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Upper bound of the best constant of the
Trudinger-Moser inequality and its application
to the Gagliardo-Nirenberg inequality
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We consider the best constant of the Trudinger-Moser inequality in R". Let
Q) be an arbitrary domain in R".It is well known that the Sobolev space
H}PP(Q), 1 < p < 00, is continuously embedded into L#(§2) for all ¢ with
p £ g < oo. However, we cannot take ¢ = oo in such an embedding. For
bounded domains ©, Trudinger [18] treated the case p = n(2 2) ,i.e., HY™()
and proved that there are two constants « and C such that

|l exp(elu™) e S CIQ (0.1)

holds for all u € Hy™(Q) with ||Vaul|zne) < 1. Here and hereafter p' rep-
resents the Hoélder conjugate exponent of p,i.e.,p’ = p/(p — 1). Moser [9]
gave the optimal constant for ¢ in (0.1), which shows that one cannot take
o greater than 1/(n"2w?™!), where w, is the volume of the unit n-ball, that
is, wp 1= |By| = 20™?2/(nT'(n/2)) (T : the gamma function). Adams (2] gener-
alized Moser’s result to the case Hy™™(€2) for positive integers m < n and
obtained the sharp constant corresponding to (0.1).

When Q = R”, Ogawa [10] and Ogawa-Ozawa [11] treated the Hilbert
space H™%%(R™) and then Ozawa [14] gave the following general embedding
theorem in the Sobolev space H™P?(R") of the fractional derivatives which
states that
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holds for all u € H™PP(R™) with ||(—A)™ Py fogny < 1, where

Jp]-

P, (£) = exp(§) — Z Z_}" jpr=min{j €N|jZp—1}.

J=Jp

The advantage of (0.2) gives the scale invariant form. Concerning the sharp
constant for o in (0.2), Adachi-Tanaka [1] proved a similar result to Moser’s
in HY(R™).

Our purpose is to generalize Adachi-Tanaka’s result to the space H™/??(R™)
of the fractional derivatives. We show an upper bound of the constant o in
(0.2). Indeed, the following theorem holds :

Theorem 0.1. Let 2 £ p < oo. Then, for every a € (A, o), there ezists
a sequence {ux}2, C H™PP(R™) \ {0} with ||(—A)"®Pyu||romny S 1 such
that ’
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where A, is defined by

— 00 as k — oo,
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Remark . Let a, be the best constant of (0.2) , i.e.,

A, = (0.3)

ap = sup{a > 0| The inequality (0.2) holds with some constant C.}.

Then Theorem 0.1 implies that a, < A, for 2 < p < .

Next, if we give a similar type estimate to (0.2) by taking another nor-
malization such as ||(I — A)*®Py||zo@ny < 1, then we can cover all 1 <
p < 00. Moreover, when p = 2, it turns out that our constant A, of (0.3) is
optimal. To state our second result, let us recall the rearrangement f* of the
measurable funcition f on R™. For detail, see Section 2 (Stein-Weiss [16]). We
denote by f** the average function of f* ie,

t
—1—/ f*(r)dr fort>0.
0

Qur theorem now reads:



Theorem 0.2. Let 1 < p < oo and A, be as in (0.3).
(i) For every a € (Ap, o), there ezists a sequence {ux}§2, C H™PP(R™) with
(I = A)™®Py|| Lo@ny S 1 such that

@, (alurlP )| L @ny — 00 as k — oo.

(ii) We define A; by
Ay = Ap/BYCY,

where
5= - 1rsw { [ (7@) = 7Ot | Wl S1.

Then for every a € (0, Ay), there ezists a positive constant C depending only
on p and « such that
@5 (clul )@ £ C (0.4)

holds for all u € HYP?(R™) with ||(I — A)™®Py||ppgny < 1.
Remark . Later, we shall show that
1SB,SpPP—(p—1P for 1<p<oo.
In particular, for 2 £ p < oo, there holds
B, = (p— 1y (0.5)
In any case, we obtain Ay S A, for 1 <p < oco.

