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Multiple solutions for some singular perturbation problem
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0. Introduction

In this paper we consider the existence and multiplicity of solutions of the following
nonlinear Schrodinger equations:

—Au+ (Ma(z) + u = |[uf"lu in RV,

P
u(z) € HY(RM). (Bs)

Here p € (1, %—‘_‘_’—g) ifN>3,pe(1,00)if N =1,2and a(z) € C(R",R) is non-negative on
R”". We consider multiplicity of solutions (including positive and sign-changing solutions)
when the parameter A is very large.

For a(zx), we assume

(al) a(z) € C(RN,R), a(z) > 0 for all z € R" and the potential well Q = int a~1(0)
is a non-empty bounded open set with smooth boundary 9 and a=*(0) = Q.

(a2) 0 < liminfa(z) < sup a(z) < oco.
|z|—oc0 zE€RN
When ) is large, the potential well Q plays important roles and the following Dirichlet

problem appears as a limit of (Py):

—Au+u=uf'u inQ,

0.1
u=0 on Of. (1)

We remark that solutions of (Py) and (0.1) can be characterized as critical points of

Uy (u) = /R ) %(\wz + (\a(z) + 1)u?) — p—_:'l_—l-\ul”*,'lda:: H'®RM) >R, (0.2)

1

Pl lulPtldz: HY(Q) - R (0.3)

¥a(u) = [ (VA ) -
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and it is known that (0.3) has an unbounded sequence of critical values (cf. ...)
Bartsch and Wang [BW2] and Bartsch, Pankov and Wang [BPW] studied such a
situation firstly. Their assumptions on a(z) and nonlinearity are more general and as a

special case of their results we have

(i) There exists a least energy solution ux(z) of (Py). Moreover u,,, (x) converges strongly
to a least energy solution of (0.3) after extracting a subsequence A, — oo ((BW2]).

(ii) When N > 3 and p € (1, ¥=2) is close to £2 there exists at least cat({2) positive
solutions of (Py) for large A ((BW2]). Here cat(2) denotes Lusternik-Schnirelman
category of 2.

(iii) For any n € N, there exist n pairs of (possibly sign-changing) solutions fu; x (x), «-
+un A (z) of (Py) for large A > A(n). Moreover they converge to distinct solutions
+uy(z), - -+, Tun(x) of (0.1) after extracting a subsequence A, — oo ((BPW]).

Here we remark that in [BW2], [BPW)] they consider mainly the case where Q is con-

nected.

In this paper we consider the case where Q consists of 2 connected components:
Q=0 Uy (0.4)

and we consider the multiplicity of positive and sign-changing solutions for large .

We have studied the multiplicity of positive solutions in our previous paper [DTY, it
is shown that there exist positive solutions uj x(z), u2,x (), us,(z) of (P») for large A such
that after extracting a subsequence A, — 00,

ul(m) in Ql y ’U.2(:1!) in Qg ,
UM (.’E) - {0 in RN \Qla U2 2, (.’L‘) - {O in RN \92,

'll.l((l?) in Ql y
us ), () = § uz(z) in Qg
0 in RV \(Q1 U Qy),
strongly in H!(R"). Here u;(z) is a least energy solution of
—Au+u=1uP in
(0.5)
u=~0 in BQ,-.

In particular, (Py) has at least 3 positive solutions for large A. See [DT] for the case {
consists of multiple connected components: @ = Qq U+ U Q.

We remark that a solution u;(z) of (0.5) is said to be a least energy solution if and
only if

W, p(u;) = inf{¥; p(u); u(z) € Hy () is a non-trivial solution of (0.5)},
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holds. Here ¥; p(u) is defined by

Vi plu) = / %(lVUP +u2) _ 1

p ST de: Ho(@) = R (0.6)

(“D” stands for Dirichlet boundary conditions.) It is natural to ask the existence of a
sequence of solutions of (Py) converging to solutions of (0.5) in each §;, which may not be
least energy solutions.

1. Results
First we deal with positive solutions. Our first theorem is the following

Theorem 1.1. Assume (al)-(a2), (0.4) and N > 3. Then there exists a py € (1, %2)
and \; > 1 such that for p € (pl,%ﬂ_'—g) and X > A1, (Py) possesses at least cat(Q;) +
cat(Q2) + cat(Q; x Q) positive solutions.

