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1 Introduction

Tsallis entropy [1][2] in discrete system and continuous system are respectively defined as follows:

1- i P}
S = —q%ll— (g eRY), (1)
Sgc) = 1- .,g]f—(ll')q dx (q € R+) (2)

where {p,:}:;l is a probability distribution and f is a probability density function. Tsallis entropy
recovers Shannon entropy when ¢ — 1.

n
im0 =~ g, IS =~ [ £@)nf (@) ®)

—1
? i=1

The maximum entropy principle for Tsallis entropy Sgc) under the constraints:

_, JZf(@)fdz _
[i1@ae=1, =T o @

yields the so-calied g— Gaussian probability density fuinction:

—B.12 1
@)= T ((_ 5:;)) o [14 (1-0) (=5,2%)] 7 (5)
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where exp, (z) is the g—ezponential function defined by

exp, (z) =:{ ([)H(l_q)z]m if1+(1-g)z >0,

and f, is a positive constant related to o and g [3][4]. For ¢ — 1, ¢—Gaussian distribution (5) recovers
a usual Gaussian distribution. The power form in g—Gaussian (5) has been found to be fairly fitted to
many physical systems which cannot be systematically studied in the usual Boltzmann-Gibbs statistical

(zeR) (6)

otherwise

mechanics [5}(6].

|

0.5, - —r o
T—=="¢=02
ML -0 ~— g=0.6 o
mean = q=1.0 (Gaussian)
g-variance=1 - q=14
0.35 =
. - ¢=1.8 o
0.3}
q < 1: narrow
EhX’ 0.25 q> 1:wide
expg (-nedl ) 0.2
S exng (b’ Y18

1: g—Gaussian probability density function (¢ =0.2,0.6,1.0,1.4,1.8)

The mathematical basis for Tsallis statistics comes from the deformed expressions for the logarithm
and the exponential functions which are the g—logarithm function:

[ S |

=, @2049€R) ()

Ingz :=
and its inverse function, the g—ezponential function (6). Using the g—logarithm function (7), Tsallis
entropy (2) can be written as

S,gc) =- /f(z)qlnq f (z) dr, 8)

which is easily found to recover Shannon entropy when g — 1.

The many successful applications of Tsallis statistics stimulate us to try to find the new mathematical
structure behind Tsallis statistics [7][8][9]. Recently, a new multiplication operation determined by the
g—logarithm and the g—exponential function which naturally emerge from T'sallis entropy is presented
in [10] and [11]. Using this algebra, we can obtain the beautiful mathematical structure behind Tsallis
statistics. In this summary, we briefly show our results without proofs. Each proof can be found in
my references. The contents consist of the 7 sections, section I: introduction (this section), section II:
the new multiplication operation, section III: law of error in Tsallis statistics, section IV: g—Stiling’s
formula, section V: g—multinomial coefficient and symmetry in Tsallis statistics, section VI: g—central
limit theorem in Tsallis statitics (numerical evidence only) and section VII: conclusion.
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2 The new multiplication operation determined by
g—logarithm function and ¢—exponential function

The new multiplication operation ®, is introduced in [10] and [11] for satisfying the following equa-

tions:

Ing (z ®q y) = Ingz + Ingy, 9)
exp, () ®, exp, (y) = exp, (z +y) - (10)

These lead us to the definition of ®, between two positive numbers

0
[zl—q,*_yl—q_l]i‘é“q, if z>0,y>0,
ZQqY:= x4 y!74-1>0, (11)
0, otherwise

which is called g—product in [11]. The g—product recovers the usual product such that lini (z®qy) = zy.
q—’
The fundamental properties of the g—product ®, are almost the same as the usual product, but the

distributive law does not hold in general.
a(z®qy) £ax®qy (a,z,y €R) (12)

The properties of the g—product can be found in [10] and [11].
In order to see one of the validities of the g—product in Tsallis statistics, we recall the well known

expression of the exponential function exp (z) given by
n
exp (z) = lim (1+ E) . (13)
N0 n
Replacing the power on the right side of (13) by the n times of the g-product ®7 :

2% =1 ®, - ®y T, (14)
N, a—
n times

exp, () is obtained. In other words, nlim (1+ %)82 coincides with exp, ().
— 00

®ﬂ
exp, () = nllrrgo (1 + %) ! (15)

The proof of (15) is given in [12]. This coincidence indicates a validity of the g-product in Tsallis
statistics. In fact, the present results in the following sections reinforce it.

