0,T]
0
follows from a standard result of linear BSDE (cf., El Karoui et. al; 1997, [3]) and the
result on the um%ueness of the quadratic BSDE studied in Kobylanski (2000), [7]. The

expression for E,* is obtained from the Clark-Haussman-Ocone formula.
2-3. Observe that

. _ [ 0O -1\, éf({o) €(0 4
d; = (_1 )+e( 0 )+2(1)+3! 0 + 0(€")
2, ¢
— L = oA gl 4
= dy +; i!af,do + O(€"),
where O(e*) € R? is a vector with the norm |O(e*)| ~ €*.
(i) Noting that
81 (1, j=0.,0) = — (€%, a3 ) {(¢', d3 ) + (€%, 9 d))
and that &9 = 0, we can deduce
d(0e Y€)= 3. EMdw?, 8.Y2 =0

and (9 Y0¢, 0 E%¢) = 0.
(ii) Observing that
82 (t, (&) j=0.12, 0)
= -~ )| ag) + (& 00d)) - (60.45) {(6%.05) + (¢ 0 ap))
- (.005) (.48) (0,008 - (€. 8) (€ 005) + (.2 )
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we rewrite the BSDE for (3§ Yo« 52 Eo'f) as
d(62r) = ("Of(t)) dr + (02E) aw?, Y =0

since 2 7"0‘ = 0 and 8E%¢ = 0. This standard linear BSDE on (Q, 7, P, (F))rejo.1)), (0T
(Q, F, P°, (F ),E[Q_T])) has the unique solution satisfying

T
AYre = E"[ f (E?"(u))zdu
T
Y + f A% EX (u)dwd(u) E° [ f ("°‘(u)
0

and 63,:2 ** = 0. The expression for 6%E '"0 * is deduced from the relation

T 0,
[ E@o)a
( j; ""°‘(t)dw‘1’(t)) -2 f ( f "°°(u)dw?(u)) EY()dwl(t)

(1 - o) -2 fo (E°1HIF:) - E°LHD) E2“(ndwi(o)

al

|7

T
- () -2 [ EYHFIED: HF )

the Clark-Haussman-Ocone formula, and the chain rule for differentiation.
(iii) For (/) . such that £ = £ = O and ¢' = 0, we can check that

&3 (. €)j=0123, 0)=0,

so the equation

d(BY)<) = REPaw?, Ry =0
and (8% ¥0<, 835°¢) = 0 are deduced. g

- A.2 Proof of Theorem 4.1.
First, observe, in the BSDE (4.4) withn = 2, that IIR"Zfle([o,Tm) = O(€*) holds because

of the boundedness of ¢, 8.d}, and 8,E% (i = 0,.. ., 3), which is a consequence of
Lemma 4.1, . _
Next, introduce the linear BSDE for (4Y%2, 482 := (Y*-¥<?, 8¢~E¢?2), described
as
1
{ day;? = {—5 (Bs + B, dt) (4552, dF) - Rf'z} dt + 425 aw?,
4Y$ =0

to observe the relation:
'3
(A.1) -T,4 Yf‘z = -I,4 Y,"2 - f T ,,R,‘;zdu + M, - M;
S5
forO < s <t < T, where T := (I';)eo,r) is the solution of the SDE:

dr,_r,{;( _fZ’d-L)(dj)’_dw?}, Io=1
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and M := (M,),(o.7) is the P°-local-martingale defined by

! ’
M, ::j;r { Ee? + IAY62(~5 E;—Z,dj)d:} dw).

For a sequence of increasing stopping times (7,,)men, Which localizes the local martin-
gale M, we deduce the relation

TAT,
AYE2, |+ €ty f r,,du[fm,m].
t

AT

Fins, |4¥E2 | < B9 [r

with some constant C) > 0 from (A.1). The first term of the right-hand-side is
<E° [rTAr,,, ﬁi\r,,,] ”A Y;-,Z\Tm <Tiar, ”A -0

L=(Q)
as m — oo by using the optional stopping theorem, and the second term of the right-
hand-side is

T AT, T
=€*'C\E° [f I.du I .'7‘7/\1,,.] - e4C1E°[f I'.du l T}} < €'C|TT,
t

AT,

L=Q) — T/\Tm

. . T .
as m — oo for a continuous version of E[ f I',dulF’] by using the monotone conver-

gence theorem. Therefore, ||4 Yf‘zllm([o,nxn) = O(&*) follows.
Finally, define the process V2 := (’17‘-2) by