Remark 1.2. Since cat(€2; U Q2) = cat(Q;) + cat(Q2), the argument of Bartsch-Wang
[BW2] ensures cat(Q)+ cat(22) positive solutions, which converges to a positive solution
of (0.3) in one of components and to 0 elsewhere after extracting a subsequence A, — co.
We remark that our Theorem 1.1 ensures additional cat(Q; x 2) positive solutions. We

can also observe that these solutions converge to positive solutions in both components
Q1, Qo.

Next we study the multiplicity of sign-changing solutions. When Q consists of 2 com-
ponents, we have two limit problems (0.5), which are corresponding to ¥; p : Hj(Q:) — R
(i = 1,2). It is well-known that each functional has an unbounded sequences of critical
points (ug-i) ())2, € Hg(u) (i = 1,2). A natural question is to ask for a given pair
(ug)(x), ugi (z)) whether (Py) has a solution uy(z) € H'(R") converging to u_g? (z) in Q;
and to O elsewhere. Here we try to give a partial answer to this problem. More precisely,
we try to find a solution uy(x) € HY(R”) which converges to (ugl)(x),ugz)(x)) after ex-
tracting a subsequence \,, — oo. Here ugl) (z) is a mountain pass solution of (0.5) in
and ugz) (x) is a minimax solution of (0.5) in Q. '

To find an unbounded sequence of critical values of a functional I(u) € C*(E,R)
defined on an infinite dimensional Hilbert space E, Zo-symmetry of I(u) — I(F+u) = I(u)
for all v € E — plays an important role. We remark that ¥x(u) € CY(HY(RN),R)
and a functional W(uy,uz) = ¥ p(u1) + ¥op(ug) € CUHHE(Q:) x H}(Q2),R), which is

corresponding to (0.5) in ©; and 2, have different symmetries; ¥y (u) is Z2-symmetric
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and ¥ (uy,uz) is (Z2)2-symmetric, that is,

Uy (su) = ¥a(u) for all s € Zo = {~1,1}, u € H'([R"),
‘11(8111,1,52’1,@) = \il(ul,uQ) for all S1,82 € {—1,1}, (ul,U2) € H&(Ql) X H&(Qg)

Note that Zs-action on W) (u) is corresponding to the following Zs-action on W (ug, uz)
(suy,suz) = U(ur,ug) forall s € {—1,1}, (u,u2) € HL() x Hy ()
and there are no symmetries of ¥, (u) corresponding to the Zz-symmetry of U (uy,ug):
T (uy, tug) = U(uy, ug). (1.1)

We also remark that solutions (u(ll)(x), u§.2) (x)) are obtained using group action (1.1). Thus
to construct solutions u(z) converging to (u(ll) (x),u§-2) (x)), we need to develop a kind of
perturbation theory from symmetries and in this paper we use ideas from Ambrosetti [A],
Bahri-Berestycki [BB], Struwe [St] and Rabinowitz [R] (See also Bahri-Lions {BL], Tanaka
(T] and Bolle [B]). In [A, BB, St, R, BL, T), perturbation theories are developed for

~Au=[uPlu+ f(z) inQ,
u=0 on 02,

where @ ¢ R is a bounded domain. They successfully showed the existence of unbounded

.

sequence of solutions for all f(z) € L?() for a certain range of p.
Now we can give our second result.

Theorem 1.3. Assume (al)—(a2) and (0.4). Then ¥y p(u) and ¥q p(u) have critical
1,D

values c,;,, and {ci’D }$2 | with the following property: For any k € N there exists Ao(k) >
1 such that for any X > A2(k), (P\) has a solution uy(z) such that
(i) ¥aluy) — c};ﬂ’; + ci’D as A — oo.
(ii) For any given sequence Ay — oo, we can extract a subsequence \,, — oo such that
uy,, converges to a function u(z) strongly in H LRY). Moreover u(z) satisfies (0.5)
in Q1 UQy, ulgw~ \(U0) = 0 and u(a:) >0 in Q.

(iii) Moreover if the set of critical values of either W1 p(u) or 3 p(u) are discrete in a
1,D

2,D
min OF Ci., then we have

neighborhood of ¢

D D
qllaD(ulﬂl) = c:m'm \P2,D(U‘Qg) = Ci .

