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SPECTRAL GEOMETRY AND A CHARACTERIZATION OF
HYPERSURFACES
IN A COMPLEX GRASSMANN MANIFOLD

Yoichiro MIYATA(E H#¥—BR)
Tokyo Metropolitan University (B r#EI K %)

ABSTRACT. In this article, the author will study compact Kahler hypersurfaces M in a
complex Grassmann manifold G.(C") of r-planes, and give an upper bound for the first
eigenvalue of the Laplacian (Theorem A). In the case that r = 2, G2(C") admits the
quaternionic K&hler structure J. When the tangent bundle TM and the normal bundle
TL M of M satisfy the property that JT-M C TM, the author obtain sharper estimate
(Theorem B). It is an interesting problem that “What is M satisfying JT+-M C TM?”.
If M is Einstein, without the assumption of homogeneity, we shall show that M is
congruent to a certain Kahler C-space (Theorem C). Theorems A, B and C are showed
in the section 2, and are proved in later sections.

1. CoMPLEX GRASSMANN MANIFOLDS OF r-PLANES

In this section, we discuss geometries of complex Grassmann manifolds of r-planes and
their first standard imbeddings. For details, see [9] and [2].

M, ;(C) denotes the set of all r X s matrices with entries in C, and M, (C) stands for
M, .(C). I, and O, denote the identity r-matrix and the zero r-matrix.

Let M,(C™) be the complex Stiefel manifold which is the set of all unitary r-systems of
cn, ie.,

M(C") = {Z € M (C) | 2°Z = I}

The complex r-plane Grassmann manifold G,.(C") is defined by

G.(C") = M, (C")/U(r).

The origin o of G,(C") is defined by n(Z,), where Z; = (

and 7 : M,(C*) — G,(C") is the natural projection.
The left action of the unitary group G = SU(n) on G.(C") is transitive, and the
isotropy subgroup at the origin o is

K=8(U(r)-Uln-r))

-{(% 4)

so that G,(C") is identified with a homogeneous space G/K.
Set § = su(n) and

‘g) is an element of M,(C"),

U, € U(?"), U, € U(n—r), detU,;detU; = 1},

t=R@su(r) ®su(n—r)

_[(wm O\ (~-IL 0
TN0 wy) T 0 L /I,

aeR

u; € su(r) } ,

" uy € su(n —r)
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then § and € are the Lie algebras of G and K, respectively. Define a linear subspace m of

g by
s-{(e )[eerie)

Then i is identified with the tangent space T,(G-(C")). The G-invariant complex struc-
ture J of G,(C") and the G-invariant Kahler metric . of G.(C") of the maximal holo-
morphic sectional curvature ¢ are given by

/)= (7

2 ~
(1.1) G3,(X,Y)= ——EtrXY, X,Y em.
Notice that g, satisfies
- 21 2 L(g)
.2 = ——_B:= ——_*"B-.
(12) Jeo c2n ® c 2 °

on i, where B is the Killing form of g, and L(g) is the squared length of the longest root
of g relative to the Killing form. 3
We denote by X* an vector field on M generated by X € g, i.e.,

(X*)pz{iexpt)(-p , 'ngaeM, gEC:’.

dt t=0

The Riemannian connection V is described in terms of the Lie derivative as follows:
.- ~ad(X)Y;, if X €&,

1.3 Lx« — Vx+)sY = ~

(13) (Lx- = Vx-) {0, if X €,

where Y is a vector field on M.

In the case of r = 2, the complex 2-plane Grassmann manifold G3(C") admits another
geometric structure named the quaternionic Kéhler structure J. J is a G-invariant sub-
bundle of End(T(G»(C"))) of rank 3, where End(T(G2(C™))) is the G-invariant vector
bundle of all linear endmorphisms of the tangent bundle T(G2(C")). Under the identifi-
cation of T,(G2(C™)) with m, the fiber J, at the origin o is given by

3o = {Jg= ad(®) | £ € Eq},
where £, is an ideal of & defined by
B U1 0
w5 )
Define a basis {1, €3, €3} of su(2) by
(VT 0 (0 1y __(0o v
1= 0 __/_1 ’ 2= -1 0/’ 3 = /__1 O

Then €1, €5 and €3 satisfy

up € 5u(2)} & su(2).

[e1, 2] =2€3, [e2, €3] =261, [e3,81] =26



20

&(:)i 8 and J; = J;, for ¢ = 1,2,3. Then the basis {J;, J, J3 } is a canonical

basis of J,, satisfying

Set é‘z =

J? = —ids fori=1,2,3,
JiJp = =Sy =3, SJs=—SJp =1, BS=-JJz=J,
G, (X, JY)=g. (X,Y), for X,)Y emandi=1,2,3.
Since J is given by

. . rin—r) [=1/=11, 0
J=adc), Ee= “("n_)< "0 AV _r)

on m, and since £¢ is an element of the center of E, J is commutable with J.
Moreover, the property

(1.4) trJJ' =0

holds for any J’ € J. 3 3
In [2], J. Berndt showed that the curvature tensor R of M is given by

18 RXNZ= £, 2X - 6X, DY
+ 3.(JY, 2)JX — §.(JX, Z)JY + 25X, TY)JZ

3
+ Y {3, 2)0X = 5B X, D)RY +23.(X, Y )2 )

k=1
3
+ Z{gc(JJkY, Z2)JJeX — §o(J i X, Z)JJkY}}
k=1

for any vector fields X,Y and Z of M.
Let HM (n,C) be the set of all Hermitian (n, n)-matrices over C, which can be identified
with R”. For X,Y € HM(n,C), the natural inner product is given by

(1.6) (X,Y) = %trXY.

GL(n,C) acts on HM(n,C) by X — BXB*, B € GL(n,C), X € HM(n,C). Then the
action of SU(n) leaves the inner product (1.6) invariant. Define two linear subspaces of
HM(n,C) as follows:

HMy ={X € HM(n,C) |trX =0},
HMg = {al|a € R},

where I is the n-identity matrix. Both of them are invariant under the action of SU(n),
and irreducible. We get the orthogonal decomposition of HM(n,C) as follows:
It is well-known that HM, (resp. HMg) is identified with the first eigenspace V4(G,.(C"))

(resp. the set of all constant functions, i.e. V4(G-(C™))).
The first standard imbedding ¥ of G,(C") is defined by

U(n(Z)) = ZZ* € HM(n,C), Z € M,(C™).
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¥ is SU(n)-equivariant and the image N of G,.(C") under ¥ is given by
(1.7) N =9(G.(CY)={Aec HM(n,C) | A*=A, trA=r},
so that it is contained fully in a hyperplane
HM, = {A€ HM(n,C)|trA=r} = {A+ %I{A e HMO}
of HM(n,C). The tangent bundle TN and the normal bundle T+ N are given by
T4N ={X € HM(n,C)| XA+ AX = X} C HM,,

1.8
(18) T+N ={Z € HM(n,C) | ZA = AZ}.
In particular, at the origin A, = ¥(0) = (6’ g), we can obtain

L e §)emno).

TN = { (%1 32) 7, € HM(r,C), Zy € HM(n —r, C)} .

The complex structure J acts on T4, N as

0 ¢ 0 —y/ 1€
110 1 8)= (% )
If r = 2, then the quaternionic Kéhler structure J acts on Ty, N as
(1.11) (2 f()*\) (_0& s({)*) , €€su(2).

Let & and H denote the second fundamental form and the mean curvature vector of ¥,
respectively. Then, for A € N and X,Y € Ty N, we can see

(1.12) 5A(X,Y) = (XY +YX)(I - 24),
and & satisfies the following;:

(1.14) | Fa(JX,JY) = 54(X,Y),
(115) (5A(Xa Y)’ A) = _(X’ Y)

) the hypersphere in H M, centered at ZI with radius M.

n

Denote by S™~2(%
Then we see that ¥ is a minimal immersion of G.(C") into S _2(2 (o ) and that the
center of mass of ¥(G,(C")) is ZI. In fact, ¥ satisfies the equation A¥ = cn(¥ — ZI).
Moreover, all coefficients of ¥ — ZT span the first eigenspace Vi(G-(C")).

