Multiple solutions for some singular perturbation problem

早稲田大学理工学部 佐藤 洋平
(Yohei Sato)
田中 和永
(Kazunaga Tanaka)

0. Introduction

In this paper we consider the existence and multiplicity of solutions of the following nonlinear Schrödinger equations:

$$-\Delta u + (\lambda^2 a(x) + 1)u = |u|^{p-1}u \quad \text{in } \mathbf{R}^N,$$

$$u(x) \in H^1(\mathbf{R}^N). \tag{P_{\lambda}}$$

Here $p \in (1, \frac{N+2}{N-2})$ if $N \geq 3$, $p \in (1, \infty)$ if N = 1, 2 and $a(x) \in C(\mathbf{R}^N, \mathbf{R})$ is non-negative on \mathbf{R}^N . We consider multiplicity of solutions (including positive and sign-changing solutions) when the parameter λ is very large.

For a(x), we assume

- (a1) $a(x) \in C(\mathbf{R}^N, \mathbf{R}), \ a(x) \geq 0$ for all $x \in \mathbf{R}^N$ and the potential well $\Omega = int \, a^{-1}(0)$ is a non-empty bounded open set with smooth boundary $\partial \Omega$ and $a^{-1}(0) = \overline{\Omega}$.
- (a2) $0 < \liminf_{|x| \to \infty} a(x) \le \sup_{x \in \mathbb{R}^N} a(x) < \infty.$

When λ is large, the potential well Ω plays important roles and the following Dirichlet problem appears as a limit of (P_{λ}) :

$$-\Delta u + u = |u|^{p-1}u \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega.$$
(0.1)

We remark that solutions of (P_{λ}) and (0.1) can be characterized as critical points of

$$\Psi_{\lambda}(u) = \int_{\mathbf{R}^N} \frac{1}{2} (|\nabla u|^2 + (\lambda^2 a(x) + 1)u^2) - \frac{1}{p+1} |u|^{p+1} dx : H^1(\mathbf{R}^N) \to \mathbf{R}, \quad (0.2)$$

$$\Psi_{\Omega}(u) = \int_{\Omega} \frac{1}{2} (|\nabla u|^2 + u^2) - \frac{1}{p+1} |u|^{p+1} dx : H_0^1(\Omega) \to \mathbf{R}$$
 (0.3)

and it is known that (0.3) has an unbounded sequence of critical values (cf. ...)

Bartsch and Wang [**BW2**] and Bartsch, Pankov and Wang [**BPW**] studied such a situation firstly. Their assumptions on a(x) and nonlinearity are more general and as a special case of their results we have

- (i) There exists a least energy solution $u_{\lambda}(x)$ of (P_{λ}) . Moreover $u_{\lambda_n}(x)$ converges strongly to a least energy solution of (0.3) after extracting a subsequence $\lambda_n \to \infty$ ([BW2]).
- (ii) When $N \geq 3$ and $p \in (1, \frac{N+2}{N-2})$ is close to $\frac{N+2}{N-2}$, there exists at least $\operatorname{cat}(\Omega)$ positive solutions of (P_{λ}) for large λ ([**BW2**]). Here $\operatorname{cat}(\Omega)$ denotes Lusternik-Schnirelman category of Ω .
- (iii) For any $n \in \mathbb{N}$, there exist n pairs of (possibly sign-changing) solutions $\pm u_{1,\lambda}(x), \dots, \pm u_{n,\lambda}(x)$ of (P_{λ}) for large $\lambda \geq \lambda(n)$. Moreover they converge to distinct solutions $\pm u_1(x), \dots, \pm u_n(x)$ of (0.1) after extracting a subsequence $\lambda_n \to \infty$ ([BPW]).

Here we remark that in [BW2], [BPW] they consider mainly the case where Ω is connected.

In this paper we consider the case where Ω consists of 2 connected components:

$$\Omega = \Omega_1 \cup \Omega_2 \tag{0.4}$$

and we consider the multiplicity of positive and sign-changing solutions for large λ .

