Interior gradient estimate for curvature flow

Yuko Nagase
Yoshihiro Tonegawa
Department of mathematics
Hokkaido university
Sapporo 060-0810, Japan

Abstract

Our purpose is to understand the anisotropic curvature flow. Especially we like to prove the interior gradient estimate. We establish the interior gradient estimate for general 1-D anisotropic curvature flow. The estimate depends only on the height of the graph and not on the gradient at initial time.

1 Introduction

Let Ω be a bounded domain in \mathbb{R}^n . A surface given as a graph $u:\Omega\to\mathbb{R}$ is a minimal surface when u satisfies

(1.1)
$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0.$$

For this equation, the following interior gradient estimates are well-known ([5, 6, 7]): Given a constant M and $\tilde{\Omega} \subset\subset \Omega$, there exists a constant C depending only on M and $\tilde{\Omega}$ such that if $\sup_{\Omega} |u| \leq M$, then $\sup_{\tilde{\Omega}} |\nabla u| \leq C$. The similar estimates are also known for the mean curvature flow equation ([3]). That is, if $u: \Omega \times (0,T) \to \mathbb{R}$ satisfies

(1.2)
$$\frac{u_t}{\sqrt{1+|\nabla u|^2}} = \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right),$$

and $\sup_{\Omega \times [0,T]} |u| \leq M$, $\tilde{\Omega} \subset\subset \Omega$, $0 < T_0 < T$, then there exists C such that $\sup_{\tilde{\Omega} \times [T_0,T]} |\nabla u| \leq C$. Again, C is a constant depending only on M, $\tilde{\Omega}$ and T_0 . Note that C is independent of the gradient at t=0.

One direction to extend those results are to consider general anisotropic curvature problem, namely, to consider the variational problem corresponding to the energy functional

$$F(u) = \int_{\Omega} a(\nu) \sqrt{1 + |\nabla u|^2},$$

where $\nu = (\nabla u, -1)/\sqrt{1 + |\nabla u|^2}$ is the unit normal vector to the graph of u and the function $a: \mathbf{R}^{n+1} \to \mathbf{R}^+$ is the surface energy density and should satisfy certain convexity property. The Euler-Lagrange equation is

$$\operatorname{div}_{x}a_{p}(\nu)=0,$$

and the curvature flow equation is

(1.4)
$$\frac{u_t}{\sqrt{1+|\nabla u|^2}} = \operatorname{div}_x a_p(\nu).$$

The left-hand side of the equation (1.4) corresponds to the normal velocity of the curve $(x, u(x, \cdot))$ while the right-hand side is the weighted anisotropic curvature. This is a gradient flow of the anisotropic surface energy functional

$$\int_{\Omega}a(\nu)\,ds,$$

where $ds = \sqrt{1 + |\nabla u|^2} dx$ and $\nu = (-\nabla u, 1)/\sqrt{1 + |\nabla u|^2}$ with homogeneous Dirichlet (u = 0) or Neumann $(a_p(-\nabla u, 1) = 0)$ boundary conditions, since

$$rac{d}{dt}\int_{\Omega}a(
u)\,ds=\int_{\Omega}a_p(-
abla u,1)\cdot
abla u_t\,dx=-\int_{\Omega}|\mathrm{div}_xa_p(-
abla u,1)|^2\,ds.$$

We show the interior gradient estimates for general anisotropic curvature flow for one-dimensional case which is independent of the initial time gradient.

2 Main Theorem

Let r > 0 be given. The graph $u : [-r, r] \times [0, T] \to \mathbb{R}$ is said to be an anisotropic curvature flow if smooth function u satisfies

(2.1)
$$\frac{u_t}{\sqrt{1+u_x^2}} = (a_p(u_x,-1))_x.$$

where $a: \mathbb{R}^2 \to [0, \infty)$ is an anisotropic surface energy density function satisfying the following assumptions:

- (a) a(tp,tq) = t a(p,q) for all t > 0,
- (b) a is a convex function,
- (c) there exists $\delta_0 > 0$ such that $a(p,q) \delta_0 |(p,q)|$ is a convex function,
- (d) a is smooth except at (0,0).

Under these assumptions, we show

Theorem 1

Suppose u is a smooth solution of (2.1) on $[-r,r] \times [0,T]$ satisfying

$$\sup_{[-r,r]\times[0,T]}|u|\leq M.$$

Given 0 < s < r and $0 < t_0 < T$, there exists a constant C > 0 depending only on δ_0, M, t_0, s, r such that

$$\sup_{[-(r-s),r-s]\times[t_0,T]}|u_x|\leq C.$$

Note that the estimate is independent the gradient of the initial data. Also we point out that the dependence of C on a is only through the lower bound of the uniform convexity δ_0 , but not on the upper bound (such as C^1 bound). Thus, the result in this paper can be extended equally to the non-smooth anisotropic curvature flow problem [4] by approximations.