Let’s assume that M is a submanifold of G, (C") with an immersion ¢. Then F = Toyp
is an immersion of M into HM(n,C), and the set of all coefficients of F' — ZI spans the
pull-back ©*V;(G.(C™)).

Let (M, g) be a Riemannian submanifold of M. Denote by V the Riemannian connec-
tion of M, and by o, A and V+ the second fundamental form, the Weingarten map and

r('n, T)
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th normal connection of M in G3(C?) respectively. We have the Gauss’ formula and the
Weingarten’s formula are:

(1.16) VxY = VxY +0(X,Y), Vx&=—-AX+VxE,

where X,Y and Z are tangent vector fields and £ is a normal vector field. Moreover, we
see

9(AX,Y) = g(0(X,Y), &).
If M is an Kahler submanifold of M, then the following hold.
(1.17) o(X,JY)=0(JX,Y)=Jo(X,Y),
(118) AEJ = —JAg = —Ajg.

M is called a quaternionic submanifold, if the tangent space T, M is invariant under the
action of J for each p in M. M is called a totally real submanifold, if JI,M is a subspace
of the normal space T,-M for each p in M.

2. MAIN RESULTS AND EXAMPLES

One of the simplest typical examples of submanifolds of G.(C") is a totally geodesic
submanifold. B. Y. Chen and T. Nagano in [4, 5] determined maximal totally geodesic
submanifolds of G2(C™). 1. Satake and S. Ihara in [17, 8] determined all ( equivariant )
holomorphic, totally geodesic imbeddings of a symmetric domain into another symmetric
domain. When an ambient symmetric domain is of type (I) »,g» b2king a compact dual sym-
metric space, we obtain the complete list of maximal totally geodesic Kéhler submanifolds
of G.(C™).

Let M be a maximal totally geodesic Kahler submanifold of G.(C") given by a Kéhler
immersion ¢ : M — G,(C"). Since M is a symmetric space, denote by (G, K) the
compact symmetric pair of M, and denote by (g, ¥) its Lie algebra. Then there exists a
certain unitary representation p : G — G = SU(n), such that o(M) is given by the
orbit of p(G) through the origin o = {K} in G,(C").

Let L(g) be the squared length of the longest root of g relative to the Killing form
B,. Tables of the L(g) constants appear in [7]. The Kéhler metric induced by ¢ is a
G-invariant metric corresponding to an Ad(G)-invariant inner product

on g, where [, is the index of a linear representation p defined by Dynkin. Tables of
indices of basic representations of simple Lie algebras appear in [6].
Using Freudenthal’s formula with respect to the inner product (2.1), we can calculate

the first eigenvalue of the Laplacian of M. (cf. [20])
Summing up these results, we obtain the following.

Theorem 2.1. Let M = G/K be a proper mazimal totally geodesic Kihler submanifold
of G.(C"), p a corresponding unitary representation of G to SU(n), and X\, the first
eigenvalue of the Laplacian with respect to the induced Kdhler metric. Then, M, p and
A1 are one of the following (up to isomorphism).
(1) My =G.(C") = G.(C"), 1Sr<n-2,
p1 = natural inclusion and A =c(n—1)
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(2) My =G,1(CY) > G.(C*), 25rSn-—1,
pe = natural inclusion and A; =c¢(n —1)
(3) M3 = GTI(C"”) X G,.z((C"?) — G,.1+,2(C"1+"2), 1 é T; § n; — 1, 1= 1, 2,
ps = natural inclusion and A; = cmin{n;,n2}
(4) M = My = Sp(p)/U(p) = Go(CP), p22,
ps = natural inclusion and A;=c(p+1)
(5) Ms = Ms, = SO(2p)/U(p) — Go(C*), p2Z4,
ps = natural inclusion and A =c(p—1)
(6) Mg, = CPP — G,(C") : the complez projective space,

+1
r= mlil n= pm , 2SmSsp-1,
pe,m = the exterior representation of degree m,
-1
-1

and A =c(p+1) 7?1—1

(7) M7 = @3 — Q* = G2(C*) : the complez quadric,
p7 = spin representation and A; =3c

(8) Mg = Mgy = Q% — G.(C™) : the complez quadric, r=2""1, 123,
pz = (two) spin representations and A = c~272£—2

In the above liSt, notice that M4,2 = M7 and M5,4 = Mg,e.

A submanifold M of G,.(C™) is parallel if the second fundamental form of M is parallel.
H. Nakagawa and R. Takagi in [14] classified parallel Kahler submanifolds of a complex
projective space CP*~! = G;(C*). K. Tsukada in [22] showed that, in parallel K&hler
submanifolds of G,(C"), the above classification is essential. Moreover, if r # 1,n — 1,
then a parallel Kéhler submanifold M of G,(C™) is a parallel Kéhler submanifolds of some
totally geodesic Kihler submanifold of G,(C"), i.e, M is a parallel Kéhler submanifold of
one of {M;,i =1,...,8}. Notice that a Hermitian symmetric submanifolds of G.(C™) is
parallel.

Another one of the simplest typical examples of submanifolds of G,(C") is a homoge-
neous Kéhler hypersurface. K. Konno in [10] determined all Kéhler C-spaces embedded
as a hypersurface into a Kéhler C-space with the second Betti number b, = 1.

Theorem 2.2. Let M be a compact, simply connected homogeneous Kdahler hypersurface
of G.(C™), and ), the first eigenvalue of the Laplacian with respect to the induced Kdhler
metric. Then, M and )\, are one of the following (up to isomorphism).

(1) My =CP"?2—CP"1=G,(C") and M =c(n-1)

(2) Mw Qn 2y CP™~ 1= Gl(Cn) and Al = c(n - 2)

(3) M7 Q3 —> Q4 GQ(C4) and )\1 = 3c

(4) My = My = Sp(l)/U(2)- Sp(l—2) = Go(C*) : Kdihler C-space of type (Ci, a2),
[Z2 and M =c2-1)

My and My are totally geodesic. My, My, and My, are symmetric spaces. If | = 2, then
M, is congruent to My. If 1 > 2, My, is neither symmetric nor parallel.

For each [ with [ > 2, M, is not a symmetric space. Then, it is not easy to calculate
the first eigenvalue )\; of M;;. We will calculate A, of My, in §4.
From these two theorems, we obtain the following proposition:



24

Proposition 2.3. Let M be either a proper mazimal totally geodesic Kdhler submanifold
of G-(C™) or a compact, simply connected homogeneous Kdhler hypersurface of G,.(C").
Then, the first eigenvalue A\ of M with respect to the induced Kdahler metric satisfies

A Sc(n-1).
Moreover, the equality holds if and only if M is congruent to one of the following:
My, M, Myy=»M, M, M:.
Notice that all manifolds in Theorems 2.1 and 2.2 are Einstein manifolds.

One of the purposes of this paper is to give the upper bound for the first eigenvalue of
Kahler hypersurfaces of a complex Grassmann manifold.

In the case that M is a complex hypersurface of G,(C"), we obtain the following result,
which is a generalization of A. Ros [16]’s results.

Theorem A ([12]). Suppose that M is a compact connected Kéhler hypersurface of
G.(C™). Then the first eigenvalue A, satisfies

The equality holds if and only if r =1 orn—1, and M is congruent to the totally geodesic
complez hypersurface CP™2 of the complex projective space CP™1.

