Remark on homotopy types of twisted complex projective spaces

電気通信大学 山口耕平 (Kohhei Yamaguchi)
University of Electro-Communications

1 Introduction.

The main purpose of this note is to announce the recent results given in the preprints ([5], [11]) and is to consider the remaining several related unsolved problems. Let $m \geq 0$ and $n \geq 2$ be integers and let M be a simply-connected 2n dimensional finite Poincaré complex. Then it is called an m-twisted $\mathbb{C}\mathrm{P}^n$ if there is an isomorphism $H_*(M,\mathbb{Z}) \cong H_*(\mathbb{C}\mathrm{P}^n,\mathbb{Z})$ and $x_1 \cdot x_1 = mx_2$, where $x_k \in H^{2k}(M,\mathbb{Z}) \cong \mathbb{Z}$ (k = 1, 2) denotes the generator. If M is an m-twisted $\mathbb{C}\mathrm{P}^n$, it has the homotopy type of the form

(1)
$$M \simeq S^2 \cup_{m\eta_2} e^4 \cup e^6 \cup \cdots \cup e^{2n-2} \cup e^{2n}.$$

We denote by \mathcal{M}_m^n the set consisting of all homotopy equivalence classes of m-twisted \mathbb{CP}^n 's. If n=2, it is easy to see that $\mathcal{M}_1^2 = \{[\mathbb{CP}^2]\}$ and $\mathcal{M}_m^2 = \emptyset$ if $m \neq 1$. If n=3, it is known in [9] that $\operatorname{card}(\mathcal{M}_m^3) = 2 + (-1)^m$, where $\operatorname{card}(V)$ denotes the number of a finite set V. For example, if m=0 or 1, then $\mathcal{M}_1^3 = \{[\mathbb{CP}^3]\}$ and $\mathcal{M}_0^3 = \{[M_0], [M_1], [M_2]\}$, where $i_k: S^k \to S^2 \vee S^4$ denotes the inclusion (k=2,4) and we take $M_0 = S^2 \times S^4 = S^2 \vee S^4 \cup_{[i_2,i_4]} e^6$, $M_1 = S^2 \vee S^4 \cup_{[i_2,i_4]} e^6$ and $m_2 = S^2 \vee S^4 \cup_{[i_2,i_4]} e^6$.

In general, we can show that $\mathcal{M}_m^n \neq \emptyset$ for any $m \geq 0$ when $n \geq 5$ is an odd integer, which is shown by using a technique of the theory of transformation groups (cf. [1]). So it seems interesting to study the set \mathcal{M}_m^n when $n \geq 4$ is an even integer. More precisely, we consider the following:

Problem. Let $n \geq 4$ and $m \geq 0$ be integers.

- (a) Then is the set \mathcal{M}_m^n an emptyset or not? Moreover, if $\mathcal{M}_m^n \neq \emptyset$, can we determine the number $\operatorname{card}(\mathcal{M}_m^n)$ and representatives of \mathcal{M}_m^4 ?
- (b) Let M be an m-twisted $\mathbb{C}P^n$. Then does it has the homotopy type of closed smooth manifolds of dimension 2n?

The precise statement of this paper is as follows.

Theorem 1.1. Let $m \ge 0$ be an integer and let (a, b) denote the greatest common divisor of positive integers a, b.

- (i) If $m \equiv 1 \pmod{2}$, $\operatorname{card}(\mathcal{M}_m^4) = (m, 3)$.
- (ii) If $m \equiv 0 \pmod{2}$ and and it is not divisible by 8, $\mathcal{M}_m^4 = \emptyset$.
- (iii) If $m \equiv 0 \pmod{8}$ and $m \neq 0$, $\mathcal{M}_m^4 \neq \emptyset$ and its number is estimated as $3 \leq \operatorname{card}(\mathcal{M}_m^4) \leq 2^5 \cdot 3 \cdot m(m,3)$.
- (iv) In particular, if m = 0, $\mathcal{M}_0^4 \neq \emptyset$ and its number is estimated as $3 \leq \operatorname{card}(\mathcal{M}_m^4) \leq 2^7 \cdot 3^2$.

Theorem 1.2. Let $m \ge 0$, $n \ge 2$ be integers and let M be an m-twisted $\mathbb{C}\mathrm{P}^n$. Then it has the homotopy type of topological manifolds of dimension 2n. In particular, if n=4, then it also has the homotopy type of PL-manifolds of dimension 8.

