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1. Introduction.

In 1980, Kubo-Ando [12] established theki';heory of operator means. Hansen and Hansen-
Pedersen [9] considered the Jensen inequality in the frame of operator inequalities. (See
also [5] and [11].) Under such situation, we discussed the invariance of the operator
concavity by the transformation among functions related to operator means in [4]. As a
simle application, we could prove the operator concavity of the entropy function 7(t) =
—tlogt which was shown by Nakamura-Umegaki [13]. In the paper, we proposed the
following characterization of the operator concavity:

Theorem A. Let f be a continuous, real-valued function on I = [0,7). Then the
following conditions are mutually equivalent:
(1) f is operator concave on I, i.e.,

FtA+ (1 —t)B) > tf(A) + (1 —£)f(B) for t€[0,1] and A,B e S(I),

where X € S(I) means that X is a selfadjoint operator whose spectrum is contained in I.
(2) f(C*AC) > C*f(A)C for all isometries C and A € S(I).
(3) f(C*AC+D*BD) > C*f(A)C+ D*f(B)D for all C, D with C*C +D*D =1 and
A,B e S(I).
(4) f(PAP + P+BPt) > Pf(A)P + P+ f(B)P* for all projections P and A € S(I).

To show the utility of Theorem A, we review the following result in [4].

Theorem B. Let f be a real-valued continuous function on (0,00). Then f is operator
concave if and only if so is f*, where f*(t) =tf(t™) fort > 0.

In fact, suppose that f is operator concave. For arbitrary positive invertible operators
A, B and positive numbers s, t with s? +¢2 = 1, we put E = s°A + t2B and

X =sA?E"'? and Y =tBV’E7'2.



Since X*X + Y*Y =1, it follows from Theorem A (3) that
FIEY = f(X*ATIX +Y*B7Y) > X*f(A™)X + Y*f(B71YY,
so that
F*(E) = EV2f(E"V)EY? > 2 A2 f(A~Y)AY? + *B'2f(B~1)B'/?,

that is, f* is operator concave.

In addition, if we take f(t) = logt, then f*(t) = —tlogt. Hence, if one could the
operator concavity of logt, then that of the entropy function is easily obtained.

Concluding this section, we remark on the transformation f — f*. For this, we explain
operator means briefly. A binary operation among positive operators on a Hilbert space
m is called an operator mean (connection) if it is monotone and continuous from above in
each variable and satisfies the transformer inequality. The principal result is the existence
of an affine-isomorphism between the classes of all operator means and all nonnegative
operator monotone functions on (0,00), which is given by f.(t) =1 m t for t > 0. Thus
f*(t) =t m 1is corresponding to the transpose m* of m, i.e., Am* B= B m A.

2. Yanagi-Furuichi-Kuriyama conjecture.

In this section, we apply Theorem A to an operator inequality related to a conjecture
due to Yanagi-Furuichi-Kuriyama [14]. As a matter of fact, they proposed the following
trace inequality: For A,B >0,

(1)  Tr ((A+ B)*(A(log A)> + B(log B)?)) > Tr ((A + B)*"'(Alog A + Blog B)?)

for0<s<1.
We now prove it for s = 0 by showing the following operator inequality:

Theorem 1. Let A and B be positive invertible operators on a Hilbert space. Then
(Alog A+ Blog B)(A + B)™'(Alog A + Blog B) < A(log A)? + B(log B)*.
Proof. It is similar to a proof of Theorem B. We put
C =AY?(A+B)"Y? and D=BY*(A+ B)'2

Then we have C*C + D*D = 1. We here note that the function #? is operator convex on
the real line. Hence, if we put X = log A and Y = log B, then it follows that

(C*XC + D*'YD)? < C*X*C + D*Y*D,

cf. Theorem A (3). Arranging it by multiplying (A + B)'/2 on both sides, we have the
desired operator inequality.
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In addition, we give a proof of (1) for s = 1. First of all, we note that an inequality
(2) Tr (I(A|B)I(B|4)) <0

holds for positive operators A and B, where I(A|B) = Alog A — Alog B is an operator
version of Umegaki’s relative entropy. Actually we have

Tr (I(A|B)I(B|A)) = Tr (A(log A — log B)B(log B — log A))
= —Tr (A*(log A — log B)B(log A — log B)AY?) < 0.