The 2-plane Grassmann manifold G3(C") admits the quaternionic Kéhler structure J.
For the normal bundle T+M of a Kihler hypersurface M of G5(C"), 3JT+M is a vector
bundle of real rank 6 over M which is a subbundle of the tangent bundle of G5(C").
We consider a Kahler hypersurface M of G4(C") satisfying the property that JT+M is a
subbundle of the tangent bundle TM of M, i.e, JT+*M C TM. In §4, we will see that the
Kahler hypersurface M, ; satisfies this condition.

For a Kahler hypersurface of G5(C") satisfying this property, we obtain the following
upper bound of the first eigenvalue.

Theorem B ([12]). Suppose that M is a compact connected Kdihler hypersurface of
G3(C"), n 2 4. If M satisfies the condition J T-M C TM, then the first eigenvalue Ay

satisfies
-1
< _n
Alzc(n 2n—5)'

The equality holds if and only if n =4 and M is congruent to the totally geodesic complez
hypersurface Q® of the complez quadric @* = G,(C*).

Also see [13] about Theorems A and B.
One of the simplest questions is as follows: What is M satisfying JT*M C TM?
Without the assumption of homogeneity, we shall show the following result.

Theorem C ([11)). If an Einstein Kdhler hypersurface M of Go(C") satisfies the condi-
tion JT-M C TM, then n is even and M is locally congruent to My n/a-

If n = 4, then the statement holds without the assumption that M is Einstein. See
Proposition 4.3 in §4.
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3. THE KAHLER C-SPACES WITH by =1

In this section, we will consider the first eigenvalue of the Kéhler C-space whose second
Betti number is equal to 1. First, we review the general theory of Kahler C-spaces. For
details, see [3] and [19].

Let g be a compact semisimple Lie algebra and t be a maximal abelian subalgebra of
g. Denote by g€ and t® the complexifications of g and t, respectively. {C is a Cartan
subalgebra of g€. Let (, ) be an Ad(G)-invariant inner product on g defined by —B;,
where B, is the Killing form of g. Let £ C (t€)* denote the root system of g relative to
t. We have a root space decomposition of g :

(31) gC = tc -+ Zgg,

acX

where g€ = {X € g® | (adH)X = a(H)X for any H € t}. Since g is compact type, for
any o € ¥ and H € t, o H) is pure imaginary, so that there exists a unique element & € t
such that, for any H € t, the equality a(H) = v/—1(&, H) holds. We identify a with &, so
that the root system ¥ is identified with a subset {& | a € L} of t. Choose a lexicographic
order > on ¥ and put £+ = {a € ¥ |a > 0}. Let II be the fundamental root system of
¥ consisting of simple roots with respect to the linear order >. II is identified with its
Dynkin diagram. Let {A4}aen C t be the fundamental weight system of g corresponding
to Il :

8,8 |0 ifa#p

Let II, be a subdiagram of II. We may suppose that the pair (II, ) is effective, that
is, IIy contains no irreducible component of II. Put £g = £ N {Ily}z, where {Il}z denote
the subgroup of t generated by I, over Z. Define a subalgebra u of g® by

(3.2) u=1t"4 Z a<.

acfount

2(Aa, B) {1 if @ = B,

Let G€ be the connected complex semisimple Lie group without center, whose Lie
algebra is g€, and U the connected closed complex subgroup of G generated by u. Let G
be a compact connected semisimple subgroup of G¢ generated by g and put K =GNU.
The canonical imbedding G — G€ gives the diffeomorphism of a compact coset space
M = G/K to a simply connected complex coset space G€/U. Therefore, the homogeneous
space M = G/K is a complex, compact, simply connected manifold called a generalized
flag manifold or a Kéhler C-space. Lie algebra € of K is given by

(3.3) €=+ o
a€Yg
Define a subspace ¢ of t and a cone ¢* in ¢ by

c= E RA,,

acll-Ilg

(3.4) ¢t ={0ec—{0}|(6,0) >0 foreacha e M-I},

respectively. Then we have ¢* = _ RYA,, where R™ denotes the set of positive
aell-Tlp
real numbers.
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Let m be the orthogonal complement of ¢ in g with respect to (, ), so that we have
a direct sum decomposition g = & + m as vector space. The subspace m is K-invariant
under the adjoint action and identified with the tangent space T,M of M at the origin
o={K}. Put &} =X+ — %,, &7 = —X} and define K-invariant subspaces m* of g€ by

(3.5) m* = Z g,

aezﬁ

Then the complexification m® of m is the direct sum m® = m* + m~, and m* is the
++/—1-eigenspace of the complex structure J of M at the origin o.

Denote by X — X the complex conjugation of g€ with respect to the real form g.
We can choose root vectors E, € g€ for a € T with the following properties and fix them
once for all:

(3.6) [EaE_o]=V-1a, (BaEo)=1, E,=E_, fora€l.

Let {w®}qes be the linear forms of g€ dual to { Ex}acsx, more precisely, the linear forms

defined by
1 ifa=0
@ €C = {0 , *(B.) = ?
W) = {0}, w(Ep) {0 oy

Every G-invariant Kéhler metric on M is given by

-0 —— —a  — 1 — o = | e -
(3.7 g(0)=22(0,a)w WY, W :i(w QU *+T *Quw )

acsh

for § € ¢*. Note that the inner product (, ) satisfies

( ) )m+x;1¢ =2 Zan‘;‘; W™
We define an element 6, € t by
1
O = 3 Daczt @ €ct.
Then, for the Kahler metric g(8), the Ricci tensor Ric and the scalar curvature T are
given respectively by

(3.8) Ric=4 Z (Om, @) w™ -T2, =4 E fg’j;

acth a62+

If IT — I consists of only one root, say a,, then the Kdhler C-space M is said to be of
type (g, or). The second Betti number b, of M is equal to 1. In this case, we obtain

+ R+Aa,.,

so that there exists a positive real number b with 28, = bA,.. Therefore, (g,,) is a
Kahler-Einstein manifold, and the Ricci tensor and the scalar curvature with respect to
a Kahler metric g(aA,,) are given by

Ric = gg(aAa,), T= 2% dim¢ M,

respectively.
Y. Matsushima and M. Obata showed the following:
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Theorem 3.1 ([15]). Let M be an n-dimensional compact Einstein Kdihler manifold of
positive scalar curvature 7. Then the first eigenvalue A (M) of the Laplacian satisfies that

.
M(M) Z —.
(M) 2 ~
The equality holds if and only if M admits a one-parameter group of isometries (i.e., a
non-trivial Killing vector field).
This theorem implies the following proposition immediately.
Proposition 3.2. For the Kahler C-space M = (g, o) equipped with the Kdihler metric

g(aA,,), the first eigenvalue A\; (M) of the Laplacian is given by A\, (M) = %b.

From now on, we assume that g is a compact semisimple simple Lie algebra of type
C,,1 2 2, and we consider a Kahler C-space of type (g, ). Then, II is identified with the
Dynkin diagram of type C;

o} o) oo O<—0
Q; Q2 a1 Qg

and X% is given by
E+={ai+...+a,»_1 1Si<jsSi+1), o }
(@i+-4a)+(@++aa)toa 1SisSjsi-1) [
Therefore, we have
 h={o+-tat+--+a; 1ZiSrjisD},
U{(lai+-+a)+(aj+ - +a)+a (12isrisjsi-1)}.
Immediately, we get
dimcM=#2;=%(4l—3r+1).