Remark 1.4. It seems that discreteness of critical values of ¥; p(u) is not known; However

we don’t know any example that the set of critical values has interior points. We also
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remark that if the least energy solution of ¥; p(u) is non-degenerate — for example it

holds for Q = {x € R™; |z| < R} (R > 0) —, then critical values of ¥y p(u) are isolated
1,D

in a neighborhood of ¢, 7,

and the assumption of (iii) holds.

When N = 1, we have a stronger result. We write ; = (a1,b1), Q2 = (ag,b2). For
any ji, j2 € N and s; € {—1,+1} there exist unique solutions u;(z) = u;(J;, si; z) of (0.1)
in ©Q; which possesses exactly j; zeros in Q; = (a;,b;) and s;ul(a;) > 0. We have the

following

Theorem 1.5. Assume N =1 and Q; = (a;,b;) (i = 1,2). Then for any ji, j» € N and
s; € {—1,+1} there exists a solution uy(z) for large A such that

ux(z) = u(z) strongly in H'(R)

as A\ — oo, where u|q,(x) = u;(ji, 8i; ) and u|g\(n,uq,)(z) = 0.

In the following section, we give a variational formulation and give an idea of the
proofs of Theorem 1.3. We refer [ST] for details of proofs of Theorems 1.1, 1.3 and 1.5.

2. An idea of the proof
(a) Reduction to a problem on an infinite dimensional torus

To find critical points of ¥,(u), we reduce our problem to a variational problem on an
infinite dimensional torus. For i = 1,2, we choose bounded open subset Q) with smooth
boundary such that

Qccq, (=12, Gna,=0.

First we take local mountain pass approach due to del Pino and Felmer [DF] to find
“solutions concentrating only on Q; UQy. We choose a function f(¢) € C1(R,R) such that
for some 0 < £; < £5

f(6) = [EPYE for |€) < b,
0< f'(¢) S-g for all £ € R,
f©) =3¢ for g2
We set | | . 0 o
Cflepie foe U,
9@ &) = {f(f) if 2 € RN \(% UQ}),

3
G(a:,f)-—-/o g(z,s)ds.
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In what follows we will try to find critical points of

P, (u) = % /1;’" Vul? + (Na(z) + 1)u* dz — /

G(z,u)dzx
RN

1 2
== - z,u) d.
Il - [ G wa
We can observe that ®,(u) € C?2(H'(RY),R) satisfies (PS). condition for all ¢ € R.

Moreover we have

Lemma 2.1. Suppose that (ux(x))a>x, is a family of critical points of ®)(u) and assume
that there exists constants m, M > 0 independent of X such that

'm§<I>,\(u,\)§M for all A > 1.

Then we have

-1 -1
) (% - ﬁ) m < fluall2 g < (é _ ﬁl—) M for all A > 1.

(ii) There exists A(M) > 1 such that for A > M\M), ux(z) satisfies lua(z)] < & for
r € RN \(QL U Q). In particular, g(z,ux(z)) = lux(z)[P~lur(z) holds in RN and
ux(z) is a solution of the original problem (Py).

(iii) After extracting a subsequence A, — 00, there exists u € H L(RN) such that

llur, — ufjr,,gy — 0 asn — oo
Moreover u(z) satisfies u(z) = 0 in RN \(Q} U Q%) and

—Au+u=uPlu inQ;, (2.1)
u=0  ond% (2.2)
for i =1,2. It also holds ®», (us,) = ¥1,0(ulg ) + U2,p(ulg,) asn — oo.

Here and after we use notation
a0 = [ IVul + (a(a) + u? de
o

for an open set O C RN and A > 0.
Identifying H(Q, U %) and H(Q) ® H'(Q}), we write u = (u1,uz) € H' (9] U Q%)
if 41 = ufgy, uz = u|g; holds. We define for u = (u,u2) € H'(Q{ uy)

Iy(uy,ug) = P (w),

inf
weHH(RN),w=(u1,uz2) ON QjUQ,
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Now we set
Sin = {v € HY(Q); [ollng; =1} fori=1,2
and define

J,\(’Ul,vz) = sup I)‘(S’Ul,t'ljg) : 21’)‘ 6922,)\ —R.
s,t>0

We can observe that for any M > 0 there exists A(M) > 1 such that for any A > A\(M)
e For any (v1,v2) € [Jx < Mg, ,o5,., (5,t) = Ir(sv1,tv2) has a unique maximizer.
o [J< Mls, 05, — R (v1,v2) = Jr(v1,v2) is of class C! and its critical points are
corresponding to critical points of I (u).