We have studied the multiplicity of positive solutions in our previous paper [DT], it is shown that there exist positive solutions $u_{1,\lambda}(x), u_{2,\lambda}(x), u_{3,\lambda}(x)$ of (P_{λ}) for large λ such that after extracting a subsequence $\lambda_n \to \infty$,

$$u_{1,\lambda_n}(x) \to \begin{cases} u_1(x) & \text{in } \Omega_1, \\ 0 & \text{in } \mathbf{R}^N \backslash \Omega_1, \end{cases} \quad u_{2,\lambda_n}(x) \to \begin{cases} u_2(x) & \text{in } \Omega_2, \\ 0 & \text{in } \mathbf{R}^N \backslash \Omega_2, \end{cases}$$
$$u_{3,\lambda_n}(x) \to \begin{cases} u_1(x) & \text{in } \Omega_1, \\ u_2(x) & \text{in } \Omega_2, \\ 0 & \text{in } \mathbf{R}^N \backslash (\Omega_1 \cup \Omega_2), \end{cases}$$

strongly in $H^1(\mathbf{R}^N)$. Here $u_i(x)$ is a least energy solution of

$$-\Delta u + u = u^{p} \quad \text{in } \Omega_{i},$$

$$u = 0 \quad \text{in } \partial \Omega_{i}.$$
(0.5)

In particular, (P_{λ}) has at least 3 positive solutions for large λ . See [**DT**] for the case Ω consists of multiple connected components: $\Omega = \Omega_1 \cup \cdots \cup \Omega_k$.

We remark that a solution $u_i(x)$ of (0.5) is said to be a least energy solution if and only if

$$\Psi_{i,D}(u_i) = \inf\{\Psi_{i,D}(u); u(x) \in H_0^1(\Omega_i) \text{ is a non-trivial solution of } (0.5)\},$$

holds. Here $\Psi_{i,D}(u)$ is defined by

$$\Psi_{i,D}(u) = \int_{\Omega_i} \frac{1}{2} (|\nabla u|^2 + u^2) - \frac{1}{p+1} |u|^{p+1} dx : H_0^1(\Omega_i) \to \mathbf{R}.$$
 (0.6)

("D" stands for Dirichlet boundary conditions.) It is natural to ask the existence of a sequence of solutions of (P_{λ}) converging to solutions of (0.5) in each Ω_i , which may not be least energy solutions.

1. Results

First we deal with positive solutions. Our first theorem is the following

Theorem 1.1. Assume (a1)-(a2), (0.4) and $N \geq 3$. Then there exists a $p_1 \in (1, \frac{N+2}{N-2})$ and $\lambda_1 \geq 1$ such that for $p \in (p_1, \frac{N+2}{N-2})$ and $\lambda \geq \lambda_1$, (P_{λ}) possesses at least $cat(\Omega_1) + cat(\Omega_2) + cat(\Omega_1 \times \Omega_2)$ positive solutions.

Remark 1.2. Since $\operatorname{cat}(\Omega_1 \cup \Omega_2) = \operatorname{cat}(\Omega_1) + \operatorname{cat}(\Omega_2)$, the argument of Bartsch-Wang [BW2] ensures $\operatorname{cat}(\Omega_1) + \operatorname{cat}(\Omega_2)$ positive solutions, which converges to a positive solution of (0.3) in one of components and to 0 elsewhere after extracting a subsequence $\lambda_n \to \infty$. We remark that our Theorem 1.1 ensures additional $\operatorname{cat}(\Omega_1 \times \Omega_2)$ positive solutions. We can also observe that these solutions converge to positive solutions in both components Ω_1 , Ω_2 .