Then a direct computation gives

r—1 -1
200 = Z a=2—r+1) (Zmam—i—rZam—i—%ral\).
m=1 . m=r

aEZi
For details, see [12].
The Cartan matrix C of g = C; and its inverse matrix are given by C = ( ¢;; )19 i G =

2 157 —_
ey, O = (dy i

if1£jSl-1landj<Si S|,
if1£j<Ll—-1and 1505y,
if 1 =1,

dﬁ::

o). S S,

so that the following holds

l -1 -1
Ao, = Z ArmOm = TZ: MOy, + T Z oy + %ral.
m=1 m=1

m=r
Therefore, we obtain
20m = (2l =7+ 1)A,,.
Summing up the above consideration, we obtain following.
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Theorem 3.3. For the Kihler C-space M of type (Ci, o) equipped with the Kahler metric
g(al.,), the complex dimension, the scalar curvature T and the first eigenvalue A (M) of
the Laplacian are given respectively by

— 2l — 221 —

dime M = r(4l 3r+1), - 2(21 r+1) M, (M) = (2l 7‘+1).
2 a a

4. THE HOMOGENEOUS KAHLER HYPERSURFACE (C}, ap)

In this section, we will consider a Kéhler C-space of type (C}, a,) as a Kahler subman-

ifold of G,(C%).
A, C e M|
“”(l)‘{<c ;)I L A tlc )c}

Let’s set
then g is a compact semisimple Lie algebra of type C; whose complexification is given by

g° %sp(l,C) = {(é _?A) A,B,C € Mz(C),} '

tB=B,'C=C
Note that the Killing form By is given by
By(X,Y)y=2(l+1)trXY, X, Ye€g.

For integers i and j with 1 < 4,5 <[, let E;; be the matrix in M;(C) whose (3, j)-coefficient
is 1 and others are zero. and let’s set

6, — \/—_I(E,, 0)

4(1+1) —Ej;
for 1 < 4,5 < l. Relative to an abelian subalgebra t = R{f;, 1 < ¢ < 1}, the set £ of
all positive roots is given as X+ = {6, — 0; (i < j), 6;+0,(i < _])} The simple roots a;
numbered as the last section is given by a; = 6; — ;11 (1 S ) S 1-1), ay =26,
Yo and X} are given by
o +(0;—6;) (1Si<j<rorr+1Zi<j<l),
+(6;+0;) (r+15isj510) ’
o+ 6, —0; (1SisSrandr+15j51),

Choosing suitable root vectors, from (3.2) and (3.3), we can get

((A A" B B A, B € M,(C),
. 0 AI tBII B’ A’,B,, Cl = Ml—r(C),
=110 o —t4 o A" B" € M,,_.(C), ’
\ 0 C// __tA// —tA' tB B tBI BI tCl c’
E=gNu
(/A 0 0 O
04 0 T A € M:(C),
={lo 0 7 o A,C" € M,_.(C),
* e _ I Te U
o c o = A =—A A=A C'=C
=u(r) +sp(l —r).
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Therefore, the Kéhler C-space M of type (C}, o) is identified with the homogeneous space
G/K = Sp(1)/U(r) - Sp(l — 7).
For z,y € M;_..(C) and z € M,(C) with *z = 2z, define

0 00 O

n(z,y,2) = z 0 0 O
R4 2 ty O —t.’E

y 0 0 O

Note that, if 7 = I, then we ignore z and y, and n(z,y, z) and (0,0, z) denote a matrix

GRS

m = {n(z,y,2) —n(z,v,2)"},
m* = {n(z,y,2)}.
From (3.7), the G-invariant Kéhler metric corresponding to aA,, is given by
(4.1) g(aho, ) (X, X) = 2atr(z*z + y*'y + 22), X =n(z,y,2) —n(z,y,2)" € m.
_ The natural inclusion Sp(l) — SU(2l) defines an immersion ¢ of M into M =G,(C¥ =
G/K = SUQ2)/S(U(r)-U(2l —r)) by
plg-K)=g-K, geG.

Under identification of T,M with f, the image of X = n(z,y, 2) — n(z,y,2)* Em is

0 -z -z —y*

z 0 0 0
=1, 0 o o |
y O 0 0

so that we have
- 4 « N -
(4.2) 9e(u(X), (X)) = < tr(z*z + y"y + Z2),

where c is the maximal holomorphic sectional curvature of G.(C*). Therefore, Theorem
3.3, (4.1) and (4.2) imply the following.

Theorem 4.1. For the Kihler C-space M = Sp(l)/U(r)-Sp(l—r) of type (Ci, o) equipped
with the Kihler metric g(2Aa,), M is immersed in G,(C*) by the Kdhler immersion .
The complex dimension, and the first eigenvalue A\;(M) of the Laplacian are given by
dime M = ﬁz}l—zﬁ_ll) A(M) =c(2—r+1).

In particular, if 1 = 2, then M = Sp(l)/U(2) - Sp(l — 2) is a Kdhler hypersurface of
G2(C%), whose first eigenvalue A\;(M) of the Laplacian is given by

AM(M)=c(20-1).
For z € M,(C), define an unit vector v at the origin o of G5(C*) by

0 0 -2 0
00 0 o . 4, .,
v(z) = .0 0 of&€™ Etrzz=1.
0 0

0 0



30

Then v(2) is tangent to M if and only if z is symmetric.
The Kahler hypersurface M = (Cj, ag) satisfies the following property relatlve to the
quaternionic Kahler structure J of G3(C%).

Proposition 4.2. The Kdahler hypersurface M = Sp(1)/U(2)-Sp(1—2) of Go(C%) satisfies
(4.3) JT*McCcTM (<=)>J§ L 3¢ for annyTLM),
where TM and T+M are the tangent bundle and the normal bundle of M, respectively.

Proof. Let v, be an unit normal vector of M at o defined by

— v(2) 1 jc(0 -1
Vo = V(Z0), Zo‘“‘g‘ '2‘1 0 )

so that the normal space T;-M is given by
T)"M =R {v,, Jv, =v(vV-12,)}.
Then we see
3o TEM =R {Jiv,, Jidve, i=1,2,3}
=R {v(26:), v(V—=12¢), i=1,2,3},

where Ji, J, and J3 are a canonical basis of JJ, defined in the section 1. It is easy to check
that z,¢; and v/—12,¢; are symmetric, so that we obtain

3, TEM c T,M.

Since the quaternionic Kéhler structure J is G-invariant, and since the immersion ¢ is
G-equivariant, (4.3) holds at any point of M. 0O

If the ambient space is Go(C*), then the condition (4.3) determines a Kahler hypersur-
face as follows:

Proposition 4.3. Suppose that a Kdhler hypersurface M of Q4 G2(C*) satisfies the
condztwn
JTM CTM.

Then M is totally geodesic. Moreover, if M is compact, then M is congruent to a complex
quadric Q3 = Sp(2)/U(2).

Proof. Denote by V the Riemannian connection of Q*, and denote by V, o, A and V+, the
Riemannian connection, the second fundamental form, the shape operator, and the normal
connection of M, respectively. It is well-known that Gauss’ formula and Weingarten’s
formula hold:

VxY = VxY +0(X,Y),

6){5 =—AX + V)L(f,

for X,Y € TM and &£ € T*M. The metric condition implies

(45) 5:(0(X, Y),6) = 5ol AcX, Y).

Relative to the complex structure J, o and A satisfy

(4.6) o(X,JY)=Jo(X)Y), AsoJ=—-JoAr=—Ay.

(4.4)
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For a local unit normal vector field £, we define local vector fields as follow: e; = J;§, 7 =
1,2, 3, where Ji, J; and J3 are a local canonical basis of J. Then, under the assumption of
this proposition, {ei, e, €3, Jei, Jea, Jes, &, JE} is a local orthonormal frame field of Q*
such that {e;, ez, e3, Je1, Jeo, Jes} is a tangent frame of M. For X € TM, (4.4) implies

(4.7) Ve +0(X,e) = Vxe; = (VxJi)€ + Ji(Vx€)
= (Vx )€ — JiA: X + Ji(VxE).
Since J is parallel with respect to the connection Y~7, we have VxJ; € 3 , 0 that the normal
component of (4.7) is
o(X, &) = — Ge(iAe X, £)€ — §e(JiAe X, JE)JE
=g.(AeX, €)€ + g(Ac X, Je;)JE,
where g, is the induced Kiahler metric of M. On the other hand, (4.5) and (4.6) imply
o(X, &) =Ge(0(X, &), §)€ + Ge(0 (X, &), JE)JE
= go(AeX, €:) — ge(AeX, Je;)JE.
From these two equations, we get
(4.8) 9c(AeX, Je;) = 0.
Instead of X, applying to JX, we have
9e(AcX, €) = go(—AeJX, Je;) = 0.