Now a direct calculation shows that

Tr ((A+ B)(A(log A)? + B(log B)?) — (Alog A + Blog B)?)
= Tr (AB(log B)? + BA(log A)® — 2(Alog A)(Blog B)).

On the other hand, we have

Tr (I(A|B)I(B|A))
= Tr (A(log A)Blog B — A(log A)Blog A — A(log B)Blog B + A(log B)Blog A)
= Tr (2A(log A)Blog B — BA(log A)? — AB(log B)?).

Noting by (2), we have
Tr ((A+ B)(A(log A)? + B(log B)?)) > Tr ((Alog A + Blog B)?),
which is the inequality (1) for s = 1.

Next we give two examples, which show that the above problem (1) can not be solved
via operator inequalities in the following sense.

Theorem 2. The following operator inequalities do not hold for positive invertible oper-
ators A and B in general: ’

(1) (A + B)Y2(A(log A)? + B(log B)?))(A + B)'/2 > (Alog A + Blog B).

(2) (A(log A)2+B(log B)?))/?(A+ B)(A(log A)?+ B(log B)?))'/2 > (Alog A+ Blog B)®.

Proof. For the former, we take

() =)



Then we have

op 4 — 08B+ VE) [VB+2 2 +10g(3—\/§) VB—2 -2
BL= TR 2 VB-2 2v/3 -2 VB+2)’
I B_log(3+\/§) V3+2 1 ,+log(3—\/?—>) v3-2 -1
BE=T0/3 1 V3-2 /3 -1 V342
and ‘ '
e V1L [9 3 1viI (1 -3
(4+B)" __10—(3 1)+ET(——3 9)‘
Hence

X = (A+ B)Y*{A(log A)* + B(log B)*}(A + B)/? — (Alog A + Blog B)?

is approximated by

0.6060988713 1.087423161
and det X ~ —0.06281927236 < 0. Namely (1) does not hold for A and B.

For the latter, we take
A= 2 1 B= 5 1 .
1 2 11

logd (1 1
‘°8A—T(1 1)

and log B is the same as the above, so that

(0.2800534147 0.6060988713)

Then we have

A(log A)? + B(log B)? = (15.40739329 5.007156201) |

5.007156201 2.62046225
Hence its point spectrum is {0.8930894768,17.13476606} and its square root is as follows:

3.799679761 0.9847979508
0.9847979508 1.284770503 /

Thus the difference of the both sides
{A(log A)? + B(log B)?}*/%(A + B){A(log A)? + B(log B)?}*/? — (Alog A + Blog B)?

is approximated by
8.760452694 —1.019211361
—1.019211361 —0.0425050649 /



Namely (2) does not hold for A and B.

In a private communication with Professor Yanagi, we knew this conjecture last autumn.
Very recently we were given an oportunity to read a preprint [9] by Furuta, related to
Theorem 2. The authors would like to express their thanks to Professor Furuta for his
kindness of sending it.

3. Jensen’s operator inequalities.
Recently, F.Hansen and G.K.Pedersen [13] reconsidered the preceding results in [12, 11]
by themselves, which is along with Theorem A. (See also [10].)

Hansen-Pedersen’s theorem. The following conditions are all equivalent to that f is
operator convex on I :

n n
() f Z C,‘;Aka) < Z C, f (Ag)Ck for all selfadjoint Ay with o(Ax) C I and Cy with
k=1 k=1
Z::l C;Ck =1
(ii) f(C*AC) < C*f(A)C for all selfadjoint A with 0(A) CZ and isometries C.
(ii) Pf(PAP + s(1 — P)) < Pf(A)P for all selfadjoint operators A with o(A) C T,
scalars s € I and projections P.

Now we synthesize Jensen’s operator inequality. Among others, a theorem due to Davis
[6] and Choi [5] is included as the fifth condition. (See also Ando [1].)

Theorem 3. Let f be a real function on an interval I, A or Ai a selfadjoint operator
with 0(A),0(Ax) C Z, and H or K o Hilbert space. Then the following conditions are
mutually equivalent:

(i) (1) f is operator convez on I.

(i) f(C*AC) < C*f(A)C for all A € B(H) and isometries C € B(K, H).

(ii’) f(C*AC) < C*f(A)C for all A and isometries C in B(H).

