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Abstract

Our purpose is to understand the anisotropic curvature flow. Es-
pecially we like to prove the interior gradient estimate. We establish
the interior gradient estimate for general 1-D anisotropic curvature
flow. The estimate depends only on the height of the graph and not
on the gradient at initial time.

1 Introduction

Let €2 be a bounded domain in R". A surface given as a graph v : 2 — R is
a minimal surface when u satisfies

. Vu _

For this equation, the following interior gradient estimates are well-known
({5, 6, 7]): Given a constant M and )} CC Q, there exists a constant C
depending only on M and €2 such that if supg |u| < M, then supg |Vu| < C.
The similar estimates are also known for the mean curvature flow equation
([3]). That is, if u:  x (0,7) — R satisfies

(1.2) ———qt—-——-—-——div __.__Yy_____
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and supqyp,r Ul < M, Qcc Q,0< Ty < T, then there exists C such that
SUPg, 1,17 | V| < C. Again, C is a constant depending only on M, Q and
Ts. Note that C is independent of the gradient at £ = 0.

One direction to extend those results are to consider general anisotropic
curvature problem, namely, to consider the variational problem correspond-
ing to the energy functional

F(u)=/na(1/)\/1+|Vu|2,

where v = (Vu, —1)/4/1 + |Vu|? is the unit normal vector to the graph of
u and the function a : R™! — R* is the surface energy density and should
satisfy certain convexity property. The Euler-Lagrange equation is

(1.3) divya,(v) =
and the curvature flow equation is
(1.4) o

m = div,ap(v) .

The left-hand side of the equation (1.4) corresponds to the normal velocity
of the curve (z,u(z, -)) while the right-hand side is the weighted anisotropic
curvature. This is a gradient flow of the anisotropic surface energy functional

/‘;a(u) ds,

where ds = /1 + |Vu|?dz and v = (~Vu,1)/4/1 + |Vu|? with homogeneous

Dirichlet (u = 0) or Neumann (a,(—Vu,1) = 0) boundary conditions, since

;it/ u)ds—/a,,( Vu,1) - Vutd:z:————/|d1v,ap —Vu,1)[ds.

We show the interior gradient estimates for general anisotropic curva-
ture flow for one-dimensional case which is independent of the initial time
gradient.



2 Main Theorem

Let 7 > 0 be given. The graph u : [-r,7] x [0,7] — R is said to be an
anisotropic curvature flow if smooth function u satisfies

(2.1) U

m = (ap(%ey —1))z.

where a : R? — [0,00) is an anisotropic surface energy density function
satisfying the following assumptions:

(a) a(tp,tq) =ta(p,q) for all t > 0,
(b) a is a convex function,
(c) there exists dp > 0 such that a(p, q) — do|(p,q)| is a convex function,
(d) a is smooth except at (0,0).
Under these assumptions, we show

Theorem 1
Suppose u i a smooth solution of (2.1) on [—r,r] x [0,T] satisfying
sup |u| < M.
[=rr]x[0,T]
Given 0 < s <r and 0 < top < T, there exists a constant C > 0 depending
only on &y, M, ty, s, such that

sup luz| < C.
[~(r—s8),r—s]x[to,T}

Note that the estimate is independent the gradient of the initial data.
Also we point out that the dependence of C on a is only through the lower
bound of the uniform convexity 8§, but not on the upper bound (such as
C' bound). Thus, the result in this paper can be extended equally to the
non-smooth anisotropic curvature flow problem [4] by approximations.

Remark 1 For example, a(p,q) = (p* + %)% is isotropic curvature flow
(mean curvature flow) and satisfies above assumptions. a(p,q) = (|p|" +|a|")*
(1 <r < 00) is anisotropic curvature flow and also satisfies assumptions.

Remark 2 In general dimension, if we assume the aris symmetry of the
graph of u, we expect to prove the same interior gradient estimate.
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3 Proof

We cite the following theorem due to Angenent [2] which says that the num-
ber of zeros of the solution of parabolic equations is nonincresing as time
increases.

Lemma 1 (Angenent [2])
Suppose u € C=([z1,z2] x [0,T)) satisfies the equation

(3.1) U = a(Z, t)Ugg + b(z, t)uy + c(z, t)u
on [Ty, z3] x [0,T] and
u(z;,t) =0 fort € [0,T] j=1,2.

Here, a,b,c are smooth functions of (z,t) and a > 0. Then for allt € (0,7,
the zero set of x — u(x,t) will be finite, even when counted with multiplicity.
The number of zeros of x — u(x,t) counted with multiplicity is nonincreasing
function of t.

Proof of Theorem. Given 0 < s < r and 0 < t; < T, we construct a
solution v for (2.1) on [~s, 8] x (0,7 with the following properties:

(a) v(—8,t)=—-M—1land v(s,t)=M+1for0<t<T,
(b) v, >0 on [-s,s] x (0,77,
(c) for any —s < z < s, limyov(z,t) > M.