Therefore, we have A, = 0, or ¢ = 0, so that M is totally geodesic. By B. Y. Chen
and T. Nagano [4]’s results, if M is compact, M is congruent to a complex quadric

Q® = Sp(2)/U(2). O
5. UPPER BOUNDS FOR \; OF SUBMANIFOLDS IN G.(C?)

In this section, we prove Theorem A and Theorem B.

Let M be a compact connected Kihler hypersurface of G,(C") immersed by a immersion
¢. Denote by A, the Laplacian on M. It is well-known that every HM(n,C)-valued
function F satisfies

(51) (AF, AF)LZ —)\1(AF, F)L2 20
The equality holds if and only if F is a sum of eigenfunctions with respect to eigenvalues
0 and \;. It is equivalent to that there exists a constant vector C € HM(n,C) such that
A(F - C)=M(F-0).

Denote by H the mean curvature vector of the isometric immersion ® = ¥ o ¢. Then,
since M is minimal in G,(C"), (1.13) implies
(5.2) 2r(n~1) = )Ha = 2r(n —r)Ha = 54(,§) — 5a(JE, JE)

= c(r] —nA) — Ga(£,&) — 5a(JE, JE),

where A is a position vector of ®(M) in HM(n,C), and £ is a local unit normal vector
field of ¢. Using (1.15) and (5.2), we get
(5.3) (Hyg, A) = —1.

HM (n, C)-valued function & satisfies A® = —2(r(n — r) — 1)H, so that (5.1) and (5.3)
imply the following. The equality condition dues to T. Takahashi’s theorem in [18].
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Lemma 5.1.
(5.4) 2r(n—r) - 1) / (Ha, Ha) dvss — Avol(M) = 0.
M

The equality holds if and only if ® is a minimal immersion of M into some round sphere
in HM (n,C), more precisely, there exists some positive constant R and some constant
vector C € HM(n,C) such that H, satisfies

(5.5) Ha= -]%5 (C - 4).

Lemma 5.2. If the equality holds in (5.4), then M is contained in a totally geodesic
submanifold of G,.(C™) which is product of Grassmann manifolds, more precisely, there
exist integers k;, ri, i =1,--+ ,m such that

0sri S ki, 2T 2 2 T,
Zri =r, Zk" =n,
i=1 i=1
(5.6) M C G, (C*) x G,,(C*) x - -+ x Gy, (C*) C G,.(C").

Notice that Go(C¥) = Gy, (CF) = {one point}.
Proof. Assume that the equality holds in (5.4).

Since M is minimal in G,(C"), H is normal to G,.(C"). Then, from (1.8) and (5.5), we
get’
(5.7) CA = AC,
where C is a constant vector in Lemma 5.1. Since SU(n) acts on G.(C") transitively,
without loss of generality, we can assume that C is a diagonal matrix as follows:

clIkl 0

calk, .
68  C= ) k>0, o)
0 mim
Notice that
n=ki+ky+-+km.
Define a linear subspace L of HM(n,C) by L = {Z € HM(n,C) | ZC = CZ}, so that

Zy
z 0

0 Z,

From (5.7), M is contained in G,.(C*) N L.
For each integer r; with 0 £ r; < ki, > .o, 7 = r, let’s define connected subsets of
G-(C") by

L= Z; € Mki(C)

Ai € Mki(C),

A1 4 O
2
|A?=A1a t'rA,,‘,I’ri

0 A,
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So, G, (C*)NLis a disjoint union of all Wy, ... ..’s. Since M is connected, M is contained
in suitable one of W, ’s, saying W, ... »... By the definition, we see

T1ysTm
Wi, oo o = Gy (CF1) X Gy (C*2) X -+ x Gy, (CF™).

Without loss of generality, we can choose a diagonal matrix C' with respect to which the
inequalities r, =2 75 2 -+ 2 7, hold. d

From (1.12), (1.14) and (5.2), we get
{(TI —nd) - flc-(\p*gy(z - 2A)} .

c

2(r(n—r)-1)
Using (1.6) and (1.7), we see

(5.9) Hy=

c

(5.10) (HA7 HA) = Z(T(TL — ,,.) _ 1)2

{n'r'(n —-r)— 2t’r P (T,£)? (I + 2= 2TA)
+ tr Ez-(\p*gf(l — 2A) (W, )4 - zA)}.

Since the immersion ¥ is G-equivariant, for any A € ®(M), there exists a element g, € G
and a matrix v, € M,_,(C) satisfying A, = g,Agj and

.) (2 8) — om0

Since the inner product (, ) is G-equivariant and £ is unit, we have tr vjv, = trvvy =1
. After translating by g4, together with (5.11), (5.10) implies

c * *
(5.12) (Ha, Hy) = =) — 1) {n(r(n—r) —2) +2tr (vhvvjiva)}-
Lemma 5.3. For v € M,_,.(C) with trv*v = 1, the following inequality holds
(5.13) trv*ov*v £ 1.

Moreover, the following three conditions are equivalent to each other.
(1) The equality holds in (5.13).

(2) The hermitian r-matriz v*v is similar to (é 00 1> .

(3) The hermitian (n — r)-matriz vv* is similar to <(1) 0 0 > .

n—r—1
P 0

If the equality holds in (5.13), then there ezists R = (0 0

that v = QuP™* satisfies

mog_ (10 "o 0
vy = (0 Or—l) and vvT = (0 On—r—l)

Proof. Lemma. 5.3 follows from that both of hermitian matrices v*v and vv* are similar
to diagonal matrices with non-negative eigenvalues. , O

) € S(U(r)-U(n —r)) such

Form (5.12) and Lemma 5.3, the following lemma is immediately obtained, which is
used to prove Theorem A.
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Lemma 5.4,

. c n—2
< -
(5.14) (Ha, Ha) £ CCETESY {n r(n—r)—-l}'
The equality holds if and only if, for any A € (M), it is possible to choose v, satisfying
. (1 0 . (1 0
(5.15) VpVUy = (0 01-_1) and VpVy = (0 On_,._l) .

proof of Theorem A. (5.4) and (5.14) imply

Let’s assume that this equality holds. Then, the equality conditions of Lemmas 5.1 and
5.4 hold.
Assume m = 1. Then, (5.5) and (5.9) imply

—1— C — = ¢ rl —n _é 2 —

After translating by ga, together with (5.11) and (5.15), we obtain

%(cl -k =g _CT) — { (r=m)l + (cl) 0,0_1) } ’

) c 1 0
mo =gy e~ (0 0.5)

The first equation implies » = 1, and the second one implies n — 7 = 1. So, we have n = 2
and r = 1. This contradicts that M is a complex hypersurface.