Next we study the multiplicity of sign-changing solutions. When Ω consists of 2 components, we have two limit problems (0.5), which are corresponding to $\Psi_{i,D}: H_0^1(\Omega_i) \to \mathbf{R}$ (i=1,2). It is well-known that each functional has an unbounded sequences of critical points $(u_j^{(i)}(x))_{j=1}^{\infty} \subset H_0^1(\Omega_i)$ (i=1,2). A natural question is to ask for a given pair $(u_{j_1}^{(1)}(x), u_{j_2}^{(2)}(x))$ whether (P_{λ}) has a solution $u_{\lambda}(x) \in H^1(\mathbf{R}^N)$ converging to $u_{j_i}^{(i)}(x)$ in Ω_i and to 0 elsewhere. Here we try to give a partial answer to this problem. More precisely, we try to find a solution $u_{\lambda}(x) \in H^1(\mathbf{R}^N)$ which converges to $(u_1^{(1)}(x), u_j^{(2)}(x))$ after extracting a subsequence $\lambda_n \to \infty$. Here $u_1^{(1)}(x)$ is a mountain pass solution of (0.5) in Ω_1 and $u_j^{(2)}(x)$ is a minimax solution of (0.5) in Ω_2 .

To find an unbounded sequence of critical values of a functional $I(u) \in C^1(E, \mathbf{R})$ defined on an infinite dimensional Hilbert space E, \mathbf{Z}_2 -symmetry of $I(u) - I(\pm u) = I(u)$ for all $u \in E$ — plays an important role. We remark that $\Psi_{\lambda}(u) \in C^1(H^1(\mathbf{R}^N), \mathbf{R})$ and a functional $\tilde{\Psi}(u_1, u_2) = \Psi_{1,D}(u_1) + \Psi_{2,D}(u_2) \in C^1(H^1_0(\Omega_1) \times H^1_0(\Omega_2), \mathbf{R})$, which is corresponding to (0.5) in Ω_1 and Ω_2 , have different symmetries; $\Psi_{\lambda}(u)$ is \mathbf{Z}_2 -symmetric

and $\tilde{\Psi}(u_1, u_2)$ is $(\mathbf{Z}_2)^2$ -symmetric, that is,

$$\begin{split} \Psi_{\lambda}(su) &= \Psi_{\lambda}(u) \qquad \text{for all } s \in \mathbf{Z}_2 = \{-1, 1\}, \ u \in H^1(\mathbf{R}^N), \\ \tilde{\Psi}(s_1u_1, s_2u_2) &= \tilde{\Psi}(u_1, u_2) \text{ for all } s_1, s_2 \in \{-1, 1\}, \ (u_1, u_2) \in H^1_0(\Omega_1) \times H^1_0(\Omega_2). \end{split}$$

Note that \mathbf{Z}_2 -action on $\Psi_{\lambda}(u)$ is corresponding to the following \mathbf{Z}_2 -action on $\tilde{\Psi}(u_1, u_2)$

$$\tilde{\Psi}(su_1, su_2) = \tilde{\Psi}(u_1, u_2)$$
 for all $s \in \{-1, 1\}, (u_1, u_2) \in H_0^1(\Omega_1) \times H_0^1(\Omega_2)$

and there are no symmetries of $\Psi_{\lambda}(u)$ corresponding to the \mathbb{Z}_2 -symmetry of $\tilde{\Psi}(u_1, u_2)$:

$$\tilde{\Psi}(u_1, \pm u_2) = \tilde{\Psi}(u_1, u_2). \tag{1.1}$$

We also remark that solutions $(u_1^{(1)}(x), u_j^{(2)}(x))$ are obtained using group action (1.1). Thus to construct solutions $u_{\lambda}(x)$ converging to $(u_1^{(1)}(x), u_j^{(2)}(x))$, we need to develop a kind of perturbation theory from symmetries and in this paper we use ideas from Ambrosetti [A], Bahri-Berestycki [BB], Struwe [St] and Rabinowitz [R] (See also Bahri-Lions [BL], Tanaka [T] and Bolle [B]). In [A, BB, St, R, BL, T], perturbation theories are developed for

$$-\Delta u = |u|^{p-1}u + f(x) \text{ in } \Omega,$$

$$u = 0 \text{ on } \partial\Omega,$$

where $\Omega \subset \mathbf{R}^N$ is a bounded domain. They successfully showed the existence of unbounded sequence of solutions for all $f(x) \in L^2(\Omega)$ for a certain range of p.

Now we can give our second result.

