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Capelli identities for symmetric pairs
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1 Introduction

Consider a see-saw pair of real reductive Lie groups in the real symplectic group

SMN(R):
Go M,
U x U
K, H,,

where both (G, Ho) and (K, M) form dual pairs. The pair (Go, Ho) is called a
dual pair, if Gy and Hy are the commutants of each other in Spon(R). In addition,
we assume that (Go, Ko) is a symmetric pair of Hermitian type. Then there are
three types of such see-saw pairs as in Table 1 [How89]. Note that (Mo, Ho) is also

%% 1: see-saw pairs with Gy Hermitian type

szN(R) Go Ko Mo Ho
Case R Spupig(R) Spua(R) Ui U(p,q) O(p,q)
Case C Spypiqr+a(R) U, q) Upx U, U(r,s) xU(r,s) U(r,s)
Case H Spup+g(R)  O*(2k) Us U(2p,2q) Sp(p, q)

a symmetric pair in all the three cases.

Let go be the Lie algebra of Gy and g its complexification, and so on. Denote
by w the Weil representation (the oscillator representation) of sp,y, where sp,y is
the complexified Lie algebra of Spsn(R). Then we have the following equation in
the Weyl algebraon V ~ CV:

w(U(@)¥) = wU(m)¥),



where K and H denote the complexifications of Ky, and Hp respectively, and
U(g)® denotes the set of K-invariants in the universal enveloping algebra U(g).
Let g = £ ® p be the complexified Cartan decomposition. The subalgebra S(p)¥
of the K-invariants in the symmetric algebra S(p) is isomorphic to a polynomial
ring, and let X1, Xo, ..., X, be a set of generators of S(p)®. Let us take a K-linear
mapping ¢ : S(p) — U(g). The image ¢(X,) is K-invariant and hence w(¢(Xa))
can be expressed in terms of w(U(m)¥):

w(y(Xa)) = w(Ca) (Ca € U(m)™).

We call this formula a Capelli identity for a symmetric pair and C; a Capelli
element for a symmetric pair.

The Capelli identity depends on the choice of the K-linear mapping ¢«. We take
¢ as follows. Let p = p~ @ p* be the irreducible decomposition of a K-module.
Then both p~ and p* are commutative Lie algebras, since gg is of Hermitian type.
We therefore have the isomorphism,

S(p) ~ S(p*) ®c S(p™) =U(p™) ®c Ulp™),

and define ¢ : S(p) — U(g) by the composite of this isomorphism and the multi-
plication u; ® ug — ujuz on U(g),

t(uup) = ugug (ug € S(p*),us € S(p7)). (1.1)

This ¢ satisfies (*): gr;(¢(u)) = u for every homogeneous element u € S*(p), where
gr; : F;U(g) — S*(g) is the canonical map from the subspace F;U(g) of filter degree
i of the filtered algebra U(g) to the homogeneous subspace S*(g) of degree i of the
graded algebra S(g). We call a K-map satisfying (*) a pseudo-symmetrization
map. :

We give the Capelli identities only when M, is compact, that is, My = U, or
U, x U, in this article. We, however, strongly believe that we can obtain the
Capelli identities for the cases where M, is not compact by using the Fourier
transform of the Weyl algebra on V, due to the suggestion of Hiroyuki Ochiai and
Jiro Sekiguchi.

This work is motivated by the harmonic analysis on symmetric spaces [Hua02],
[Lee04], for instance. We discuss an application to the harmonic analysis in a
forthcoming paper.

2 Case R

In this section, we give the Capelli identity for the symmetric pair of Case R
in Table 1. We first fix the notation, describe the generators of S(p)¥, and state
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the main theorem for Case R. Before proving the theorem, we demonstrate the
computation when taking the principal symbols, in order to see the outline of the
proof. We prove two key lemmas and they complete the proof of the theorem. One
of these lemmas is also used for Case C and Case H. At the end of this section,
we prove that the Capelli elements are H-invariant.