Since m 2 2, from Lemma 5.2, M is contained in a proper totally geodesic submanifold
of G.(C™). On the other hand, M is of complex codimension 1 in G,.(C"). Consequently,
either r = 1 or r = n — 1 occurs, and M is a totally geodesic complex hypersurface of a
complex projective space CP"! 2 G,(C") = G,,_,(C"). O

Proof of Theorem B. Let’s assume that M is a compact connected Kahler hypersurface
of G2(C") satisfying the condition J§ L 3J¢. Since both of the complex structure and
the quaternionic Kéhler structure are G-invariant, we obtain, at the origin A,,

0 vy 0 v\ .
(5.16) J(UA 0) J_J,-(UA 0), i=1,2,3,

where J;, Jy and J3 are a canonical basis of J, defined in the section 1. Set
va= (Vi vh), v vh € Maga(C)=C™2

Using (1.10) and (1.11), (5.16) implies that |v/y| = |v4| and v/; L v/} . Combing these
with tr vjv, = 1, we obtain |[v)| = [v}]| = %, so that

.. _l1r71o
(5.17) UAUA'"'Q(O 1).
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Together with (5.17), (5.12) implies

oo 5 o £

Therefore, form Lemma 5.1, we obtain

n-—1
A S - .
1=¢ (n 2n — 5)
Let’s assume that this equality holds. Then, the equality conditions of Lemma 5.1

holds.
Computing dimensions of manifolds in (5.6), we have

(5.18) n—-5% i ri(k; — i) .

i=1
From Y " ,r;=2and 7 273 2 -+ 2 'y, the following two cases occur:
Ca»se:[ . 7'1:7'2=1, 7‘32---:7‘m:0,
CaSGII . T1=2, T2:~--:’rm:0_

In Case I, (5.18) implies 2n — 5 < ky + k2 — 2 S n— 2, so n £ 3. This is contradiction.
Therefore, Case II occurs. Then, (5.18) implies 2n — 5 < 2(k; — 2), so that we have
n==k, m=1, ky=---=ky,=0.(55)and (5.9) imply
1 c
Yz—z' (ClI - A) = 2

4 2y
m{(zl—nA)——z(‘P*ﬁ) (I 2A)}.

After translating by g4, together with (5.11) and (5.17), we obtain

1 c 1
7D =gy 2 g)
1 c N

The second equation implies
" 2(2n-5) ¢
(519) VpaVy = dIn._z, d=2-— _———C__l_RE .

From (5.17), we have

dvy =dl, vy = (vaV)vg = v4(Vava) = §UAa

so that d = % Consequently, taking traces of both sides of (5.19), we obtain n = 4.
Therefore, from Proposition 4.3, M is congruent to Q°. O

6. THE SECOND FUNDAMENTAL FORM OF Sp(l)/U(2) - Sp(l — 2)

In this section, we will consider a Kahler C-space My;; = Sp(l)/U(2) - Sp(l — 2) as
a Kahler submanifold of G5(C%) , and determine its second fundamental form (cf. [3],
[19]). We will use the same notations as those in the section 4.

Let us set G = Sp(l) and K = U(2)- Sp(l —2). Then K is a closed subgroup of G. The
Lie algebra g of G and the Lie algebra € of K are given by g = sp(l) and & = u(2)+sp(l—2).
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For z,y € M;_»5(C) and z € My(C) with ‘2z = z, define X(z,y,2) = n(z,y,2) —
n(z,y,2)*. Then we have m = {X(z,y,2)}, m* = {n(z,y,2)} and m~ = {*n(z,y,2)}.

For X = X(z,y,2), X' = X(¢',y/,7') € m, define a Hermitian inner product g, on m
by

4 * * -
%X, X') = ZRetr(:c’ z+y y+22),

then g, is ad(¥)-invariant, so that g, induces a G-invariant Kahler metric g on M1,.
(My1y, J, g) is an Einstein Kahler manifold.

The natural inclusion G — G defines a G-equivariant Kéhler immersion ¢ of M, ; into
M = Go(C¥), by p(g- K) = g- K, g € G. The complex codimension of ¢ is 1, so that
M1, is a complex hypersurface of Go(C%).

For X = X(z,y,2) € m, let’s set

0 0 0 0 0 —z* -z —y*

0 0 -y O z 0 0 0
Xi(.’L‘, Y, Z) = 0 ty Oy —tr | Xﬁ(x,y, Z) = 2 0 0 0

00 7 0 y 0 0 0

Denote by ¢,, the differential of . Then, the image of the tangent space T,(Miy;) is
given by .

(61) (IO*OTO(MUJ) = PaoMm = {Xﬁl(xvy’ Z)} Cm= Ta(Gz(Cn)).
For z € M,(C) with 'z = —2z, set

%

—Z
0
0
0

£(2) =

onN OC
SO OO
oo Co

. Thus, we can identify the normal space T(;L(Mm) with the subspace
(6.2) m* = {£(2)}
of . Since ¢ is G-equivariant, the normal space at g - o is given by
d -
Ty (M) = { {E;g exp(t§) - 0] §€ mi} :
For X = X(z,y, z) € T,(M11,), the curve c(t) = exp(tX) - 6 is a curve in My, so that

the vector field X* generated by X is tangent to M;;,;. Define a unit normal vector field
along c(t) by

t=0

£(t) = (exptX)esbo, & =¢&(20), 2= \/g ((1) ‘01) )
(1.3) implies
(Lx*ﬁ(t) - €7X'§(t)) =~ [X(2,9,2), &o].

By the definition of the Lie derivative,

(Lx-£(); = [X Et)],; = [% exp(—tX )*c(t)f(t)] o [%&] o 0,
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so that we obtain

0 -—z'y 0 z'z
i g% 0 0 0 -
Vgg*oxg(t) = [Xi(wj y7 z)) EO] = gzo 0 0 O e m
T2y 0 0 0

From (6.1) and (6.2), we obtain the following.

Proposition 6.1. ‘7%0 x&(t) is tangent to Miy;. Moreover, the unit normal vector field
£(t) is parallel at o, and the Weingarten map satisfies

(6.3) A X (2,9, 2) = X (Y20, —T2,0)
for any X(z,y,2) € m.
Define three subspaces of T,(M;;,;) by
Voo, &) = {X(0,0,2) I 2=z, 2 € My(C)},
Vi(o, &) = {X(2,4,0) | = = (z1,22), y = (-T3,71), z; € Mi—22(C)}
and
V_(0, &) = {X(z,4,0) | = = (z1,22), y = (T3, —T1), T € Mi22(C)}.
We have the eigenspace decomposition of the tangent space T,(M1,) as follows.

Proposition 6.2. For any point p € M1, and any unit normal vector § € Tpl(Mn,,),
there exist three subspaces Vo, V. and V_ of T,(Mi1,), such that the following properties
hold.

(1) Vo is a J-invariant 0-eigenspace of A¢ satisfying
Vo = 3,15 (M),
(2) Vi are J-invariant +./%-eigenspaces of A¢ satisfying
JV, =V_.
(3) The eigenspace decomposition
T(Mny) =Voo Vi@ V-
holds.

Proof. In the case that p = o and & = &, put Vo = Vo(o, &) and Vo = Vi(o, &). By
simple calculation of matrices, we can easily see that V;, V.. and V_ satisfy the properties
of this proposition.

In the case that p = o and £ is arbitrary, (1.18) implies this proposition.

Since the structures J and J are G-invariant, and since the immersion ¢ is G-equivariant,
this proposition holds for arbitrary p and &. O
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7. A SECOND FUNDAMENTAL FORM OF AN EINSTEIN KAHLER HYPERSURFACE

In this section, we study an Einstein Kéhler hypersurface of Go(C"), and under some
assumption, determine its second fundamental form.

Let M be a Kihler hypersurface of M = G(C™). The complex dimension m of M is
equal to 2n — 5. Let p be any fixed point of M, and £ be a local unit normal vector field
around p, and set &, = £, & = JE, so that {£;,&,} is a local orthonormal frame field of
the normal bundle 7M.

Denote by R the curvature tensor field of M. Then we have the Gauss equation

(71)  9(RX, )2, W) =3 {9(4e. X, W)g(Ae.Y, 2) - 9(Ae.X, Z)g(Ae.Y, W)}

a=1
+g(R(X, Y)Z, W)

for any tangent vector fields X,Y,Z and W of M.
For any vector field X along M, denote by X7 and X+, the tangential part of X and
the normal part of X, respectively. Then, we obtain the following.

