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Remark on divergent multizeta series
L. Boutet de Monvel

There are several manners of regularizing divergent zeta series. It is useful to
compare these, since they are used to describe relations among convergent zeta
series. Here we compare the two main ones, related to the two shuffle products.
The remark in this paper (§1) was described in a lecture at the CIRM, april 2000,
and used e.g. by G. Racinet [13]. §3 gives a more formal version; in §2 I have briefly
recalled the basic notions about polylogarithms and zeta-numbers used in §3.

1 Logarithmically divergent series

1.1 Series

Let K C CJ[[2]] denote the set of formal series f = ) fn2z" with complex coefficients
in which the coefficient f,, has an asymptotic expansion of the form

(1) fa~ ) pe(Logn) n™*
1

for n — oo, where for each k, px is a polynomial. Polylogarithm series f = Li,
belong to K and zeta values are special cases of convergent series f(1), cf. below.

We set Sp(f) = Sn = Y. f&- Condition (1) is equivalent to the fact that Sy has
a similar asymptotic expansion:

(2) Sp ~ Z Pi(Logn) n™*.
0

This implies that the series is convergent for |z| < 1 and its sum, still denoted f(z)
admits for z — 1 — 0 an asymptotic expansion:

)

1—-2

(3) f(2) ~ D (1 —2)*Qu(Log

where the Qj are also polynomials (the converse is not true).

We will denote the leading polynomials
(4) Sg=P, M;y=Qo

The following result is immediate:



Lemma 1 The following statements are equivalent:
1) The numerical series 3 f, 18 convergent.
2) The numerical series Y f, is absolutely convergent.
8) The polynomial Sy = Py is constant.
4) The polynomial My = Qo is constant.
Sy and My are then equal constants: Sy = Ms =) fn.

1.2 Products.

Let k € C be a field. On the set of formal series k[[T']] we have two associative and
commutative products defined by:

(5) f Xg= Z fpgq ZP‘HI , f * g = E fpgq zsup(Pa‘I)

the first is the usual product (corresponding to the shuffle product m below), the
second is the unique product such that if S,(f) = >_7 fi is the n-th partial sum,
we have S,(f * 9) = Sp(f)Sn(g) for all n (corresponding to the x shuffle product

below).

It is immediate that K is a sub-algebra for both products, i.e. the coeflicients of
f X g and f * g have a logarithmic asymptotic expansion as above if f and g do.

The map f — My (X), resp. f — S;(X) a homomorphism of the algebra (K, x),
resp. (K, *), to the polynomial algebra C[T] (surjective if k = C).

Corollary 1 Let I C K be the subset of convergent series with vanishing sum: I is
an ideal of KC for both multiplication laws X, *. It contains all elements of the form

fxg—fxgfor f,g €K, f convergent.

Indeed My is multiplicative for x (resp. Sy for *) and My = 0 < Sy = 0. The
second assertion follows from the fact that, if f is convergent, setting a = f(1) =
Y fa,wehave fxg—fxg=(f—a)xg— (f —a) X g; since f — a is convergent
with vanishing sum, the same is true for both terms: M(s_z)xg = 0, S(f-a)xg = 0.

A typical regularized zeta value is obtained by applying the character f — M;(6)
(resp. or f — S;(6)) to a divergent polygarithm series, for some number 6.

1.3 Relation between M; and Q;

Corollary 1 shows that the polynomials My et S; determine each other for f € K. We
will explicit the formula which links them. We use the generating series F' = F(T, z),
with T' is a formal parameter:

(6) F=5% —(log
so that Mg(X) = eTX. Then for F we get

38,0 = — T =S4T (14 %-) e




ie.
T eTlogn
Sn=(1+T)...(1+;{)~ i
Taking limits (the limit holds in any reasonable sense, in particular the coefficients
of the T* converge) we get

Theorem 1 For any f € K we have : S¢(X) = di' Q¢(X)
:i—)_{-'

If we explicit the Taylor-series expansion of 77, this can be rewritten
o0 ._
S7(X) = exp Z ] ’} Qs(X)
1

with here the convention ((1) = +, the Euler constant.