Theorem 1.3. Assume (a1)-(a2) and (0.4). Then $\Psi_{1,D}(u)$ and $\Psi_{2,D}(u)$ have critical values $c_{min}^{1,D}$ and $\{c_k^{2,D}\}_{k=1}^{\infty}$ with the following property: For any $k \in \mathbb{N}$ there exists $\lambda_2(k) \geq 1$ such that for any $\lambda \geq \lambda_2(k)$, (P_{λ}) has a solution $u_{\lambda}(x)$ such that

- (i) $\Psi_{\lambda}(u_{\lambda}) \to c_{min}^{1,D} + c_{k}^{2,D}$ as $\lambda \to \infty$.
- (ii) For any given sequence $\lambda_{\ell} \to \infty$, we can extract a subsequence $\lambda_{n_{\ell}} \to \infty$ such that $u_{\lambda_{n_{\ell}}}$ converges to a function u(x) strongly in $H^1(\mathbf{R}^N)$. Moreover u(x) satisfies (0.5) in $\Omega_1 \cup \Omega_2$, $u|_{\mathbf{R}^N \setminus (\Omega_1 \cup \Omega_2)} \equiv 0$ and u(x) > 0 in Ω_1 .
- (iii) Moreover if the set of critical values of either $\Psi_{1,D}(u)$ or $\Psi_{2,D}(u)$ are discrete in a neighborhood of $c_{min}^{1,D}$ or $c_k^{2,D}$, then we have

$$\Psi_{1,D}(u|_{\Omega_1}) = c_{min}^{1,D}, \quad \Psi_{2,D}(u|_{\Omega_2}) = c_k^{2,D}.$$

Remark 1.4. It seems that discreteness of critical values of $\Psi_{i,D}(u)$ is not known; However we don't know any example that the set of critical values has interior points. We also

remark that if the least energy solution of $\Psi_{1,D}(u)$ is non-degenerate — for example it holds for $\Omega = \{x \in \mathbf{R}^n; |x| < R\}$ (R > 0) —, then critical values of $\Psi_{1,D}(u)$ are isolated in a neighborhood of $c_{min}^{1,D}$ and the assumption of (iii) holds.

When N=1, we have a stronger result. We write $\Omega_1=(a_1,b_1), \Omega_2=(a_2,b_2)$. For any $j_1, j_2 \in \mathbb{N}$ and $s_i \in \{-1,+1\}$ there exist unique solutions $u_i(x)=u_i(j_i,s_i;x)$ of (0.1) in Ω_i which possesses exactly j_i zeros in $\Omega_i=(a_i,b_i)$ and $s_iu_i'(a_i)>0$. We have the following

Theorem 1.5. Assume N=1 and $\Omega_i=(a_i,b_i)$ (i=1,2). Then for any $j_1, j_2 \in \mathbb{N}$ and $s_i \in \{-1,+1\}$ there exists a solution $u_{\lambda}(x)$ for large λ such that

$$u_{\lambda}(x) \to u(x)$$
 strongly in $H^1(\mathbf{R})$

as
$$\lambda \to \infty$$
, where $u|_{\Omega_i}(x) = u_i(j_i, s_i; x)$ and $u|_{\mathbf{R} \setminus (\Omega_1 \cup \Omega_2)}(x) = 0$.

In the following section, we give a variational formulation and give an idea of the proofs of Theorem 1.3. We refer [ST] for details of proofs of Theorems 1.1, 1.3 and 1.5.

2. An idea of the proof

(a) Reduction to a problem on an infinite dimensional torus

To find critical points of $\Psi_{\lambda}(u)$, we reduce our problem to a variational problem on an infinite dimensional torus. For i=1,2, we choose bounded open subset Ω'_i with smooth boundary such that

$$\Omega_i \subset\subset \Omega_i', \quad (i=1,2), \qquad \overline{\Omega_1'} \cap \overline{\Omega_2'} = \emptyset.$$