2.1 Preliminary

Define a complex Lie algebra g, its subalgebras ¢ and p*, and elements of these
algebras.

e = d[H € ,Hem, +_J[(0 G\
s=%u=\p _g) | g Fesymkc) [* P ~1\lo o) [
H 0 o } 00
t= 0 —tH €gp =g, b = F 0 €90,

Hij = E;j — Eyjnsi €8 Gij = Eigyj + Ejpsi €97, Fiyj = Epyij + Erji €97,

where E;; denotes the matrix unit and Sym(k; C) denotes the set of the complex
symmetric k x k matrices. Define a complex Lie algebra m and its subalgebra §
by

m = gl,, h=o0,={X €gl,; X+X=0,}.

Set V = Mat(n, k; C) and denote the linear coordinate functions on V' and the
corresponding differential operators by

zaiyasi (ISSSn,ISZSk),

respectively.

Let 5 = spy, be the complex symplectic Lie algebra, in which both (g,b) and
(¢, m) form dual pairs. We have the Weil representation w of s on the space C[V]
of polynomial functions on V, and its explicit forms on g and m are as follows:

w(Gy) = V=1Y_ Zuitej, w(Fy) = V=1 _ 8,0,
s=1 s=1 . 2.1)
n n k k (
W(Hz’j) = Zm’aiaaj + 55:'3', w(Est) = Zmuaﬁ + '2'63t-

a=1 =1



We now recall the structure of S(p)*. Since gy is of Hermitian type, K =~
GL(C) acts multiplicity-freely both on the symmetric algebra S(p*) and on

S(p~):
S(p*) = P W, Se7) =Pw;,

where p runs over the set of all the even partitions with length at most k, W, is
the simple &-submodule of S(p*) parametrized by the partition x, and W is the
simple submodule of S(p~) dual to W,. Thus we have the expression of S(p)¥,

S(p)* = (S(r*) ®c S(p7))* = PW, ®c W)¥.

m

In fact, S(p)¥ is isomorphic to a polynomial ring with k algebraically independent
generators. For d = 1,2,...k, the dth generator is the basic vector of the one-
dimensional vector space (W, ®c W;)¥ for 4 = (2,2,...,2,0,...,0) where, 2
appears d times and 0 appears (k — d) times. The explicit form of the generators
are

Xi= Y detGr-detFy e S (d=1,2....,k=r), (22
1,JeTk 4

where ZF is the index set defined by {I C {1,2,...,k} | #I = d}, and G;; denotes
the d x d submatrix of the k x k matrix (G;;) with the rows and the columns chosen
by I and J, respectively. Note that the generators above belong to the symmetric
algebra S(p), and that G,; and F;; appearing in the generators commute with
each other in this context.

2.2 Capelli identity for Case R

The pseudo-symmetrization map ¢ defined by (1.1) embeds the generators (2.2)
of S(p)¥ into U(g) without symmetrization. Hence the image of the generator X4
under ¢ looks the same as X itself, except that the images are in U(g). In the
following theorem, we use the column-determinant for the determinant of a matrix
with non-commutative entries, defined by

det(Z;;) = Z Zo(1)1Z4(2)2 * * * Lo(d)d-

oeS,
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Theorem 2.1. For 1 < d < min(k,n), we have the Capelli identities for the
symmetric pair of Case R in Table 1:

a

Z det G - det Fﬂ)

I,JeTk

=w ((—1)”' Y det(Esqyri) + (d— 5 — 1 - k/2)ds6,10))ii

5,TeTy;

x det(Esur() + (d—j— k/ 2)5S(i),T(j))i,j) ’

where S(i) denotes an element of the indez set S with S(1) < 8(2) < .-+ < S(d).
The ezpression on the right-hand side is the image under w of a sum of products
of two d x d minors with entries in U(m).

Note that Y, ;det Gy - detFyr on the left-hand side is the image under ¢ of
the generator (2.2), and that it is an element of U(g) in particular. There are k
generators of S(p)¥ as (2.2), however the equation above is trivial whenn < d < k
since the right-hand side becomes an empty sum. a

As explained in Introduction, the right-hand side of the Capelli identity is H-
invariant in the Weyl algebra, however it is not automatic that its inverse image is
H-invariant in U(m). In fact, the inverse image is H-invariant and we prove this
invariance at the end of this section.