2 Homotopy groups

In this section we shall give the rough idea of the proof of Theorem 1.1. For each integer $m \geq 0$, we denote by L_m the CW complex defined by $L_m = S^2 \cup_{m\eta_2} e^4$. Then we recall the following:

Lemma 2.1. Let $m \ge 0$ be an integer.

$$(i) \ \pi_5(L_m) = \begin{cases} \mathbb{Z} \cdot b_m & \text{if } m \equiv 1 \pmod{2}, \\ \mathbb{Z} \cdot b_m \oplus \mathbb{Z}/4 \cdot \gamma_m & \text{if } m \equiv 2 \pmod{4}, \\ \mathbb{Z} \cdot b_m \oplus \mathbb{Z}/2 \cdot \gamma_m \oplus \mathbb{Z}/2 \cdot i_*(\eta_2^3) & \text{if } m \equiv 0 \pmod{4}, \end{cases}$$

where we take $b_m = [i, i_4]$ and $\gamma_m = i_4 \circ \eta_4$ if m = 0, and $2\gamma_m = i_*(\eta_2^3)$ if $m \equiv 2 \pmod{4}$.

(ii) Let M be an m-twisted $\mathbb{C}P^4$ and $M^{(6)}$ denote its 6-skelton. Then there is a homotopy equivalence

$$M^{(6)} \simeq egin{cases} X_m & \textit{if } m \equiv 1 \pmod{2} \ V_m & \textit{if } m \equiv 0 \pmod{2}, \ V \in \{X,Y\} \end{cases}$$

where we take $X_m = L_m \cup_{mb_m} e^6$ and $Y_m = L_m \cup_{mb_m + i_*(\eta_2)} e^6$.

Proof. This can be proved using standard computation of homotopy groups and the method given in [9].

Lemma 2.2. Let $j_{1_*}: \pi_7(X_m) \to \pi_7(X_m, L_m)$ denote the induced homomorphism.

(i) If $m \equiv 1 \pmod{2}$, there exists some element $\varphi_m \in \pi_7(X_m)$ such that, $j_{1*}(\varphi_m) = [\beta_m, i]_r + \epsilon_m \cdot \beta_m \circ \eta_5'$, and there is an isomorphism

$$\pi_7(X_m) = \mathbb{Z}/(m,3) \cdot j_*(f_m \circ \omega_m) \oplus \mathbb{Z}/m \cdot j_*([b_m,i_*(\eta_2)]) \oplus \mathbb{Z} \cdot \varphi_m.$$

(ii) If $m \equiv 0 \pmod{8}$ and $m \neq 0$, there exists some element $\varphi_m \in \pi_7(X_m)$ such that, $j_{1*}(\varphi_m) = [\beta_m, i]_r$, and there is an isomorphism

$$\pi_{7}(X_{m}) = \mathbb{Z} \cdot \varphi_{m} \oplus \mathbb{Z}/4 \cdot j_{*}(f_{m} \circ \widetilde{\nu'}) \oplus \mathbb{Z}/2 \cdot j_{*}(f_{m} \circ \sigma \circ \eta_{6})$$

$$\oplus \mathbb{Z}/2 \cdot (j \circ i)_{*}(\eta_{2} \circ \omega \circ \eta_{6}) \oplus \mathbb{Z}/(m, 3) \cdot j_{*}(f_{m} \circ \omega_{m})$$

$$\oplus \mathbb{Z}/2 \cdot j_{*}(b_{m} \circ \eta_{5}^{2}) \oplus \mathbb{Z}/m \cdot j_{*}([b_{m}, i_{*}(\eta_{2})]) \oplus \mathbb{Z}/2 \cdot \widetilde{\eta}_{5}.$$

(iii) If m = 0, then $X_0 = S^2 \vee S^4 \vee S^6$ and there is an isomorphism

$$\pi_7(X_0) = \mathbb{Z} \cdot j_4 \circ \nu_4 \oplus \mathbb{Z} \cdot [j_2, j_6] \oplus \mathbb{Z}/2 \cdot j_2 \circ \eta_2 \circ \omega \circ \eta_6 \oplus \mathbb{Z}/2 \cdot j_6 \circ \eta_6$$

$$\oplus \mathbb{Z}/12 \cdot j_4 \circ E\omega \oplus \mathbb{Z}/2 \cdot [j_2, j_4 \circ \eta_4^2] \oplus \mathbb{Z}/2 \cdot [j_2 \circ \eta_2, j_4 \circ \eta_4]$$

$$\oplus \mathbb{Z}/2 \cdot [j_2 \circ \eta_2^2, j_4],$$

where $j_k: S^k \to S^2 \vee S^4 \vee S^6$ (k = 2, 4, 6) denote the corresponding inclusions.

Proof. The proof is given using standard computations of homotopy groups.