3 Law of error in Tsallis statistics

Consider the following situation: we get n observed values:

T1,T2y " 1mn€R (16)

as results of mutually independent n measurements for some observation. Each observed valuez; (i =1, -

is each value of independent, identically distributed (i.i.d. for short) random variable X; t=1,--+,n),
respectively. There exist a true value z satisfying the additive relation:

Ti =T+ € (z’:l,---,n), (17)

. ,n)
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where each of e; is an error in each observation of a true value z. Thus, for each X;, there exists a
random variable E; such that X; = z + E; (i =1,--- ,n). Every E; has the same probability density
function f which is differentiable, because X;, -+, X, are iid. (ie., Ei,- -, B, areiid.). Let L(6)
be a function of a variable 8, defined by

L6)=f(z1—-6)f(z2—6)- f(zn—0). (18)
Theorem 1 If the function L(8) of 8 for any fized 21,22, - , Ty takes the mazimum at
6=9*:=m1+z2+m+$n, (19)
n
then the probability density function f must be a Gaussian probability density function:
1 e?
fle)= \/_2_11»;6){;){—5?}' | (20)

The above result goes by the name of “Gauss’ law of error” [13]. Gauss’ law of error tells us that in
measurements it is the most probable to assume a Gaussian probability distribution for additive noise,
which is often used as an assumption in many scientific fields. On the basis of Gauss’ law of error, some
functions such as error function are often used to estimate error rate in measurements.

Gauss’ law of error is generalized to Tsallis statistics, which results in g—QGaussian as a generalization
of a usual Gaussian distribution.

Consider almost the same setting as Gauss’ law of error: we get n observed values (16) as results of
n measurements for some observation. Each observed value z; (i = 1,--- ,n) is each value of identically
distributed random variable X; (: = 1,--- ,n), respectively. There exist a true value z satisfying the
additive relation (17) where each of e; is an error in each observation of a true value z. Thus, for each
X;, there exists a random variable E; such that X; = z + E; (¢ = 1,--- ,n). Every E; has the same
probability density function f which is differentiable, because Xi,:+-,X, are identically distributed
random variables (i.e., Ey,--- , Ep, are also so). Let Ly {8) be a function of a variable 8, defined by -

Le(0):=f(x1—0)®q f (22 —0) ®q -+ ®q f (xn — ). (21)

Theorem 2 If the function Ly (0) of 6 for any fized z1,%3,- -+ ,2n takes the mazimum at (19), then
the probability density function f must be a g—Gaussian:

xp, (—B,e?
FO = fo . ﬂ:ez)) ” (22

where (B4 is a g—dependent positive constant.

See [14] for the proof. Our result f (e) in (22) coincides with (5) by applying the g—product to MLP
instead of MEP.

4 ¢-Stiling’s formula
By means of the g-product (11), the g-factorial n!; is naturally defined by
n!q :=1®q"'®qn (23)

for n € N and ¢ > 0. Using the definition (11), Ing (n!;) is explicitly expressed by

Zn: kl-9-n
Ing(nl) =51 (24)

1-¢
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If an approximation of In, (n!y) is not needed, the above explicit form (24) should be directly used for
its computation. However, in order to clarify the correspondence between the studies ¢ = 1 and ¢ # 1,
the approximation of Ing (n!;) is useful. In fact, using the present g-Stirling’s formula, we obtain the
surprising mathematical structure in Tsallis statistics [15].

The tight ¢-Stirling’s formula is derived as follows:

(n+3)Inn+(~n)+ 0,1 +(1—6) if g=1,

In, (n!q) =<¢ n— 51; —mn—%+0n,g — 4 if g=2, (25)
(5%6 + %) nll—_qq_l +0nq+ (;:Z - Jq> if ¢g>0 and g¢#1,2,
where 1 .
Jim Brp =0, 0<ny < -, el=% = /27, (26)

On the other hand, the rough ¢-Stirling’s formula is reduced from (25) to

N _.n_ .
Ing (nly) = { TaBan T ag TO(ngn) i g#2 27)
n—lan+0(1) if ¢g=2,

which is more useful in applications in Tsallis statistics. See section V, section VI and [15] for its
applications. The derivation of the above formulas is given in {12].