Before proving Theorem 2.1, we demonstrate the computation when taking the
principal symbols, in order to see the outline of the proof. This computation forms
a part of the proof of the theorem. We first recall a basic lemma.

Lemma 2.2 (Cauchy-Binet). Let R be a commutative ring and d < N. For
A € Mat(d, N; R) and B € Mat(N, d; R), we have

det AB = ) det A, sdet Bs,,
Sez¥

where A, s is the d x d submatriz of A in which all the rows are chosen and the
columns are chosen by S. O

Define n x k matrices X and 0 by
X = (Zsi)1<s<n, 1<i<k 0 = (0si)1<s<n, 1<i<k-

In the following computation we take the principal symbols, and we write the
principal symbol of 8,; by the same letter 8,;. For I,J € Z*%, the lemma above
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yields

w(det(Gys)) = det (\/ -1 Z ws,z(i)ma,J(j))
s=1

= (v-1)%det({Xe 1) Xe,7)
= (vV=1)¢ Z det {Xsy)det Xg;.

SeT:

1<i,j<d

Similarly we have
w(det(Fyr)) = (V=1)* ) _ det {Br.) det dry,

TeT}

and the equation of matrices

(@BsT(3) 1gijea = X Osr (ST eI,

where Eg;yr(;) is an element in m. Note here that the contribution of the character
appearing in (2.1) vanishes, since we are taking the principal symbols. Note also
that elements in the expressions above commute with each other for the same
reason, and we have

)" w(detGry-detFyy) = (—1)*)_ > det (Xss) det Xs; det (rs) det Ors

I,JeTk 1J STeTy

=* (=1)* ) det {Xsy) det(X B)sr det brs
1.8,T

=" (=1)* ) det(X ®)sr det (Xsr) det 8z
IS,T
=" (=1)*>  det(X B)sr det(X D)sr
8T
= (-1)*)_ w(det Esr det Es7). (2.3)
ST
This is nothing but our desired formula of Theorem 2.1 except that there are no
diagonal shifts in the last expression above. The equalities with * and ** above
do not hold when we do not take the principal symbols, and we prove the non-
commutative analogues of these two equalities with diagonal shifts in the following
subsections. ‘
Remark 2.3. First, the non-commutative analogue of the equality with * is, in
fact, the formula which is used for proving the classical Capelli identity. So the
formula is known, and there is essentially the same formula in [Ume, Theorem 2],
for instance.
Second, the non-commutative analogue of the equality with ** seems a natural
formula when considering the prehomogeneous vector space (gl,, V).
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2.3 First lemma for the theorem

We prove the non-commutative analogue of the equality with * in (2.3). Remark
that the goal of this subsection, Lemma 2.6, is not new as mentioned in Remark
2.3, however we give a complete proof using the exterior algebra. This method is
very effective to simplify the computation involving determinants or permanents,
and has been used mainly for constructing central elements of universal enveloping
algebras of simple Lie algebras [IU01], [Wac03}, [Ito04b], and for obtaining Capelli
identities of various types [Ume], [Ito03], [Ito04a], [Wac04].

In this subsection we fix S,T € I}.

Definition 2.4. Let ej,e,,...,eq € C? be the standard basis, and form the ex-
terior algebra A C?. Define the elements 7, ¢; and (;(u) in the tensor product
algebra A C¢ ®c End(C[V]) by

d .
M=) el (1<1<k),
=1
d
G= Zeiw(ES(i)T(j) — (k/2)dsa).1i)) (1<j<d, ueC),
=1
y |
Gu) = ew(Bspry) + (w—k/2)8swry)  (1<j<d, ueC)
=1

Note that products of these elements produces determinants. For example,

Nr)NI@) * * * M@ = €16z - - eadet Xsr.

Lemma 2.5. We have the following relations:
1) G=Sr mbriy (1<ji<a),
2) GWnm = —MmGi(u—1) (1<j<d, 1<m<k).