Here we use notation:
[Ir < Mg, yoxa, = {(v1,v2) € Z1x © Ba,n; Ia(v,v2) < M}
(b) Comparison functionals

To find critical points of Jy(v1,v2) : £y, @ L, x» — R the following observation is useful.
We use notation:
Jia(vi) =supIn(sv;) : Zix = R. (2.3)
s>0

Lemma 2.2. There exists ¢ > 0 such that

cy—0 as A — oo,

|Ja(v1,v2) — Jia(v1) — J2a(v2)] < ca,

| I3 (v1,v2)(h1, ha) — J} 5 (vi)hy — J3 3 (v2)ha| < ea(llhallaey + 1R2llrq;)
for all (v1,v2) € [Jx < M]3z, s0x5,, and (h1,he) € Ty, L1,x & T, Z1 0 |

We remark that
Zix = R v Jia(v)

are even functionals and the existence of infinite many critical points can be obtained
through minimax arguments. By Lemma 2.2, we regards J)(v;,v2) as a perturbation of
Jia(vr) + J2a(v2).

(c) Minimax methods for J; x(v;)

We define minimax values c:,ﬁ‘n, b2* (n € N) by
1A :
) = f J y 2.4
Crmin 1 16%1,,\ 1)(1)1) ( )
22 _
byt = ng[fﬁ max J2,x(7(6)), (2.5)

where S™ = {6 = (61, --,0n+1); |6] =1} and
T = {y € C(S™,T1.,); ¥(=0) = —(B) for all § € S™}.
We have
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Lemma 2.3.
(i) cmm is a critical value of Jy »(v1).
(ii) b2 is a critical value of Jy A(uz)

sy 22A 22 < 2, 2,
(iii) by < b, <byt <byy <

(iv) b2* — 00 asn — oo. |

We are interested in the limit limy . c:,ﬁ‘n and lim o b2*. Here appears the limit
problem ¥; p(u;) defined in (0.6).
In an analogous way to (2.3), (2.4)-(2.5), we set

Si,p = {u € Hy(%); llullgz ) =1}
and consider a functional defined by
Ji,p(v) = max U, p(tv) : Zip = R.

We define as in (2.4)-(2.5)

’D 1

Crin = 41 J1(v), (26)
2,D __

by = g}fp omax, J2,0(7(9)), (2.7)

where $”~! = {§ € R™; |§] = 1} and
= {y € O(8™*, Ba,0); 7(—6) = —(6) for all 6 € 5™},

We can easily observe that &> and 2D are critical values of ¥1,p(u), ¥2 p(u) and

P <pP <npP <o <P <] < (28)
b2P — 00 (n — o).
Moreover we have
Proposition 2.4. Let ¢ty (62>, ch:2 | b2P respectively) be a critical value of Jy,(vy)
(Je, A(vz), J1,p(v1), J2,p(v2) respectively) defined in (2.4)—(2.7). Then we have
(1) cmzn 11'7151 as A — oo.

(i) 62> — b2P as X — .

By (2.8), there exists a sequence n(1) < n(2) < --- < n(k) < n(k+1) < --- such that

2 2,D :
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We also define another set of minimax values by

ci’D= inf max J2 p(c(8)), (2.10)

oEAg gesn(k)
k
where S = {0 = (01, 00s), On(ry41); 8 € PP+, 0,4y, > 0} and

= {0 € C(S™™ 25 p); o] gniiy € rn(k), nf¥an(a()) < by + Ok}

Here 6; > 0 is a number satisfying J; < (bfl(lz)_)rl bn(k)) We can also see that CIL;D is
2,D

a critical value of ¥y p(u) and ¢~ — oo as k — oo. Although the definition of c,c is
rather complicated, it has a virtue that ck can be used to find critical points in presence
‘of non-odd perturbation. More precisely, assume (2.9), then there exists 8% > 0 such that

if a perturbed functional J(v) : £z p — R satisfies
|j(v) - J2,p(v)] < ok for all v € £y p.

Then, setting &y = infyea, max, s J (0()), we can observe that ¢ is a critical value
of J (v). This virtue also enables us to deal with a perturbation of Ji x(v1)d+ Jz,x(v2) and

we can obtain Theorem 1.3. s

Remark 2.5. The numbers c'’
in (2.6) and (2.10).

in P and {c& Py in the statement of Theorem 1.3 are given
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