5 g¢—multinomial coefficient and symmetry in Tsallis statistics

We define the g—binomial coefficient [ : J by
q

[ : :l = (nlg) @q [(klg) ®q (n = k)lg)] (n,k(<n) €N) (28)

where @, is the inverse operation to ®,, which is defined by

1 z>0,y>0
xl—q _a1—q + 1]+ , ’ ’
TQLY = [ Y ] =4 ylm1—1>0, . (29)
0, otherwise

@q is also introduced by the following satisfactions as similarly as ®, [10][11].
Ingz @qy =Ingz —Ingy, (30)
exp, (2) @q expg (y) = expy (z — ¥) . (31)
Applying the definitions of ®,, @, and nl, to (28), the g—binomial coefficient is explicitly written as

1
f=r)

n k n—k
[:} Sl DA DU DF s § (32)
q 3=1

£=1 i=1

From the definition (28), it is clear that

. n n n!
éﬂ%{k}qz,[k]=m- (33)
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In general, when ¢ < 1, Y27 ¢1=¢ — % jl-¢ _ $"""F4l-¢ L 1 5 0. On the other hand, when
=1 i=1 j=1

. —k . n . . o

POHID AR S Ll B Z;___lk JF1+1 <0, [ L } takes complex numbers in general, which divides
q

the formulations and discussions of the g—binomial coefficient into two cases: it takes a real number

or a complex number. In order to avoid such separate formulations and discussions, we consider the

g-logarithm of the g—binomial coefficient:

In, { : ] = Ing (nlg) — Ing (klg) — Ing ((n — k)ly). 34
q

The above definition (28) is artificial because it is defined from the analogy with the usual binomial
coefficient n . However, when n goes infinity, the g—binomial coefficient (28) has a surprising

relation to Tsallis entropy as follows:

2—-q - .
In, n ~ r;—q ’ S2"q (%’ nnk) if q> 0) q 79 21 (35)
|k ~Si(n)+8S1(k)+S1(n—k) ifg=2

where S, is Tsallis entropy (1) and S; (n) is Boltzmann entropy:
S1(n) :=lnn. (36)

Applying the rough expression of the q—Stirling’s formula (27), the above relations (35) are easily
proved [15]. The above correspondence (35) between the g—binomial coefficient (28) and Tsallis entropy
(1) convinces us of the fact the g—binomial coefficient (28) is well-defined in Tsallis statistics. Therefore,
we can construct Pascal’s triangle in Tsallis statistics [15].

The above relation (35) is easily generalized to the case of the g—multinomial coefficient. The
g—multinomial coefficient in Tsallis statistics is defined in a similar way as that of the the g—binomial
coefficient (28).

l: " } = (nlq) éq [(n1!g) ®q - - ®q (nily)] (87
I
where .
n=Zn¢, neN@GE=1,.-- k). (38)
i=1

Applying the definitions of ®, and @4 to (37), the g—multinomial coefficient is explicitly written as

n
ny e Nk

Along the same reason as stated above in case of the g—binomial coefficient, we consider the ¢g-logarithm

1
=9

n ny g
= [Zel—t DERIEED I T | B (39)
q =1

i1=1 =1

of the g—multinomial coefficient given by
n
In, [ } = Ing (nlg) — Ing (n1ly) -+ — Ing (nkly) - (40)
nl . nk a

From the definition (37), it is clear that

|
lim " = " S L — (41)
g—1 ni e Nk ‘ ni e Nk nl!'--nk!
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When n goes infinity, the g—multinomial coefficient (37) has the similar relation to Tsallis entropy (1)
as (35):

n B Sy g (B, %) i ¢>0, g#2
Ing ~ k - (42)
ni ], -S1(n)+ 3 51 () if ¢g=2
i=1

This is a natural generalization of (35). In the same way as the case of the g—binomial coefficient, the
above relation (42) is easily proved [15].
When ¢ — 1, (42) recovers the well known result:

n n1 Nk
A B 2

where S; is Shannon entropy.
The relation (42) reveals a surprising symmetry: (42) is equivalent to

n nlt(1-9) n1 Nk
In;_(;— N Sipeg) (= = >0,¢#2). (44
1-(1 q)[n1 "k}l-(l_q) TTaog ‘”(n n) (¢ q#2). (44)

This expression represents that behind Tsallis statistics there exists a symmetry with a factor 1 — ¢
around ¢ = 1. Substitution of some concrete values of q into (42) or {44) helps us understand the

symmetry mentioned above.