First we take local mountain pass approach due to del Pino and Felmer [**DF**] to find solutions concentrating only on $\Omega_1 \cup \Omega_2$. We choose a function $f(\xi) \in C^1(\mathbf{R}, \mathbf{R})$ such that for some $0 < \ell_1 < \ell_2$

$$f(\xi) = |\xi|^{p-1} \xi \quad \text{for } |\xi| \le \ell_1,$$

$$0 \le f'(\xi) \le \frac{2}{3} \quad \text{for all } \xi \in \mathbf{R},$$

$$f(\xi) = \frac{1}{2} \xi \quad \text{for } |\xi| \ge \ell_2.$$

We set

$$g(x,\xi) = egin{cases} |\xi|^{p-1} \xi & ext{if } x \in \Omega_1' \cup \Omega_2', \ f(\xi) & ext{if } x \in \mathbf{R}^N \setminus (\Omega_1' \cup \Omega_2'), \end{cases} \ G(x,\xi) = \int_0^\xi g(x,s) \, ds.$$

In what follows we will try to find critical points of

$$\begin{split} \Phi_{\lambda}(u) &= \frac{1}{2} \int_{\mathbf{R}^{N}} |\nabla u|^{2} + (\lambda^{2} a(x) + 1) u^{2} \, dx - \int_{\mathbf{R}^{N}} G(x, u) \, dx \\ &= \frac{1}{2} \|u\|_{\lambda, \mathbf{R}^{N}}^{2} - \int_{\mathbf{R}^{N}} G(x, u) \, dx. \end{split}$$

We can observe that $\Phi_{\lambda}(u) \in C^2(H^1(\mathbf{R}^N), \mathbf{R})$ satisfies $(PS)_c$ condition for all $c \in \mathbf{R}$. Moreover we have

Lemma 2.1. Suppose that $(u_{\lambda}(x))_{\lambda \geq \lambda_0}$ is a family of critical points of $\Phi_{\lambda}(u)$ and assume that there exists constants m, M > 0 independent of λ such that

$$m \leq \Phi_{\lambda}(u_{\lambda}) \leq M$$
 for all $\lambda \geq 1$.

- Then we have (i) $\left(\frac{1}{2} \frac{1}{p+1}\right)^{-1} m \le \|u_{\lambda}\|_{\lambda,\mathbf{R}^{N}}^{2} \le \left(\frac{1}{2} \frac{1}{p+1}\right)^{-1} M$ for all $\lambda \ge 1$. (ii) There exists $\lambda(M) \ge 1$ such that for $\lambda \ge \lambda(M)$, $u_{\lambda}(x)$ satisfies $|u_{\lambda}(x)| \le \ell_{1}$ for $x \in \mathbf{R}^N \setminus (\Omega_1' \cup \Omega_2')$. In particular, $g(x, u_\lambda(x)) = |u_\lambda(x)|^{p-1} u_\lambda(x)$ holds in \mathbf{R}^N and $u_{\lambda}(x)$ is a solution of the original problem (P_{λ}) .
- (iii) After extracting a subsequence $\lambda_n \to \infty$, there exists $u \in H^1(\mathbf{R}^N)$ such that

$$||u_{\lambda_n} - u||_{\lambda_n, \mathbf{R}^N} \to 0 \quad \text{as } n \to \infty.$$

Moreover u(x) satisfies $u(x) \equiv 0$ in $\mathbb{R}^N \setminus (\Omega'_1 \cup \Omega'_2)$ and

$$-\Delta u + u = |u|^{p-1}u \quad \text{in } \Omega_i, \tag{2.1}$$

$$u=0$$
 on $\partial\Omega_i$ (2.2)

for i=1,2. It also holds $\Phi_{\lambda_n}(u_{\lambda_n}) \to \Psi_{1,D}(u\big|_{\Omega_1}) + \Psi_{2,D}(u\big|_{\Omega_2})$ as $n \to \infty$.

Here and after we use notation

$$||u_{\lambda}||_{\lambda,O}^2 = \int_O |\nabla u|^2 + (\lambda^2 a(x) + 1)u^2 dx$$

for an open set $O \subset \mathbf{R}^N$ and $\lambda > 0$.