Proof. (1) & = Y0, & Yo Ts@ubriyy = Yoy Mbrg)s- For (2), we compute as
follows:

K d
Cim = 3_ mOr(j)4 > exsim

l=1 =1
=) mei(@s)mOriya + Or()s@Om) = —Tmj + > Nmeibr(s),s6)-
i

14

We add uZ:.Ll eids(i),r(j)Nm to both sides of the expression above, and we obtain
G (Wm = —nmi(u — 1) O
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Lemma 2.6. We have the following equation:

Z det Xg;ydet Oy = det (w(Es(,-)T(,-) +(d-j- k/2)5s(i),T(j)))15iJSd.
Jezk

Proof. First we have (;(u) = i, ew(Espyr) + (v — k/2)ds6),r¢)) from the
definition, and we therefore obtain

Cl(ul)Cz (uz) cee Cd(ud) =eez-*-€g det(w(Es(,-)T(j) + (“j - k/ 2)5S(i).T(j)))15iJsd»

for u; € C.
Second, using Lemma 2.5 (1) and (2) repeatedly, we have

k
Gd-1)G(d—2)¢(0) = Gd— 1)+~ Ca-1(1) ) mBriays

= (=) " m- Gi(d—2) -+ Ga-1(0) - Brqa,

= (0D o Bronn o

Iy la=1

Since 7;,’s are anti-commutative (i.e. MMy + MMy = 0), l;’s are distinct. Hence
the expression above equals

DD M) M@ - Or)se) - Or@), @)

Jezk 0€Sq

= s+ May sgn(0) - Br(1), 5w * - Or(@)I(o(a@)

= Zel .+ egdet Xgy - det 8ry.
J

Comparing these two formulas we have the lemma. O

2.4 Second lemma for the theorem

We prove the non-commutative analogue of the equality with ** in (2.3). Re-
mark that the goal of this subsection, Lemma 2.9, is not new as mentioned in
Remark 2.3, however we give a complete proof using the exterior algebra again.

In this subsection we fix S,T € I} and I € I}.
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Definition 2.7. Define the elements 7}, u; and u;(w) in the tensor product algebra
A\ C? ®c End(C[V]) by

d
= Z EnTS(i),I (k) (1<i<ad),
h=1
d .
u; =Y niw(Bsare) — (k/20s0.10)) (1<j<d, ueC).
=1

d
wi(w) = _nw(Bsarg) + (u—k/2D0swrn)  (1<j<d ueC)

i=1
Lemma 2.8. We have the following relations:
(1) #ﬂ?; = '—"7;;1“'.7' (1 <5hg< d)r
(2) pi(u) = oy w(Bs@ry) + (w =1 - k/Ddsro)mi  (1<j<d, ueC).

Proof. We have (1) by a direct computation:

d
wimly = > niw(Bswrg) — (k/2)8s6).16))mg
i=1

k

d
= Z ! Z 5,107 () Z €nTs(g)I(h)

i =1 h=1

=) nienzse)1(Ese)rmOr + Is@re)ouim)
i,l,h

= —Tght; + Z‘sswmumﬁﬂi = —Tlghs-

We have (2) also by a direct computation:

d
wi(u) =Y _niw(Bswrg) + (u— k/2)dsw,10))

i=1
d k
=3 enzs@im (E Ts(3)10r )1 + u5s<i),T(j))
i h=1 =1
=" exzsaBry)zsanm — Sswrdim) + Y Ss6).m6)

ih,l i

=3 w(Eswre — (k/2)8saain)m,— Y Isaxam +u Y Ssw i)

= Zw(ES(")T(j) +(u-1- k/2)5su),r(j))77$-
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Lemma 2.9. We have the following formula for ui,us,...,uq € C:
det X5y det (w(Esro) + uj(SS(i),T(j)))ISiJSd
= det (W(ES(i)T(j) + (uj — 1)55(,-),{11(]-))) 1<ij<d det Xg;.