Lemma 7.1. The Ricci curvature tensor Ric satisfies

3
(1.2) Ric(Y, Z) = — 29(A%Y, Z) + %{(m +2)9(Y, 2) +33_ g((Y)", (J2)T)

k=1

3 3
- S a(RYY, URDT) +23 006 KEILIAY, )]

k=1 k=1
for any tangent vector fields Y and Z.

Proof. Let {ej1, -+ , ea} be a local orthonormal basis of TM. Note that Ag, is symmetric.
Moreover, from (1.18), trAe, = 0 and A2 = AZ = AZ. So we get, from (7.1),

2m

2m

(7.3)  Ric(Y, Z) = g(R(e;, Y)Z, &) = —29(A%Y, Z) + Y _ G(R(e:, Y)Z, ).
i=1 i=1

Since {e1, - ,eam &, JE} is a local orthonormal frame of ™, (1.4) implies

2m

(7.4) D Ge(J ke, &) = =Ge(J i€, &) = Ge(JTk(JE), JE) = 23c(JE, Jk€).

i=1

Combining (7.3), (1.5) and (7.4), we see that (7.2) holds. O
From now on, we assume that J7T*M is a vector subbundle of the tangent bundle TM,

ie,

(7.5) JT+M c TM.

This condition is equivalent to the condition that J,v 1 J,v, where p is any point of M

and v is any normal vector at p. o

Set Vo = JT+M. For any unit normal vector £, {J1€, Jof, J3&, JJ1€, J ok, JJ5€} is an
‘orthonormal basis of V4, i.e.,

(76) ‘/0 = SpanR{Jlga JZfa J3§a J']lfa JJ2£) JJ3§ }9
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so that V} is J-invariant. Let’s define V be the orthogonal complement of Vy in TM.
Then we have an orthogonal decomposition

TM=V,eV.

It is easy to see that V is J-invariant and J-invariant.
For a fiber bundle §, denote by I'(F) the linear space of all smooth sections of §.

Lemma 7.2. .
(1) Vi is a subspace of 0-eigenspace of Ag, i.e., AY =0 for any Y € I'(V).
(2) Forany X e '(TM),Y e I'(V) and J' € I'(3),

(7.7) 9(VxY, J€) = —g(AcX, JY).
Proof. qu any X € I'(TM) and J' € I'(J), since J'¢ is a section of V, (1.16) implies
(7.8) Vx(J'€) + o(X, J'€) = Vx(J'€) = (VxJ )¢ + J'(Vx§)

= (VxJE — JAX + J'V%E.

Since J is parallel, VxJ' € J. Thus, under our assumption (7.5), we see that (VxJ')¢
and J'V%¢ are tangent to M. Therefore, the normal component of (7.8) is given by

U(X> J'g) = ""gc (JIAEXa 6)6 - gc (JIAEX: Jg) JE
= g(AeX, JEE+g(AeX, JJE) JE
= gc (0(X, J'E), §) € + Gc (0(X, J'JE), §) JE,

which, from (1.17), is equivalent to
gc (U(Xa Jl&)’ £)£ - gc (O-(X’ J/é.), J€) JE;

so that we have

(7.9 e (0(X, J€), J§) = 0.
Exchanging X for JX € I'(TM), we get g. (o(JX, J'€), JE) =0, so that
(7.10) 3. (o(X, J'€), €) =0.

From (7.9) and (7.10), we get o(X, J'¢) = 0. Therefore, (1.17) and (7.6) imply o(X, Y') =
0 for any Y € I'(Vy), namely, A;Y = 0.

Next, we consider the V-component of (7.8). The assumption (7.5) implies that
(VxJ)€ and J'V%£ are sections of Vj, so that, for any Y € I'(V), we get

9(Vx(J€), Y) = -3 (J'AeX, Y).
Since J'¢ LY, this implies (7.7) immediately. O

For any tangent vector field X of M, denote by Xy and Xy, the Vp-component of X
and V-component of X, respectively. Then, we obtain the following.

Lemma 7.3. Under the assumption (7.5), the Ricci curvature tensor Ric satisfies
(T11)  Ric(Y, 2) = ~29(43¥y, Zv) + ¢ {(4n = ) (%o, Z0) + (4n - D) o(¥, Zv) }

for any tangent vector fields Y and Z.
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Proof. Lemma 7.2 (1) implies that
(7.12) 9(AZY, Z) = g(AZYy, Z) = g(A}Yy, Zv).
Since V is J-invariant, J,Yy is a section of V, so that

(Y)* = (o)™ = Ge(Ju¥o, £) € + Ge(JiYo, JE) &

= —g(Yo, Ji€) & — 9(Yo, JkJE) JE.
Then, we get
9((IY)T, (Je2)T) = Ge(IiY, JkZ) — 3((JY)*, (Ju2)F)
= g(Y, Z) - 9(Yo, Ji€) 9(Zo, Ji€) — 9(Yo, JkJE) 9(Zo, JiJE),

so that, from (7.6), we have

(7.13) S 9((RY)T, (h2)T) = 39(Y; Z) - g(Yo, %)
k=1 .
= 29(Yo, Zo) +39(Yv, Zv).

Exchanging Y and Z for JY and JZ respectively, we get
3

(7.14) > 9((JIY)T, (JIZ)T) = 29(Yo, Zo) +39(Y, Zv).

k=1

Since J¢ L Ji€, combining (7.2), (7.12), (7.13) and (7.14), we see that (7.11) holds. [
In the next stage, we consider the Codazzi’s equation

(7.15) 9(VxA)Y — (VyA)X, Z) = §.(R(X,Y)Z, €)

for any tangent vector fields X,Y and Z of M.

Let u be a non-zero eigenvalue of A¢, and Y be an eigenvector corresponding to u. We
can assume that u is a local smooth function on M, and Y is a local smooth section of
TM. Then, for any X € I'(TM), we have

(VxA)Y = Vx(AY) — AvsY — A(VxY)
= du(X)Y + uVxY — Age Y — A(VxY),
so that, from Lemma 7.2 (1), since Y is a local section of V', we see
9((VxA)eY, J'€) = pg(VxY, J'€) — g(AvscY, J'€) — g(Ae(VxY), J'E)
= pg(VxY, J'€) — g(Y, AvseJ'€) — 9(VxY, AcJ'€)
= pg(VxY, J'¢)
for any J' € I'(3). By Lemma 7.2 (2), we see
9((VxA)Y, J€) = —pg(AX, J'Y).
If X is also an eigenvector of A¢ corresponding to a non-zero eigenvalue A, we get
(7.16) 9((VxA)Y, J'€) = —dug(X, J'Y) = Aug(J' X, Y)
and
(7.17) 9(VyA)eX, J'€) = aug(J'Y, X) = -2ug(J'X, Y).




41

On the other hand, from (1.5), we can see that, for above X and Y,

d(R(X, Y)J'E, €) ch(x JeY) Go(JiJ'€, €)-

Since {Ji, J2, J3} is a basis of J, there exist real numbers a!, [ = 1,2,3, such that J' =
32, dlJy, so that we see go(JpJ'E, €) = z? L8 Ge(Je i€, €) = —a* and

(7.18) G(R(X, Y)J'¢, €) = ——Z (X, a*JY) = —g(J'X Y).

k=1
From (7.15), (7.16), (7.17) and (7.18), we obtain the following.

Lemma 7.4. Under the assumption (7.5), the equality

(7.19) (A %) g(JI'X,Y) =

holds, where X andY are eigenvectors of A, corresponding to non-zero eigenvalues A and
o respectively, and J' is any section of J.

The following proposition is a goal of this section.

Proposition 7.5. If an Einstein Kahler hypersurface M of Go(C") satisfies the condition
JT+M C TM, then, for any point p € M and any unit normal vector £ € TI;LM , there
exist three subspaces Vy, Vi and V_ of T,M such that the following properties hold :

(1) V, is a J-invariant 0-eigenspace of A¢ satisfying
= 3,1, M.
(2) Vi are Jp-invariant i\/_g-eigenspaces of A¢ satisfying
JVi=V_.
(3) The eigenspace decomposition
ToM=V,eV,0V_
holds.