2 Polylogarithms.

In this section we recall basic facts about polylogarithms. Let k be a field of char-
acteristic 0 (k= Q, R or C). :

2.1 Polylogarithm functions.

o Let £ = k(Xo, X;) denotes the free algebra with two generators Xg, X1 (L
if there is a risk of confusion). It has a canonical basis W consisting of words
(monomials): a word of degree N isw = X, ... Xy, e =0o0or L, w=1if N =0
(empty word). '

oL denotes the completion of £: its elements are formal series f = Y fuw. We
identify £ with the graded dual of L (it might be better to use another notation;
the free (concatenation) product lives on E; the shuffle products below live on the
dual.

e Duality endows £ with a structure of left or right L°-module, via inner prod-
ucts, e.g. {(a1g,9) = (a,gf). Since 1 is a generator of the left or right free module
L, it is a cogenerator in the dual, i.e. if a € £,a # 0 there exists f € L such that
asf=1(or fLa=1).

e To each a € L we associate linearly a polylogarithm function Li,(z) so that
the L-valued the formal series L = L(z) = Y, o Liw(2)w satisfies the differential
equation '

© dL(z) = (ZXo + -2

ZX1)L, Lr9(0) = 1



The coefficients Li,, are holomorphic functions on |0, 1[, and extend as ramified
functions to the whole complex plane. They have logarithmic singularities at 0, 1, oo
i.e. of the form ¢ = 3 ¥ ¢ (w)(logu)* if u is a local parameter (u = z,1—z or 2) and
& is holomorphic in a neighborhood of the singular point. The regularized value at
z =0 is defined by ¢"9(0) = ¢0(0).

If w = Xy, We have Liy, = P, ... P, (1) where Py, P, are the operators
Pof(z fo t) diyreg P f(z = [T 1) & In particular for 0 <z < 1

| it it
(8) Liw(:c)=/.../ Wiy (b)) wiy (tn),  with wo= 2wy = -2
>11>..t, >0 ot 1t

e Let T" denote the fundamental group of C\ {0;1}; we choose as base point
1+0, and in what follows we denote c;co the path ¢q followed by ¢; (the opposite of
the usual order). T' is a free group generated by 7,71, With 7o, & small loop around
0, and ; a small loop around 1 preceded and followed by the real path [+0,1 — 0].

L(z) is a ramified function; z should be thought of as a homotopy class of paths
avoiding 0, 1, oo, with origin 1 + 0.

Since the polar part of dL L™! at z = 0, resp. 1, is 3‘;‘1, resp. —;){11-, we get, for

veTl
L(zy = L(2)é(v)

where ¢‘: ' — £* is the group homomorphism such that

$(0) = €%, @(m) = L'¥(1~0)"'e ¥ L™(1 - 0).
Equivalently
(9) Liy(27y) = Liy,¢y(2) for any ~veTl.

It follows in particular that the image ¢(Z(T) is dense in L, and the algebras gen-
erated by the fundamental group, or by Xo, X; acting by right interior product, are
the same. In particular for any a € L, f € L, Li, ¢ is a finite linear combination of
branches of Li,.

e The map a € L¢ — Li, is injective, i.e. the Li,, w € W are linearly indepen-
dent over C (in fact over the field of rational functions C(z)); this is a simple special
case of the Riemann-Hilbert theorem: if a € L¢, a # 0 there exists f € L¢ such that
a.f =1, so Lis,f = 1 is a linear combination of branches of Li,, and Li, does not
vanish]. The range of this map is exactly the set of functions which are ramified at
0, 1, 0o, of finite type and unipotent monodromy, and any branch of which at 0,1 or
oo has a logarithmic singularity as above.

2.2 Polyzeta numbers

o If a € L, the function Li, (or rather its first branch) is holomorphic at the
origin iff a is orthogonal to £Xo (auXo = 0). The Taylor series of Li, then belongs



to the algebra K of §1. We denote A C £ the sub-algebra 4 = k + LX, orthogonal
of EX[)

A is a free algebra with generators the y; = Xg”le. It has a basis consisting
of monomials ¥ = s, - .- ¥s,, indexed by indexed by sequences s = (s1,...,s,) of
integers > 1 (the concatenation product, in this order, yp = 1).

The polylogarithm series are the Taylor series at z = 0 of the Lig,a € A: we
have

(10) Liy(@)= )

ny>..ns>1

e We denote A° C A the sub-algebra k + XoLX; (orthogonal to XoL + LX).
If s = s1,...8 (r > 0) we have y, € A° iff s; > 1. Then the polygarithm series
Lis(1) is obviously convergent (Lis(2) = [ %.. has a limit for 2 — 1 —0). The
corresponding zeta number is

1
(11) G=Li(1)= ), T

n1>..ns=>1

2.3 Products.

Let us recall that two shuffle products, m and *, are defined on £ resp. A.

e m is the unique product compatible with the usual product of holomorphic
functions, i.e. Liqmp = LigLiyp.
L ® L satisfies the differential equation

dz dz
dL®L)= (Xo®1+1®Xo)+-1-—_——(X1®1+1®X1) (L® L),

(LeL)™(0)=1

so the dual coproduct is the algebra homomorphism Ap : £ — £ ® L such that
Ap(X;) = X; ® 1+ 1Q® X; for i = 0,1 (the completion takes L to L&L - which is

bigger than £ ® L).
For the m product law, L is of group type, i.e. AmL(z) = L(2) ® L(z); so are
the monodromy elements ¢(v),y € I'.

e x is only defined on .A. The dual coproduct A, is characterized by the require-
ment that the generating series

(12) w(T) =1+ f: y; 17

is of group type, i.e. for the generators we have

(13) Au(y;) = Z Y, ® y, (with the convention yo = 1)

p+q=j



To the word ys, € A one associates the elementary “quasi-symmetric” function
(formal series) Ps(t1,...,tn,...):

(14) P, = Z N

ny>->ny

Let us recall that the P, form a basis of the algebra P C k[[t1,...tp, ...]] of quasi-
symmetric functions, which is a sub-algebra of the algebra all formal series in ¢1,.. ..