Proof. We compute u;(u;) - - pa(uq) in two different ways. First the factor u;(u)
is equal to -7 n'w(Esuyr) + (u — k/2)0sa) () by the definition, and hence we
have from Lemma 2.8 (1),

pa(ur) - - - pa(uq)

d
= py(u1) * + * pta—1(Ua—1) E"?;{w(ES(i)T(d) + (ug — k/2)dsiyr(@))

i=1

= (=" 0} () - pams (uan1) - W(Esgeyrea) + (ua — k/2)8seyra)

d
= (-1 Y e, w(Bsayray + (wn — k/2)8s)r) -

$1yensiq=1

-+ w(Bsigyra) + (ua — k/2)ds6,yTa))-

Since 773,- ’s are anti-commutative, i;’s are distinct in the above expression. Similarly
to the proof of Lemma 2.6, the expression above is thus equal to

€1+ €4 det XSI . det(w(Es(.-)T(j) + (’U,j - k/2)65(,-),T(j))).

Second we compute i (u;) - - - ia(tg) in another way. It follows from Lemma 2.8
(2) that p;(u) = S0, w(Es@rg) + (u—1—k/2)8s6).1))m- So this time we move
n’’s to the right in the product u;(u;) - - - pa(ua), and we have

pr(u) - - pa(ua) = €y - - - eadet(w(Esqyr) + (uj — 1 — k/2)0s0),r(5))) - det Xsr.

Comparing these two computations we have the lemma. O

2.5 Proof of Theorem 2.1

To begin with the first equality of (2.3), using Lemma 2.6 and Lemma 2.9, we
can immediately prove Theorem 2.1. We first have '

S w(detGyry-detFyr) = (—1)?> > det (Xsr)det Xssdet (3rs) det Orr,

1,JeT} IJ sTei
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from the first equality of (2.3). It follows from Lemma 2.6 that this is equal to

(-1)* S det {Xsr) det (W(Esuyrg) + (d — 5 = k/2)85007)) 14 j<a 968 Or1-
1,8,T )

By Lemma 2.9, it turns out that the expression above equals

(—l)d Z det (w(Es(,-)T(j) + (d —-j-1- k/2)(53(i),T(j)))15'.,de - det t(XSI) det 8r;.
1,8,T

By using Lemma 2.6 again, this is equal to

(-1)* " det (W(Bs@ry) + (d— 5 — 1= k/2)d50)10)) 14 5<a
ST

x det (w(Eswrg) + (d— 37— k/ 2)3s(,7))) 1<i,j<d ’

We thus have proved Theorem 2.1.

2.6 Invariance of the Capelli elements

We call the following element C the Capelli element for the symmetric pair,
which is the element appearing on the right-hand side of the formula of Theorem
2.1:

CR=(-1)* ) det(Esurg) + (d— 35 — 1 - k/2)8s0,16))ss
S,TeI;

x det(Bs@ry) + (4 — 5 — k/2)ds6),16))id»

ford=1,2,...,n. Note that the image of the Capelli element CER under the Weil
representation w is zero when k < d < n, since the left-hand side of the Capelli
identity in Theorem 2.1 becomes an empty sum, while C} 5 0 for 1 < d < n. The
Capelli element CF is not a central element of U(m), but an H-invariant element.

Proposition 2.10. The Capelli element is H-invariant, that is, CR € U(m)H,
where H = 0,(C).

Proof. We just give an outline of the proof. Consider the tensor product algebra
W = AC" ®c A C" ®c U(m). Denote the standard basis of C" in the first and
the second factor by e; and €, respectively. Define n;(u) and n(u) in W by

m(u) = Y es(En +ube), () =Y €,(Eut + ubs),

s=1 s=1



Note that we have for u,v € C

nr(u) = Y esdetEsr(u), np(v)= ) €sdetEsr(v) (T €I}),
Sezp Sezy

where nr(u) = 77'1"(1)(“ — Dnrey(u — 2) - - -nr(g)(u — d), es = esqyes(a) * - - €s(a) and
Esr(u) denotes the d x d matrix whose (%, j)-entry is Eguyr¢) + (U — 5)ds6),1¢)-
Now we give an M-module structure, that is, a G L, (C)-module structure to W.
First, U(m) = U(gl,) is a GL,(C)-module through the adjoint action. Second,
for both C", we give the module structure dual to the natural representation of
GL,(C). The tensor product W thus has a GL,(C)-module structure. Let Wy be
the submodule of W spanned by eref with T,T" € Z7. Then it is known that the