1€[0,T)
(A2) vi? = (Bf2, d2) d?,
to deduce the relation = N {ye’TO'z?r~E 2. /l,} de + V52 and

T
yF = Y&+ f (ye’Tazﬁf’zde - Ad, +7f‘2) aw?
0

+j; [l'le il Rf‘szt

from (4.4-5) and (A.2). Therefore, for x € R, we obtain that

T
X5 4 f R,
0

exp (?5’2 - 7e’Tx) ,

F+ 1, (¥2(0Z]")

where yf'z(x)
which implies

log E [U, (-F + X7™°)]

= logE[ ( (Y*2nZ7") - fo TRf'zdt)]

= —%g"z(x)+0(e4)
Ve
= logU, (e x— ;)+O(e4)

€

Y,
= logU, (e’Tx - —'yg) +0(e") asel Oy
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A.3 Proof of Lemma 4.2.
1. Suppose E‘z’"’ = 0 and observe the BSDE:

ar’ = -;- {/13 - (E‘l’"’ (t)) }dt +E0aw@), Ty =9F.

06

Let W, := cxp( - — /lzdu) We can deduce the equation

AW, = WE@)an’ (), Wr=e"F

and its solution W, := E° " IT',], E‘l"‘s(t) == yW,1E? [e”F D, ,F | T}]. The uniqueness
follows from the result of Kobylanski, [7].

2-3. Observe that
1 0 2 ( -1 S0
_(0)+5( 4 )+—2( 0 )+—3!(0)+0(5“)

3 i _
= dy+ ), %—a",dé +0(6%),
=l

.
dy = dipy

where 0(6*) € R? is a vector with the norm |0(6*)] ~ &*.
(i) Noting that

hl (t, (fj)j=0.l’ O) == (6052;) {(fly 2:) + (g()’ 65'2;)} )
=06
E, €H7, and Z, ..,2 = 0, we have a standard linear BSDE:

4(35, )= B OB ()t + 95 B dw?, 85 ¥y =0

with the solution 0.
(ii) Observing that

ha (1, () j=0,125 0)
- aem) ) a) (e )+ om)

(0.0 ) .0 ) -(O.2) (0.07) - (.57)
we rewrite the BSDE for (8?5 7,25 6) as

(ag,?*’ ") =0 (éﬂ’“’ - R’ (t)) dt + (a‘,,?_f"’ ) ad, BT =0
. =00 =08 . . . -
since 2, =0and dyE " = 0. This standard linear BSDE has the solution satisfying

T 2
A3) BY° = 'EO'YU (B1°w) au 'ﬁ],
t

[ [ (@w) |7,

&
ol
Oy
+
o B
&
L
™D
S
3L
~
E
1]




=0, Oy . . . .
and 6%,52 = 0 fort € [0,T], where E y[-] is the expectation with respect to the

probability measure 77 defined by

EletE] & ( f E?'édw?)

s B

dp™
dPo

and W?"'(t) = wi(r) - ﬂ :?._?’J(u)du. Noting the relation
d =04 2 0 F r =06 Y
(A4 - (:.1 (u)) du=-2{yF -10g E°[¢"IF}] - | B a7},
t t
we obtain the expression for 62,70’6 from the Bayes rule. Further, recalling the relation

" F = E° [ F|+ f " g [ (vF + 1D\, FIF; | awf (o)
0

from the Clark-Haussman-Ocone formula and the chain rule for differentiation, we
observe that

N T (BT FIF)
Fer = EhEs | d( E°[e7FIT7])
= E°"[F]+fT _~{E°[e7F( F + 1)D|,FIF;]
i o EOerIF] [t
E'[e"F FIF]E®[eF D1, FIF1] >
- e i
2 504

This,i together with (A.4) forz = 0, yi_elds the expression for 8 5

(iiii) For (fj)j 0,153 Such that £ =¢ =0and ¢ = 0, we can check that

hs (1, () =0123,0) = -£&),

so the equation

d(ag,?‘,”“) = - RE O (dt + BEdw?, BTN =

7, 6350'6) = 0 are deduced. g
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