Since it follows from (0.5) that B, = 1, we see that Ay = A} = (27)"/wy, is
the best constant of (0.4). Hence, the following corollary holds :

Corollary 0.1. (i) For every a € ((27)"/ws, 00), there exists a sequence
{ur}2, € HY**(R™) with ||(I — A)™4ug||2@mny S 1 such that

|®2(c|ukl?) | 2@ny — o0 as k — oo.

(ii) For every a € (0, (21)"/wy), there ezists a positive constant C depending
only on « such that
1@2(crluf®) |2y £ C (0.6)

holds for all w € HY?2(R™) with ||(I — A)"*ul|f2@mn) S 1.



It seems to be an interesting question whether or not (0.6) does hold for
a = (27)" /wh,.

Next, we consider the Gagliardo-Nirenberg interpolation inequality which
is closely related to the Trudinger-Moser inequality. Ozawa [14] proved that
for 1 < p < oo there is a constant M depending only on p such that

’ n 1-
lull Lameny < Mq'/? ”u”%q(]gn)”(_A) /(zp)u”Lpfn{Z) (0.7)

holds for all u € H™/P?(R") and for all g € [p, 00). Ozawa [13],[14] also showed
the fact that (0.2) and (0.7) are equivalent and he gave the relation between
a in (0.2) and M in (0.7). Combining his formula with our result, we obtain
an estimate of M from below. Indeed, there holds the following theorem :

Theorem 0.3. Let 2 £ p < oo. We define M, and my, as follows.

M, = inf{M > 0| The inequality (0.7) holds for all u € H™??(R")
and for all g € [p, ).},
my = inf{M > 0| There exists qq € [p, 0) such that the inequality (0.7)
holds for all uw € H™P?(R™)and for all q € [go,0).}.
Then there holds ]
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Since Ozawa, [13],[14] gave the relation between the constants ¢ in (0.2) and
M in (0.7), we obtain a lower bound of the best constant for the Sobolev
inequality in the critical exponent :

Theorem 0.4. Let 1 < p < oc.
(i) For every M > (p’eA;)‘l/p', there erists go € [p, 00) depending only on p
and M such that

lullzony £ MMP|I(I — A CPu|| o) (0.8)

holds for all uE_H"/P’P(R") and for all q € [go, 0).
(ii) We define M, and T, as follows.
M, := inf{M > 0| The inequality (0.8) holds for all u € H"/PP(R™)
and for all g € [p, ).},
y, = inf{M > 0| There exists qo € [p, ) such that the inequality (0.8)
holds for all u € H™P?P(R™)and for all q € [go,00).}.
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Then there holds )

My =T 2 ed i

1\
1\Y

Since we have obtained A; = A} for p = 2, we see that

1 _ 1 _ \/T
V2eA; \V/2eA; YV ontlenn’

Hence, the above theorem gives the best constant for (0.8). Indeed, we have
the following corollary :

Corollary 0.2. (i) For every M > \/w,/(2"*1er™), there erists gy € [2,00)
such that

”u’“Lq(R”) é Mql/2||(f - A)n/4'u,”L2(mn)
holds for all u € H™%%*(R™) and for all q € [go, o0).

(ii) For every 0 < M < \/wn/(2"*len™) and ¢ € [2,00), there exist go €
[g,0) and up € H™**(R") such that

l[uol| Lo @ny > Map'*||(I — A)uo|| 2y
holds.

To prove our theorems, by means of the Riesz and the Bessel poten-
tials, we first reduce the Trudinger-Moser inequality to some equivalent form
of the fractional integral. The technique of symmetric decreasing rearrange-
ment plays an important role for the estimate of fractional integrals in R™. To
this end, we make use of O’Neil’s result [12] on the rearrangement of the
convolution of functions. Such a procedure is similar to Adams [2]. First, we
shall show that for every a € (0, A;), there exists a positive constant C' de-
pending only on p and a such that (0.4) holds for all u € H™"P?P(R") with
|(I—A)"@Py|| pmny < 1. On the other hand, we shall show that the constant
o holding (0.2) and (0.4) in R™ can be also available for the corresponding
inequality in bounded domains. Since Adams [2] gave the sharp constant o
in the corresponding inequality to (0.1), we obtain an upper bound A, as in
(0.3). For general p, we have A} < A,.In particular, for p = 2, there holds
A} = A, which provides us the best constant of (0.4).
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