6 g—central limit theorem in Tsallis statitics (numerical evi-
dence only)

It is well known that any binomial distribution converge to a Gaussian distribution when n goes
infinity. This is a typical example of the central limit theorem in the usual probability theory. By
analogy with this famous result, each set of normalized g—binomial coefficients is expected to converge
to each g—Gaussian distribution with the same g when n goes infinity. As shown in this section, the
present numerical results come up to our expectations.

In Fig.2, each set of bars and solid line represent each set of normalized g—binomial coefficients
and ¢—Gaussian distribution with normalized ¢-mean 0 and normalized g-variance 1 for each n when
g = 0.1, respectively. Each of the three graphs on the first row of Fig.2 represents two kinds of
probability distributions stated above, and the three graphs on the second row of Fig.2 represent the
corresponding cumulative probability distributions, respectively. From Fig.2, we find the convergence
of a set of normalized g—binomial coefficients to a g—Gaussian distribution when n goes infinity. Other
cases with different g represent the similar convergences as the case of ¢ = 0.1.

Note that we never use any curve-fitting in these numerical computations. Every bar and solid line
is computed and plotted independently each other.

In order to confirm these convergences more precisely, we compute the maximal difference A4, among
the values of two cumulative probabilities (a set of normalized g-binomial coefficients and g—Gaussian
distribution) for each ¢ = 0.1, 0.2, ---, 0.9 and n. Ay, is defined by

Agpn = ionBx | Fa-bino (1) — Fg—Gauss (1) (45)
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X 2: probability distributions (the first row) and its corresponding cumulative probability distribu-
tions (the second row) of normalized g-binomial coefficient (¢ =0.1) and g—Gaussian ditribution when
n =5,10,20

where Fy_pino (¢) and Fy_qauss (¢) are cumulative probability distributions of a set of normalized g—binomial

coefficients pg_bino (k) and its corresponding g—Gaussian distribution fq_gauss (), respectively.

i i
Fq-bino (z) = qu-bino (k) s Fq—Gauss (l) = / fq—Gauss (33) dx (46)
k=0 —® :
Fig.3 results in convergences of Ay, to 0 when n — oo for ¢ = 0.1, 0.2, - -+, 0.9. This result indicates

that the limit of every convergence is a g—Gaussian distribution with the same q € (0,1] as that of a
given set of normalized g—binomial coefficients.

The present convergences reveal a possibility of the existence of the central limit theorem in Tsallis
statistics, in which any distributions converge to a ¢g—Gaussian distribution as nonextensive general-
ization of a Gaussian distribution. The central limit theorem in Tsallis statistics provides not only a
mathematical result in Tsallis statistics but also the physical reason why there exist universally power-
law behaviors in many physical systems. In other words, the central limit theorem in Tsallis statistics
mathematically explains the reason of ubiquitous existence of power-law behaviors in nature.

7 Conclusion

We discovered the conclusive and beautiful mathematical structure behind Tsallis statistics: law of
error [14], ¢-Stirling’s formula [12], g—multinomial coefficient [15], g—central limit theorem (numerical
evidences only) [15]. The one-to-one correspondence (42) between the g-multinomial coefficient and
Tsallis entropy provides us with the significant mathematical structure such as symmetry (44) and
others [15]. Moreover, the convergence of each set of g-binomial coefficients to each g—Gaussian with
the same ¢ when n increases represents the existence of the central limit theorem in Tsallis statistics.

In all of our recently presented results such as law of error [14], g-Stirling’s formula [12], symmetry (44)
and the present numerical evidences for the central limit theorem in Tsallis statistics {15], the g-product
is found to play crucial roles in these successful applications. The g-product is uniquely determined
by Tsallis entropy. Therefore, the introduction of Tsallis entropy provides the wealthy foundations in
mathematics and physics as well-organized generalization of the Boltzmann-Gibbs-Shannon theory.
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X 3: probability distributions (the first row) and its corresponding cumulative probability distributions
(the second row) of normalized g-binomial coefficient (¢ = 0.5) and Tsallis ditribution when n = 5,10, 20
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4: probability distributions (the first row) and its corresponding cumulative probability distributions
(the second row) of normalized g-binomial coefficient (¢ = 0.9) and Tsallis ditribution when n = 5, 10,20
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