mapping

A Wd — w

T.T e T}
erer — nr(wnp(v) ( 2)

is a GL,(C)-homomorphism for u,v € C, and it is O,(C)-homomorphism in
particular. The GL,(C)-module C" is also a self-dual O,(C)-module through the
restricted action, and the element Y . eref, € Wy is O,(C)-invariant. We can
define the contraction mapping € on Wy by e(erefn) = drz, which is naturally
extended to W; ®c U(m), and it is an O,(C)-homomorphism.

We can prove the assertion by using the O, (C)-homomorphisms A and ¢.

‘ (A (sz eTe;)) _c (gTjnT(u)n;(v))

=c ( Z es det Egr(u)eg det EsrT(v))

T.5,5'
= Z det EST('U.) det EST ('U)
ST
The last expression is also O,,(C)-invariant, since 3" eref is O,(C)-invariant. We
thus have proved the assertion. O

3 Case C

In this section, we give the Capelli identity for the symmetric pair of Case C
in Table 1. We first fix the notation, describe the generators of S(p)*, and then
prove the main theorem for Case C.

165



166

3.1 Preliminary

Define complex Lie algebras g, &€ and p* and elements of these algebras by

H® @q l H® egl,, G e Mat(p,q;C),
F HW HW egl, FeMat(g,nC) [’

H® 0
B:{( 0 H(y))eg}zg[peg[q,
+ 0 G c pm = 00 c
p - O 0 g ? F O g ?

HY =E;et (1<4,j<p), Gij=Eipr;€p" (1<i<p,1<j<0),
HY = Epiprj€t (1<4,j<q), Fj=Ep€p” (1<i<q1<i<p)

g =g[p+q =

Define a complex Lie algebra m, its subalgebra b, and elements of m by

m = gl, & gl,, h = {(X,-X) € m} ~gl,,

EY = (Eg,0) €m, EY) = (0,E,) em (1< s,t<n).

Set V = Mat(n, p; C) ® Mat(n, g; C) and denote the linear coordinate functions
on each component of V' by

Tai, Ys (1<s<n,1<i<p 1<5<q),

respectively.
Set 5 = 5Py(p4q)s in Which both (g,b) and (¢, m) form dual pairs. We have the
Weil representation w of s on C[V], and its explicit forms on g and m are as follows:

w(HS) = ste— + 5:‘;', w(HP) =~ Zy., B %J‘j’
£ po 3?/“
W(Gij) =+-1 Zxaiysj: w(F,,) =V~ Z Oz ay j
s=1 §
w(ES)) = Toig— Ost WED) = Yo — + 204
S IS

We now recall the structure of S(p)¥. Similarly to Case R, we have the decom-
position of S(p)¥,
S(p)* = W, ®c W;)¥,
I
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where W, and W}, are the simple submodules of S(p*) and S(p~) respectively,
they are dual to each other, and g runs over the set of all the partitions with
length at most min(p,q). In fact, S(p)¥ is isomorphic to a polynomial ring with
min(p, q) algebraically independent generators, and their explicit forms are

Xg= Y detGr-detF;; (d=1,2...,r; r=min(pq). (3.1)

IeTh,JeT}

Note that the generators above belong to the symmetric algebra S(p), and that
G;; and Fy; appearing in the generators commute with each other in this context.

3.2 Capelli identity for Case C

Theorem 3.1. For 1 < d < min(p,q,n), we have the Capelli identities for the
symmetric pair of Case C in Table 1:

w( > detGu-detFJI)

Ie1f, JeT}

=w ((—1)d > det(BS g, + (d— 5 — p/2)8s).16))ii
S,TeI}

The expression on the right-hand side is the image under w of a sum of products
of two d x d minors with entries in U(m). There are min(p, q) generators of S(p)¥
as (3.1), however the equation above is trivial when n < d < min(p, q) since the
right-hand side becomes an empty sum.