Moreover, n must be even.
Proof. Let A¢|v be the restriction of A¢ to V. Denote by p, the scalar curvature of M.

Since the Ricci curvature Ric satisfies the Einstein condition Ric = ;%g, Lemma 7.3
implies

2 _ C{an—a_ 2 _o_ X
(1.20)  g(ARYy, Zv) = —={(an— 4= 2)g(¥o, Z) + (4n -2~ £) (7, Zv)}

for any tangent vector fields Y and Z. Choosing Y and Z as Y = Z € V;, we get
p=cm(n —1) = ¢(n — 1)(2n — 5). Therefore, (7.20) implies

c
9(AZYy, Zy) = EQ(YV7 Zy),

equivalently, all eigenvalues of A¢|, are :t\/g . In particular, 0 is not an eigenvalue of A¢|v,
which, together with Lemma 7.2 (1), implies that V; is a O-eigenspace of A,. Denote by V4,
eigenspaces corresponding to i\/g respectively. Then V is a diagonal sum of subspaces
Vi:V =V, & V_. From (1.18), we easily see JV, =V_.
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For any X € V., Y € V_ and J' € J,, Lemma 7.4 implies g(J'X,Y) = 0. Since
J'X eV, weget JJX € V,, so that V, is J,-invariant. Similarly, we can see that V_ is
also J,-invariant.

Since the real dimension of V; is 6, we have dimgV = 2m — 6 = 4n — 16 and dimgVy =
%dz’mRV = 2n — 8. Since V. are J,-invariant, 2n — 8 is a multiple of 4, so that n is .
even. O

8. A FOCAL VARIETY

Let M be an Einstein Kéhler hypersurface M of M = G5(C") satisfies the condition
JT+M C TM. By Proposition 7.5, n must be even, so that we put n = 2I. In this section,
we study the first focal set of M, and prove our main theorem.

We will use the same notations as those in the section 7. Moreover, for any point p € M
and any unit normal vector £, define subspaces of T, M by

Vo = J& = Spang {J1£, J2€, Jat},
Vo, = J3¢ = Spang {JJi€, JJok, JJ5€ },
14+ = Spang {f},
L_ = Spang {J¢}.
By direct computation, (1.5) implies the following. Also see [2, Theorem 3].
Lemma 8.1. Let Re be the curvature operator with respect to &, i.e, Rg is defined by

Re(X) = R(X, €)¢ for any X € T,M. Let r be an eigenvalue of Re, and T, be an
eigenspace corresponding to K. Then, we have the following complete table.

K T

0| L, ®Vp_
s Viev
57 | L-@®Vo+

Let UL M be the unit normal bundle of M with a natural projection 7 , i.e., UM is
the subbundle of all unit normal vectors of M. For £ € UM, let (t) be the geodesic of
G»(C™), such that 7¢(0) = 7(§) and ;(0) = £. For r > 0, define a smooth map F, from
U+ M into Go(C") by F.(€) = 7¢(r). If r is sufficiently small, the image N, = F.(U*M) is
a tube around M with radius r, which is a real hypersurface of Go(C"). If rank (Fr*) ¢ <
dimgM — 1 for some r and £, a point F,(¢) is called a “focal point”. F,(£) is called the
first focal point if F;(£) is not a focal point for any ¢ with 0 < ¢ < 7.

Let £(s) be a curve in UM with £(0) = £ and ¢'(0) = X € T;(U+M). Define a smooth
map 9 by ¥(t, s) = F;(£(s)), and define a vector field Z(t) along 7 by

Z(t) = (Fi) X = [disﬂ(ﬂs))] — [:% "’] o

Since v is a variation of a geodesic 7, Z(t) is a Jacobi field along 7, i.e, Z(t) satisfies
the Jacobi equation )
ViZ(t) + R(Z(t), % (t))7(t) = 0.
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Z(t) must satisfy the initial condition Z(0) = T X, Z'(0) = [@sg (3)] . We remark

that the image (Ft*) ¢ (Tg(U M )) are spanned by above Jacobi fields.

To get a basic Jacobi field, set Z(t) = f(t)P(t), where P is a parallel vector field along
¢, and f is a smooth function. Since v;(t) and the curvature tensor R are also parallel, the
function f satisfies f”(t) P(t)+f(t) 7 (R(P(0), £)€) = 0, where 7, is a parallel displacement
along 7¢(t). In particular, if P(0) € T, and P(0) # 0, then f satisfies f”(t) + xf(t) = 0.
Lemma 8.2. For each of the cases below, there ezists a curve £(s) in U-M, such that f
satisfies

®1)  f'O+Rf)=0, FOPO)=mg©), FOPO)=[V()]

(1) P(0) €L_ and f(t) = /2 sin /5t .
(2) P(0) € Vo4 and f(t) =cos /%t .

(3) P(0) e Vo and f(t)=1.

(4) P(0) € Vy and f(t) = V2cos (\/Et+ F) .

(5) P(0) € V- and f(t) = v2cos (/Et— 5) .
Proof. In the case (1), there exists a € R, such that P(0) = aJ¢. Set {(s) = cosas-{+
sinas - J¢. Then, we see me£'(0) = 0 and [V,£(s)],_, = aJ€. From Lemma 8.1, we have
k = £. Therefore, the equation (8.1) is equivalent to f” + 5f =0, f(0) =0, f(0) =1,
which has a unique solution f(t) = \/% sin /<t .

In other cases, X = P(0) is tangent to M. Let c(s) be a curve in M with ¢/(0) = X,
and £(s) be a parallel normal vector field along c(s), satisfying £(0) = €. Then, we see
€' (0) = X and [VSE(S)] o = —AeX.

Let’s assume X € V. Lemma 8.1 implies x = £, and Proposition 7.5 implies [V.£(s)], _,
—+/EX. Therefore, the equation (8.1) is equivalent to f"+gf =0, f(0)=1, f(0) = —/%,
which has a unique solution f(t) = v/2cos (1/§t + ) , so that the case (4) is proved.

The remaining cases are similarly proved. O

8=

Let’s set 1, = \/—‘2::% Then, any point of N,, is the first focal point, the image of
(Frl*)f is a vector space 7., (L_ ®&Vy_ @ V_), and rank (F”*)E = ldimg M, so that the

first focal set NV,, is a submanifold of M. The tangent space of N,, at ¢ = F,,(£) is given
by
TqN'rl =Tr (J—— @%,— D V—),

which is J-invariant. It is easy to see that the real dimension of N,, is equal to %dimRM .
Moreover, the normal space of N,, at g is given by

TqLNﬁ = Trl(-l—+ @%,4- 57 V+))

so that we see
JT,N,, =T; Ny,.
Therefore, we obtain the following.

Proposition 8.3. The first focal set N,, of M is a quaternionic Kdhler, totally real
submanifold of Go(C?¥). The real dimension of N, is one half of dimgrGa(C%).
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m

In [21], H. Tasaki showed that any complete, quaternionic Kéhler, totally real sub-
anifold of G»(C?%) is congruent to a quaternionic projective space. Then, for some

fixed ¢ € N,,, there exists a quaternionic projective space HP'~!, such that ¢ € HP!"?
and T,N,, = T,HP'"'. In [1], Alekseevskii proved that a quaternionic submanifold in

a

quaternionic Kahler manifold is totally geodesic. Therefore, N,, is a open portion of

HP.

By Proposition 6.2, M;;; satisfies the same assumption as M. Then, the first focal set

of M, is congruent to HHP*™! up to the automorphism of G3(C%#), so that M and My,

ar

DN =

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22,

e locally congruent. Therefore, we complete the proof of Theorem C.
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