Remark 1 For example, $a(p,q) = (p^2 + q^2)^{\frac{1}{2}}$ is isotropic curvature flow (mean curvature flow) and satisfies above assumptions. $a(p,q) = (|p|^r + |q|^r)^{\frac{1}{r}}$ $(1 < r < \infty)$ is anisotropic curvature flow and also satisfies assumptions.

Remark 2 In general dimension, if we assume the axis symmetry of the graph of u, we expect to prove the same interior gradient estimate.

3 Proof

We cite the following theorem due to Angenent [2] which says that the number of zeros of the solution of parabolic equations is nonincresing as time increases.

Lemma 1 (Angenent [2]) Suppose $u \in C^{\infty}([x_1, x_2] \times [0, T])$ satisfies the equation

(3.1)
$$u_t = a(x,t)u_{xx} + b(x,t)u_x + c(x,t)u$$

on $[x_1, x_2] \times [0, T]$ and

$$u(x_j, t) = 0$$
 for $t \in [0, T]$ $j = 1, 2$.

Here, a, b, c are smooth functions of (x, t) and a > 0. Then for all $t \in (0, T]$, the zero set of $x \to u(x, t)$ will be finite, even when counted with multiplicity. The number of zeros of $x \to u(x, t)$ counted with multiplicity is nonincreasing function of t.

Proof of Theorem. Given 0 < s < r and $0 < t_0 < T$, we construct a solution v for (2.1) on $[-s, s] \times (0, T]$ with the following properties:

(a)
$$v(-s,t) = -M-1$$
 and $v(s,t) = M+1$ for $0 < t \le T$,

(b)
$$v_x > 0$$
 on $[-s, s] \times (0, T]$,

(c) for any
$$-s < x \le s$$
, $\lim_{t\to 0} v(x,t) > M$.

The property (c) means that v has an initial data which is vertical at x=-s. We show that the function v has a gradient bound $0 < v_x \le C$ on $[-s,s] \times [t_0,T]$, where C depends only on M, δ_0, s, t_0 . We show the existence of such v later in the proof. Assuming such v exists for now, we then prove that any solution with $\sup_{[-r,r] \times [0,T]} |u| \le M$ satisfies $\sup_{[-(r-s),r-s] \times [t_0,T]} u_x \le C$. The same argument using -u will show $\sup_{[-(r-s),r-s] \times [t_0,T]} |u_x| \le C$. For a contradiction, assume that there exists a point $(\bar{x},\bar{t}) \in [-(r-s),r-s] \times [t_0,T]$ with $u_x(\bar{x},\bar{t}) > C$. Since $\sup |u| \le M$ and by (a), we may choose λ so that $|\bar{x}-\lambda| < s$ and $v(\bar{x}-\lambda,\bar{t}) = u(\bar{x},\bar{t})$. With this λ , define $v_\lambda(x,t) = v(x-\lambda,t)$. Since $u_x(\bar{x},\bar{t}) > C \ge (v_\lambda)_x(\bar{x},\bar{t})$ and $v_\lambda(\lambda+s,\bar{t}) = v(s,\bar{t}) = M+1 > u(\lambda+s,\bar{t})$, there has to be at least another point $\bar{x} < \tilde{x} < \lambda + s$ such that $u(\tilde{x},\bar{t}) = v_\lambda(\tilde{x},\bar{t})$. Thus $u-v_\lambda$ has at least two zeros at $t=\bar{t}$ on

 $\lambda - s < x < \lambda + s$. Function $u - v_{\lambda}$ satisfies the equation of the type (3.1) on $[\lambda - s, \lambda + s] \times (0, T]$, with non-zero boundary values for all t > 0 due to $\sup |u| \le M$ and (a). Thus we may use Lemma 1 and conclude that $u - v_{\lambda}$ has at least two zeros in x variable for all $\bar{t} > t > 0$. Since $v_{\lambda} > M$ for x away from $\lambda - s$ and all small t, and since we assume that u is a smooth function up to t = 0, this is impossible to satisfy for all small enough t. (See fig. 3 and 4.)

Thus it remains to prove the existence of such v. To do this, we invert the role of independent variable x and dependent variable y = v(x,t). Let y = w(x,t) be the inverse function of v with respect to the space variables, i.e., w satisfies y = v(w(y,t),t) identically. Since the equation is geometric, w should satisfy the similar equation to (2.1) on $[-M-1, M+1] \times (0,T]$ with the role of y and x exchanged. Now, the conditions on v in terms of w are

(a')
$$w(-M-1,t) = -s$$
 and $w(M+1,t) = s$ for $0 < t \le T$,

(b')
$$w_x > 0$$
 on $[-M-1, M+1] \times (0, T]$,

(c') for any
$$-M-1 \le x \le M$$
, $\lim_{t\to 0} w(x,t) = -s$.