Identifying $H^1(\Omega_1' \cup \Omega_2')$ and $H^1(\Omega_1') \oplus H^1(\Omega_2')$, we write $u = (u_1, u_2) \in H^1(\Omega_1' \cup \Omega_2')$ if $u_1=u|_{\Omega_1'}$, $u_2=u|_{\Omega_2'}$ holds. We define for $u=(u_1,u_2)\in H^1(\Omega_1'\cup\Omega_2')$

$$I_{\lambda}(u_1, u_2) = \inf_{w \in H^1(\mathbf{R}^N), w = (u_1, u_2) \text{ on } \Omega_1' \cup \Omega_2'} \Phi_{\lambda}(w),$$

Now we set

$$\Sigma_{i,\lambda} = \{ v \in H^1(\Omega_i'); \|v\|_{\lambda,\Omega_i'} = 1 \}$$
 for $i = 1, 2$

and define

$$J_{\lambda}(v_1, v_2) = \sup_{s,t>0} I_{\lambda}(sv_1, tv_2) : \Sigma_{1,\lambda} \oplus \Sigma_{2,\lambda} \to \mathbf{R}$$

We can observe that for any M>0 there exists $\lambda(M)\geq 1$ such that for any $\lambda\geq \lambda(M)$

- For any $(v_1, v_2) \in [J_{\lambda} \leq M]_{\Sigma_{1,\lambda} \oplus \Sigma_{2,\lambda}}, (s,t) \mapsto I_{\lambda}(sv_1, tv_2)$ has a unique maximizer.
- $[J < M]_{\Sigma_{1,\lambda} \oplus \Sigma_{2,\lambda}} \to \mathbf{R} : (v_1, v_2) \mapsto J_{\lambda}(v_1, v_2)$ is of class C^1 and its critical points are corresponding to critical points of $I_{\lambda}(u)$.

Here we use notation:

$$[J_{\lambda} < M]_{\Sigma_{1,\lambda} \oplus \Sigma_{2,\lambda}} = \{(v_1, v_2) \in \Sigma_{1,\lambda} \oplus \Sigma_{2,\lambda}; J_{\lambda}(v_1, v_2) < M\}.$$

(b) Comparison functionals

To find critical points of $J_{\lambda}(v_1, v_2): \Sigma_{1,\lambda} \oplus \Sigma_{2,\lambda} \to \mathbf{R}$ the following observation is useful. We use notation:

$$J_{i,\lambda}(v_i) = \sup_{s>0} I_{\lambda}(sv_i) : \Sigma_{i,\lambda} \to \mathbf{R}.$$
 (2.3)

Lemma 2.2. There exists $c_{\lambda} > 0$ such that

$$c_{\lambda} \to 0$$
 as $\lambda \to \infty$,

$$|J_{\lambda}(v_1, v_2) - J_{1,\lambda}(v_1) - J_{2,\lambda}(v_2)| < c_{\lambda},$$

$$\left|J_{\lambda}'(v_1,v_2)(h_1,h_2) - J_{1,\lambda}'(v_1)h_1 - J_{2,\lambda}'(v_2)h_2\right| < c_{\lambda}(\|h_1\|_{\lambda,\Omega_1'} + \|h_2\|_{\lambda,\Omega_2'})$$

for all $(v_1, v_2) \in [J_{\lambda} < M]_{\Sigma_{1,\lambda} \oplus \Sigma_{2,\lambda}}$ and $(h_1, h_2) \in T_{v_1} \Sigma_{1,\lambda} \oplus T_{v_1} \Sigma_{1,\lambda}$.

We remark that

$$\Sigma_{i,\lambda} \to \mathbf{R}: v_i \mapsto J_{i,\lambda}(v_i)$$

are even functionals and the existence of infinite many critical points can be obtained through minimax arguments. By Lemma 2.2, we regards $J_{\lambda}(v_1, v_2)$ as a perturbation of $J_{1,\lambda}(v_1) + J_{2,\lambda}(v_2)$.