The property (c) means that v has an initial data which is vertical at z =
—s. We show that the function v has a gradient bound 0 < v, < C on
[—s, 8] X [to, T|, where C depends only on M, &, s,to. We show the existence of
such v later in the proof. Assuming such v exists for now, we then prove that
any solution with supi_,,xjo,7 14| < M satisfies sup;_¢_s r—gxito.7) %z < C.
The same argument using —u will show SUp(_(,_g) »—sx(to,7] [4z] < C. For a
contradiction, assume that there exists a point éi,t € [-(r—s),r—s]x[to, T
with u.(%,t) > C. Since sup|u| < M and by (a), we may choose A so that
|Z—\| < s and v(Z -\, ) = u(Z,t). With this A, define va(z,t) = v(z - A, ).
Since u,(z,f) > C 2 (va).(%,%) and va(A + 8,8) = v(s,f) = M +1 >
u(A + s,%), there has to be at least another point Z < # < A + s such
that w(Z,f) = va(Z,%). Thus u — v has at least two zeros at t = ¢ on



A—8 <z < A+ s Function u — v, satisfies the equation of the type (3.1)
on [A— s, +s] x (0,T], with non-zero boundary values for all ¢ > 0 due to
sup |u| £ M and (a). Thus we may use Lemma 1 and conclude that 4 — v,
has at least two zeros in z variable for all £ > ¢t > 0. Since vy > M for z
away from A — s and all small ¢, and since we assume that  is a smooth
function up to t = 0, this is impossible to satisfy for all small enough ¢. (See
fig. 3 and 4.)

Thus it remains to prove the existence of such v. To do this, we invert
the role of independent variable z and dependent variable y = v(z,t). Let
y = w(z,t) be the inverse function of v with respect to the space variables,
i.e., w satisfies y = v(w(y, t),t) identically. Since the equation is geometric,
w should satisfy the similar equation to (2.1) on [-M — 1, M + 1] x (0,T]
with the role of y and z exchanged. Now, the conditions on v in terms of w
are

(@) w(-M-1,t)=—-sand wM +1,t) =sfor 0 <t < T,

(b’) wy >00n [-M —1,M +1] x (0,T],

(¢’) for any —M — 1 <z < M, lim; o w(z,t) = —s.
Furthermore, on [-M — 1, M + 1] x (0, T}, w should satisfy

ﬁ = (aq(1,2))s.

Since gzu =1/ g%, we need to show that there exists a constant C > 0 such
that w; > C on [-M, M] x [to, T]. We solve (3.2) with the following convex
initial data. Let T' € C®([—M — 1, M +1]) (See fig.2 and 4.) be

(3.2)

e I'(z)=—sforze[-M-1,M],
o I'(M+1)=sI"(M+1)=0,
o I'(z) > —s,I"(z) < 3s,IM(z) >0forz € [M,M +1].

Let w be the unique smooth solution of (3.2) with the initial data I and the
boundary data (a'). Since any functions ¢; + cpz are solutions of (3.2), one
obtains the gradient estimate

(3.3) 0<w, <3s
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on [-M —1,M + 1] x [0,T], by using these functions as barriers and the
standard maximum principle applied to w.. Also, note that the convexity
of w is preserved, i.e., Wy, > 0. This is seen by differentiating the equation
with respect to ¢ and then applying the maximum principle to w:. w; =0
on the boundary and w: = agWs, = 0 for ¢t = 0 imply wy > 0. The equation
then yields wze > 0on [-M —1,M +1] x [0, 7.

Now, (3.3) implies that ag(—1,wz) > ¢(s,80)(call this §)> 0 by assump-
tion (c). We claim that the solution of

{ 2 = 022 [-M —1,M +1] x [0,T],
2(£(M +1),t) =+s te[0,T],
#(z,0) = I'(z) T€[-M—-1,M+1]

satisfies w > z on [~M — 1, M + 1] x [0, T'].(See fig.2) This is because of the
following combined with the standard maximum principle:

(w—2); = Qgq(—1, We)Was — 02z = Ggq(—1, Wz )(W—2)zz+(Agq(—1, Wz) —06) 22z

> age(—1,wz) (W = 2)zz-

In the last line, we used z; > 0, which follows by the same reason for
wzz > 0 before, and agq(—1,w;) > §. We next claim that for £, < ¢, there
exists ¢ = c(to,s,8) > 0 such that z, > c on [-M — 1, M + 1] x [to, T}
2, satisfies again the heat equation with non-negative initial data and the
homogeneous Neumann data, and thus by the strong maximum principle
(or extending the solution to R by a suitable reflection argument and then
using the representation formula with the heat kernel) we have such c. Since
Wy > 0, for (z,t) with t > ¢, we have

wa(z,t) > wo(—M — Lit) > z(-M-1t) >2c

as the result. Note that we are using w > z and w = 2z on the boundary
z = —M — 1. This completes the proof.
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