Furthermore, on $[-M-1, M+1] \times (0, T]$, w should satisfy

(3.2)
$$\frac{w_t}{\sqrt{1+w_x^2}} = (a_q(1,w_x))_x.$$

Since $\frac{\partial y}{\partial x} = 1/\frac{\partial x}{\partial y}$, we need to show that there exists a constant C > 0 such that $w_x > C$ on $[-M, M] \times [t_0, T]$. We solve (3.2) with the following convex initial data. Let $\Gamma \in C^{\infty}([-M-1, M+1])$ (See fig.2 and 4.) be

- $\Gamma(x) = -s$ for $x \in [-M-1, M]$,
- $\Gamma(M+1) = s$, $\Gamma''(M+1) = 0$,
- $\Gamma(x) \ge -s$, $\Gamma'(x) \le 3s$, $\Gamma''(x) \ge 0$ for $x \in [M, M+1]$.

Let w be the unique smooth solution of (3.2) with the initial data Γ and the boundary data (a'). Since any functions $c_1 + c_2x$ are solutions of (3.2), one obtains the gradient estimate

$$(3.3) 0 \le w_x \le 3s$$

on $[-M-1, M+1] \times [0, T]$, by using these functions as barriers and the standard maximum principle applied to w_x . Also, note that the convexity of w is preserved, i.e., $w_{xx} \geq 0$. This is seen by differentiating the equation with respect to t and then applying the maximum principle to w_t . $w_t = 0$ on the boundary and $w_t = a_{qq}w_{xx} \geq 0$ for t = 0 imply $w_t \geq 0$. The equation then yields $w_{xx} \geq 0$ on $[-M-1, M+1] \times [0, T]$.

Now, (3.3) implies that $a_{qq}(-1, w_x) \ge c(s, \delta_0)$ (call this δ)> 0 by assumption (c). We claim that the solution of

$$\begin{cases} z_t = \delta z_{xx} & [-M-1, M+1] \times [0, T], \\ z(\pm (M+1), t) = \pm s & t \in [0, T], \\ z(x, 0) = \Gamma(x) & x \in [-M-1, M+1] \end{cases}$$

satisfies $w \ge z$ on $[-M-1, M+1] \times [0, T]$. (See fig.2) This is because of the following combined with the standard maximum principle:

$$(w-z)_t = a_{qq}(-1, w_x)w_{xx} - \delta z_{xx} = a_{qq}(-1, w_x)(w-z)_{xx} + (a_{qq}(-1, w_x) - \delta)z_{xx}$$

$$\geq a_{qq}(-1, w_x)(w-z)_{xx}.$$

In the last line, we used $z_{xx} \geq 0$, which follows by the same reason for $w_{xx} \geq 0$ before, and $a_{qq}(-1, w_x) \geq \delta$. We next claim that for $t_0 \leq t$, there exists $c = c(t_0, s, \delta) > 0$ such that $z_x \geq c$ on $[-M-1, M+1] \times [t_0, T]$. z_x satisfies again the heat equation with non-negative initial data and the homogeneous Neumann data, and thus by the strong maximum principle (or extending the solution to $\mathbb R$ by a suitable reflection argument and then using the representation formula with the heat kernel) we have such c. Since $w_{xx} \geq 0$, for (x, t) with $t \geq t_0$, we have

$$w_x(x,t) \geq w_x(-M-1,t) \geq z_x(-M-1,t) \geq c$$

as the result. Note that we are using $w \ge z$ and w = z on the boundary x = -M - 1. This completes the proof.

References

- [1] S. Altschuler, S. B. Angenent, Y. Giga, Mean curvature flow through singularities for surfaces of rotation, J. Geom. Anal. 5 (1995), no. 3, 293–358.
- [2] S. B. Angenent, The zero set of a solution of a parabolic equation, J. reine angew. Math. 390 (1988), 79-96.
- [3] L.C. Evans, J. Spruck, Motion by mean curvature III, J. Geom. Anal. 2 (1992), 121-150.
- [4] M.H. Giga, Y. Giga, Evolving graphs by singular weighted curvature, Arch. Rational Mech. Anal. 141 (1998), no. 2, 117-198.
- [5] N. Korevaar, An easy proof of the interior gradient bound for solutions to the prescribed mean curvature equation, nonlinear functional analysis and its applications, Proc. Symp. Pure Math. 45 (1986),part2,81-89.
- [6] L. Simon, Interior gradient bounds for non-uniformly elliptic equations, Indiana Univ. Math. J. 25 (1976), 821-855.
- [7] N. Trudinger, A new proof of the interior gradient bound for the minimal surface equation in n dimensions, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 166-175.
- [8] Y.Nagase, Y.Tonegawa, Interior gradient estimate for 1-D anistropic curvature flow, preprint.