(c) Minimax methods for $J_{i,\lambda}(v_i)$

We define minimax values $c_{min}^{1,\lambda}, b_n^{2,\lambda} \ (n \in \mathbb{N})$ by

$$c_{min}^{1,\lambda} = \inf_{v_1 \in \Sigma_{1,\lambda}} J_{1,\lambda}(v_1),$$
 (2.4)

$$b_n^{2,\lambda} = \inf_{\gamma \in \Gamma^{\lambda}} \max_{\theta \in S^n} J_{2,\lambda}(\gamma(\theta)), \tag{2.5}$$

where $S^{n} = \{\theta = (\theta_{1}, \dots, \theta_{n+1}); |\theta| = 1\}$ and

$$\Gamma_n^{\lambda} = \{ \gamma \in C(S^n, \Sigma_{2,\lambda}); \gamma(-\theta) = -\gamma(\theta) \text{ for all } \theta \in S^n \}.$$

We have

Lemma 2.3.

- (i) $c_{min}^{1,\lambda}$ is a critical value of $J_{1,\lambda}(v_1)$.
- (ii) $b_n^{2,\lambda}$ is a critical value of $J_{2,\lambda}(v_2)$.

(iii)
$$b_1^{2,\lambda} \le b_2^{2,\lambda} \le \cdots \le b_n^{2,\lambda} \le b_{n+1}^{2,\lambda} \le \cdots$$
,

(iv)
$$b_n^{2,\lambda} \to \infty$$
 as $n \to \infty$.

We are interested in the limit $\lim_{\lambda\to\infty}c_{min}^{1,\lambda}$ and $\lim_{\lambda\to\infty}b_n^{2,\lambda}$. Here appears the limit problem $\Psi_{i,D}(u_i)$ defined in (0.6).

In an analogous way to (2.3), (2.4)–(2.5), we set

$$\Sigma_{i,D} = \{ u \in H_0^1(\Omega_i); \|u\|_{H_0^1(\Omega_i)} = 1 \}$$

and consider a functional defined by

$$J_{i,D}(v) = \max_{t>0} \Psi_{i,D}(tv) : \Sigma_{i,D} \to \mathbf{R}.$$

We define as in (2.4)–(2.5)

$$c_{min}^{1,D} = \inf_{v \in \Sigma_{1,D}} J_{1,D}(v), \tag{2.6}$$

$$b_n^{2,D} = \inf_{\gamma \in \Gamma_n^D} \max_{\theta \in S^{n-1}} J_{2,D}(\gamma(\theta)), \tag{2.7}$$

where $S^{n-1} = \{\theta \in \mathbf{R}^n; |\theta| = 1\}$ and

$$\Gamma_n^D = \{ \gamma \in C(S^{n-1}, \Sigma_{2,D}); \gamma(-\theta) = -\gamma(\theta) \text{ for all } \theta \in S^{n-1} \}.$$

We can easily observe that $c_{min}^{1,D}$ and $b_n^{2,D}$ are critical values of $\Psi_{1,D}(u)$, $\Psi_{2,D}(u)$ and

$$b_1^{2,D} \le b_2^{2,D} \le b_3^{2,D} \le \dots \le b_n^{2,D} \le b_{n+1}^{2,D} \le \dots,$$
 (2.8)
 $b_n^{2,D} \to \infty \ (n \to \infty).$

Moreover we have

Proposition 2.4. Let $c_{min}^{1,\lambda}$ $(b_n^{2,\lambda}, c_{min}^{1,D}, b_n^{2,D}$ respectively) be a critical value of $J_{1,\lambda}(v_1)$ $(J_{2,\lambda}(v_2),\,J_{1,D}(v_1),\,J_{2,D}(v_2)$ respectively) defined in (2.4)–(2.7). Then we have

- (i) $c_{min}^{1,\lambda} \to c_{min}^{1,D}$ as $\lambda \to \infty$. (ii) $b_n^{2,\lambda} \to b_n^{2,D}$ as $\lambda \to \infty$.