(iii) f(P_, CrACL) < h_, Cif(Ar)Cy for all A, € B(H) and Cy € B(K, H) with
Y  CiCk = 1.

(1ii’) F(p=; CrArCr) < Y k=i Crf(Ar)Ck for all Ay, Ci € B(H) with ), C;Cy = 15.

(iv) FO ray PeArPr) < 3 iy Puf(Ax)Px for all Ag, and projections P, € B(H) with
Yok P =1g.

(v) f(®(A) < @(f(A)) for all unital positive linear map ® between C*-algebras A, B
and all A € A. »

Proof. (i)=(ii): Take B = B* € B(K) with o(B) € . For P = /Tz — CC¥, putting

A O cC P C -P
= = = B(Ke H,H® K),
X (0 B)eB(HeK),U (0 _C,,),V (0 C*)e (K& ® K)



we have
C*P=+/1x - C*CC*=0€ B(H,K), PC=C\/1x —C*C=0¢€ B(K,H),
so that both U and V are unitaries. Since

C*AC  C"AP ) V,,sz(CAc _C*AP )

UXU = (PAC PAP + CBC* _PAC PAP +CBC*

then the operator convexity of f implies

f(C*AC) 0 iy C*AC 0
0 f(PAP+CBC*)) 0 PAP+CBC*

iy (U*XU+V‘XV)
= )
< JUXU) + F(V*XV) _ U"EX)U + V*F(X)V
= 2 )

_ [ flAC 0
B 0 Pf(A)P+Cf(B)C*)]"

Thus we have (ii) by seeing the (1,1)-components.
(ii)=>(iii): Putting

Al C’1
A= €eBHeo---0H), C=|:|eBKHo---aH),
An Ch

we have C*C = 1k. It follows from (ii) that

f (Z C’,‘;A,cc,,) = 1 (6"4C) < (A6 = 3" Cf (4G
k=1

k=1

(iii)=>(v): Considering the universal enveloping von Neumann algebras and the uniquely
extended linear map, we may assume that .4 is a von Neumann algebra. Thereby a

selfadjoint operator A € A can be approximated uniformly by a simple function A’

> . txEr where {Ex} is a decomposition of the unit 14. Since ), ®(Ey) = 1g by the

unitality of ®, then applying (iii) to Cy = \/®(E}), we have

f(@A) = f (Z tké(Ek)) <) f(tk)B(E) =@ (Z f(tk)Ek) = ®(f(A")).
k k k
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The continuity of & implies (v).
Since (v) implies (iv) obviously, we next show (iv)=>(i): Putting

(A0 (10 _(VI=t -t
o3 8)r= (o o) o= (% )

»(f((l —t)A+1tB)

we have

f(1-0)B +tA))
= f(PU*XUP + (1 - P)U*XU(1 - P))
< PU*f(X)UP + (1 — P)U* f(X)U(1 — P))

((1 — 1) f(A) +t£(B)

B (L-t)f(B)+ tf(A)) ’
so that f is operator convex.
Consequently, we proved the equivalence of (i) - (v). To complete the proof, we need
(ii’)=(iii’) because it is non-trivial in (i) = (ii) = (ii’) = (ii’) = (iv) = ().
Modifying the proof in [7], we can show (ii’)=>(iii’). We may assume n = 2. Putting

A G 0
X= 42 =] 0 BH®H
= A4 |"7Tlo 1 0 CBHOH®: ),

we have V*V =1 and

F(C1AI1C: + C3ALC)
f(Az2) = f(V*XV) < V*f(X)V

Cif(A1)C1 + C3 f(A2)C
f(A2)

O

Remark 1. (1) Theorem 3 includes the above two Jensen’s operator inequalities. An
essential part of the proof for the Hansen-Pedersen-Jensen inequality is to show that (1)
implies (2). In fact, suppose (1) and C*C < 1. Then, putting D = v/1 — C*C, we have
by (iii’) and f(0) < 0 that

f(C*AC + DOD) < C*§(A)C + D*f(0) < C*f(A)C.
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(2) Note that the property either ‘isometric’ or ‘unital’ assures the spectral invariance
as follows: If m < A< M, thenm < C*AC £ M and m < ®(A) < M for any isometry
C and a unital positive linear map .
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