Similarly we obtain:

Lemma 2.3. Let $m \geq 0$ be an integer with $m \equiv 0 \pmod{8}$, and let $j_2: \pi_7(Y_m) \to \pi_7(Y_m, L_m)$ be the induced homomorphism. Then there exists some element $\varphi'_m \in \pi_7(Y_m)$ such that, $j_{2*}(\varphi'_m) = [\beta'_m, i]_r$, and there is an isomorphism

$$\pi_{7}(Y_{m}) = \mathbb{Z} \cdot \varphi'_{m} \oplus \mathbb{Z}/4 \cdot j'_{*}(f_{m} \circ \widetilde{\nu'}) \oplus \mathbb{Z}/2 \cdot j'_{*}(f_{m} \circ \sigma \circ \eta_{6})$$

$$\oplus \mathbb{Z}/2 \cdot j'_{*}(i_{*}(\eta_{2} \circ \omega \circ \eta_{6})) \oplus \mathbb{Z}/(m, 3) \cdot j'_{*}(f_{m} \circ \omega_{m})$$

$$\oplus \mathbb{Z}/2 \cdot j'_{*}(b_{m} \circ \eta_{5}^{2}) \oplus \mathbb{Z}/m \cdot j'_{*}([b_{m}, i_{*}(\eta_{2})]) \qquad \text{if } m \neq 0,$$

$$\pi_{7}(Y_{0}) = \mathbb{Z} \cdot j'_{*}(i_{4} \circ \nu_{4}) \oplus \mathbb{Z} \cdot \varphi'_{0} \oplus \mathbb{Z}/2 \cdot j'_{*}([i, i_{4} \circ \eta_{4}^{2}]) \oplus \mathbb{Z}/12 \cdot j'_{*}(i_{4} \circ E\omega)$$

$$\oplus \mathbb{Z}/2 \cdot j'_{*}([i_{*}(\eta_{2}), i_{4} \circ \eta_{4}]) \oplus \mathbb{Z}/2 \cdot j'_{*}([i_{*}(\eta_{2}^{2}), i_{4}])$$

$$\oplus \mathbb{Z}/2 \cdot j'_{*}(\eta_{2} \circ \omega \circ \eta_{6}) \qquad if m = 0.$$

Sketch proof of Theorem 1.1. If we use some lemmas given in [10] concerning the relation between cup-products and relative Whitehead products, we can show the desired assertions.

3 Surgery obstructions

First, we shall give rough idea of the proof of Theorem 1.2.

Sketch proof of Theorem 1.2. Since M is a finite Poicaré complex, it follows from Theorem of Spivak that there is a spherical fiber space over M with fber S^N (N: suuficiently large). Then by using the result of Stasheff, it is classified by the map $f_M: M \to BSG$. Let us consider whether it lifts to BSTop or not. Its obstructions lie in $H^k(M, \pi_{k-1}(SG/STop))$ for all $k \geq 1$. However, since $\pi_j(SG/STop) = 0$ and $H^j(M) = 0$ if $j \equiv 1 \pmod{2}$, all obstructions vanish. Hence, the map f_m lifts to BSTop. If we recall Theorem of the type of Browder-Novikov [6], we can show that M has the homotopy type of topological manifolds of dimension 2n.

Because $\pi_{2k-1}(G/O) = 0$ for $1 \le k \le 4$, if n = 4 the map f_m lifts to BSO and it follows from the Browder-Novokov type Theorem ([4], Corollary 2.17) that M has the homotopy type of PL-manifolds of dimension 8.

References

- [1] G. E. Bredon, Introduction to compact transformation groups, Academic Press, 1972.
- [2] W. Browder, Surgery on simply connected manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete 65, Springer-Verlag, 1972.
- [3] M. Masuda, S^1 -actions on twisted $\mathbb{C}P^3$, J. Fac. Sci. Univ. Tokyo, **33** (1984), 1–31.
- [4] I. B. Madsen and R. J. Milgram, The classifying spaces for surgery and cobordism of manifolds, Annals of Math. Studies **92**, Princeton Univ. Press 1979.
- [5] J. Mukai and K. Yamaguchi, Homotopy classififcation of twisted complex projective spaces of dimension 4, (to appear) J. Math. Soc. Japan.
- [6] A. A. Ranicki, Algebraic and geometric surgery, Oxford Math. Monographs, Oxford Science Publications, 2002.
- [7] H. Toda, Composition methods in homotopy groups of spheres, Annals of Math. Studies **49**, Princeton Univ. Press, 1962.
- [8] C. T. C. Wall, Poincaré complexes I, Annals of Math., 86 (1967), 213–245.
- [9] K. Yamaguchi, The group of self-homotopy equivalences of S^2 -bundles over S^4 , I, II, Kodai Math. J., **9** (1986) 308–326; *ibid.* **10** (1987) 1–8.
- [10] K. Yamaguchi, Remark on cup-products, (to appear) Math. J. Okayama Univ.
- [11] K. Yamaguchi, Homotopy types of twisted complex projective spaces of dimension 4, preprint.