By (2.8), there exists a sequence $n(1) < n(2) < \cdots < n(k) < n(k+1) < \cdots$ such that

$$b_{n(k)}^{2,D} < b_{n(k)+1}^{2,D}. (2.9)$$

We also define another set of minimax values by

$$c_k^{2,D} = \inf_{\sigma \in \Lambda_k} \max_{\theta \in S_i^{n(k)}} J_{2,D}(\sigma(\theta)), \tag{2.10}$$

where $S_+^{n(k)} = \{\theta = (\theta_1, \dots, \theta_{n(k)}, \theta_{n(k)+1}); \theta \in S^{n(k)+1}, \theta_{n(k)+1} \geq 0\}$ and

$$\Lambda_k = \{ \sigma \in C(S_+^{n(k)}, \Sigma_{2,D}); \ \sigma|_{S^{n(k)}} \in \Gamma_{n(k)}^{2,D}, \ \inf_{\theta \in S^{n(k)}} \Psi_{2,D}(\sigma(\theta)) < b_{n(k)}^{2,D} + \delta_k \}.$$

Here $\delta_k > 0$ is a number satisfying $\delta_k < \frac{1}{2}(b_{n(k)+1}^{2,D} - b_{n(k)}^{2,D})$. We can also see that $c_k^{2,D}$ is a critical value of $\Psi_{2,D}(u)$ and $c_k^{2,D} \to \infty$ as $k \to \infty$. Although the definition of $c_k^{2,D}$ is rather complicated, it has a virtue that $c_k^{2,D}$ can be used to find critical points in presence of non-odd perturbation. More precisely, assume (2.9), then there exists $\tilde{\delta}_k > 0$ such that if a perturbed functional $\tilde{J}(v): \Sigma_{2,D} \to \mathbf{R}$ satisfies

$$|\tilde{J}(v) - J_{2,D}(v)| < \tilde{\delta}_k$$
 for all $v \in \Sigma_{2,D}$.

Then, setting $\tilde{c}_k = \inf_{\sigma \in \Lambda_k} \max_{\theta \in S^{n(k)}_+} \tilde{J}(\sigma(\theta))$, we can observe that \tilde{c}_k is a critical value of $\tilde{J}(v)$. This virtue also enables us to deal with a perturbation of $J_{1,\lambda}(v_1)d + J_{2,\lambda}(v_2)$ and we can obtain Theorem 1.3. s

Remark 2.5. The numbers $c_{min}^{1,D}$ and $\{c_k^{2,D}\}_{k=1}^{\infty}$ in the statement of Theorem 1.3 are given in (2.6) and (2.10).

References

- [A] A. Ambrosetti, A perturbation theorem for superlinear boundary value problems, MRC Univ of Wisconsin-Madison, Tech. Sum. Report 1446 (1974).
- [BW1] T. Bartsch, Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on \mathbb{R}^N , Comm. Partial Differential Equations 20 (1995), 1725–1741.
- [BW2] T. Bartsch, Z.-Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. angew. Math. Phys. 51 (2000) 366-384
- [BPW] T. Bartsch, A. Pankov, Z.-Q. Wang, Nonlinear Schrödinger equations with steep potential well, *Commun. Contemp. Math.* 3 (2001), no. 4, 549-569.
 - [BB] A. Bahri, H. Berestycki, A perturbation method in critical point theory, Trans. Amer. Math. Soc. 267 (1981), 1-32.
 - [BL] A. Bahri and P. L. Lions, Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math. 45 (1992), 1205–1215.

- [B] P. Bolle, On the Bolza problem, J. Diff. Eq. 152 (1999), 274-288.
- [DF] M. del Pino and P. Felmer Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations 4 (1996), no. 2, 121–137.
- [DFT] M. del Pino, P. Felmer and K. Tanaka, An elementary construction of complex patterns in nonlinear Schrödinger equations, Nonlinearity 15 (2002) 1653-1671
 - [DT] Y. Ding, K. Tanaka, Multiplicity of positive solutions of a nonlinear Schrödinger equation, Manuscripta Math 112 (2003), 109–135.
 - [N] Z. Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math. 105 (1961), 141–175.
 - [R] P. H. Rabinowitz, Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc. 272 (1982), 735-769
 - [ST] Y. Sato and K. Tanaka, Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells, *Preprint*.
 - [St] M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems, Manuscripta Math. 32 (1980), no. 3-4, 335-364.
 - [T] K. Tanaka, Morse indices at critical points related to the symmetric mountain pass theorem and applications, Comm. Partial Diff. Eq. 14 (1989), 99-128