Since u(T") of group type in A[[T]], so is the formal product

(15) Us=...ult).. u(t) =) Pus

(infinite concatenation product, in the indicated order). So the linear map ¥ : A —
P such that U(ys) = P, is an algebra isomorphism: (A, x) — P.

For f = Liy,(2), (10), (11) show that series {y = 3. . . n"...n; % is ob-
tained by substituting ¢, = 1 in U(f), and the N-th sum Sy(f) is obtained by
substituting t = 1 if k < N, tx = 0 otherwise; so we have Sn(f*g) = Sn(f)Sn(9)-

3 Relations between polylogarithm series.

3.1 Main identity - second version.

Any monomial a € A is uniquely factorized as y = y¥ - b for some integer k and
some monomial b € A%. An easy induction then shows that for either law A is a

polynomial algebra: Ay = A%[y1], Av = A%[y1]. The successive powers yi*, y™* are
not equal, and the relation between them is given by the next result:

Theorem 2 We have the following identity of formal series with coefficients in A:

16 111 T = * = (_l)k“I k
(16) exp™ y; T = exp* ) = wl
1

where exp™, resp. exp* denote the exponential series in Am[[T]], resp. AL[[T]].

This follows immediately from the equality y™* = kly; ; = k!XF so we have

U™ =kl Y tnoituy= D tny...tn,

ny>>ng niFEng

and

U(exp™ y,T) = H(l +t,;T) = exp Z (—k—)- t? T* .

k21,5

Since 3 ¢¥ = U(y) this implies (16).




One can reformulate this identity as follows: let D be the “left interior” product
operator by X; in \A. This is a derivation, for both laws * and mw since X; = y; is
primitive for both coproducts Ay, A.. We have Dys, ...ys, =0if 51 > 1, ys, . .. Ys,
if s; = 1 and the fixed sub-algebra of D is the subring A° = k + X,LX; above,
corresponding to the “obviously” convergent series. Theorem 1 can be expressed as

follows:

Corollary 2 Let ®(D) be the (infinite order) differential operator on (A, *):

(1) 2(D) = exp' (X 2y D).

k=>2

Then for fi € A° we have
(18) Do fexyi*=®(D)Y ferxyt

3.2 Relations

Regularized divergent ¢ values are obtained by extending the character a — ¢, from
A9 to A for one of the laws * or m; for this one only needs to define the zeta-value
G = 0, so the extended character is f — S(f), resp. M;(#) with the notation of
§1; the most natural choices are § = 0'or 6 = <y, the Euler constant.

The two extensions are not equal. However both extensions coincide on on the
elements a € A such that the corresponding series f = Li, = Y fn2" is convergent
for z =1 (i.e. Sy = M; = constant, as in §1); for such an element the zeta number
(o = Lio(1) is still unambiguously defined. These elements form a sub-algebra, for
both laws m and %, which contains A° = k + X LX;.

By §1 the null-ideal J is the same for both extended characters: it is the set
of all @ € A such that Li,(1) is convergent, and the sum is 0. J is not defined
over Q (the coefficients of the extended character are not rational, and J is not of
codimention 1 if k is smaller than C). However J certainly contains all elements of
the form a * b — amb with b € A%, E.g. we have y; * 9o — y1my2 = ys — Y12 hence
<3 - Cl.‘? =0 (Euler).

Let V be the k-vector space generated by the a * b — awb (b € A?). V is stable
by D (D(a*b—amb) = Da*b— Damb). In fact it follows easily from theorem 2 that
the two * or m ideals A x V and AmV are equal. Then ] = A%V = AmV is stable
by D so it is generated by I N A° i.e. by the coefficients f; € A° of f =3 fx * y1*
(or f =Y fimy™*) for all f = a % b — awb as above.

The ideal I thus introduced is rational (everything is well defined if k¥ = Q). The
now standard conjecture is that for £ = Q we have I = J, the null ideal of ¢, i.e.
the only algebraic relations between zeta numbers are those that can be deduced
formally from the comparison of the two product laws. This seems rather out of
reach right now and present work deals with proving that all known relations can
be reduced to those above, and making explicit the ring structure of the quotient
ring Ap mod. these relations.
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