Proof. As in §§2.2 of Case R, we define the matrices

X = (Tsi)1<02n,1<i<ps Y = (Ysj)1252n,1<i<0s
o= ( : ) ’ o = (66 ) ’
0% si ) 1<ogn,1<i<p Ysi / 1<s<n,154<
q

and we thus have

w(det(Grs)) = (V=1)* ) _ det (Xss)det Yy,

SeTy

w(det(F ) = (VEI)* S det (0%,) det OF,

TeT}
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for I € T4, J € I7. Using these formulas, we can prove the theorem as follows:

)" w(detGyy - detFyr)

Iext,JeTd
=(-1)?Y_ Y det {(Xsr)det Ysy det (0r,) det 7,
1,J S,TeT?
= (—1)¢ Z det Xg; det 8%, - det Ys; det 675
1,J,S,T

=1 Y w (det(Eg;g)m) +(d=J — p/2)ds6)1(5))ii
S,Tez?

x det(EY) - +(d—j—a/ 2)6S(i),T(J'))i,j>'

The last equality above follows from Lemma 2.6 of Case R. by replacing k¥ with p
or q. O

3.3 Invariance of the Capelli elements

The Capelli element is

CS = (-1 3 det(EShr + (d— i — p/2)8sa)6))i
S,TeT}

X det(Eg@)T(j) +(d—J — 4/2)ds)76))ii»

ford=1, 2,'.'. .,n, which appears on the right-hand side of the formula of Theorem
3.1. Note that w(CS) is zero when min(p,q) < d < n, while C¥ #0for1 < d <n.
The Capelli element CS is not a central element of U(m), but an H-invariant
element. The following proposition is proved similarly to Proposition 2.10 of Case

R.

Proposition 3.2. The Capelli element is H-invariant, that is, C§ € U(m)¥,
where H =~ GL,(C). , O
4 Case H

In this section, we give the Capelli identity for the symmetric pair of Case H
in Table 1. We first fix the notation, describe the generator of S(p)¥, and then
prove the main theorem for Case H. The proof needs a lemma due to Ishikawa-
Wakayama [IWO00].



169

4.1 Preliminary

Define complex Lie algebras g, ¢ and p* and elements of these algebras by

_ _J(H @ . +_Jf0 @G
g—ozk—{(F —tH) ‘Heg[k,G,FeAlt(k,C)}, p —-{(o O)Eg},
t= B0 egp~gl T = 00 €

= 0 —'H 8¢ =84, p = F 0 8¢,

H;; = Eij — Egyjpvi €8,
Gij = Eijt; — Ejpri €p%, Fij=FEpyij— Errji €p~ (1<4,5<k),

where Alt(k; C) denotes the set of the alternating k X k matrices. Define a complex
Lie algebra m and its subalgebra b by

m = al - H G l Hegl, ~ sp
= Bany “Y\F -t | ¢,FeSymm;0) [~ P

Set V = Mat(2n, k; C) and denote the linear coordinate functions on V' and the
corresponding differential operators by

Tsiy Osi - (1<s<2n, 1<i<k),

respectively.
Let s = spyy, in which both (g,h) and (¢, m) form dual pairs. We have the Weil
representation w of s on C[V], and its explicit forms on g and m are as follows:

2n n
w(H,-,-) = Zw,.-a,j + né,-j, W(Gij) = -1 Z(z,,-x;j - :z:;,-z,j),
s=1 s=1

n k
k
w(Fy) = V-1 a};(a,.-a,—,- — 05i0s),  w(Bw) = gwnaﬁ + 50n,
where 3 = s+ n. :
We now recall the structure of S(p)X. Similarly to Case R, we have the decom-
position of S(p)¥,
S(p)* = P W, ®c W,)¥,
"
where W, and W, are the simple submodules of S(p*) and S(p~) respectively,
they are dual to each other, and u runs over the set of all the partitions of the
form (g1, f1, U2, Mg, . . .) With length at most k. In fact, S(p)¥ is isomorphic to a
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polynomial ring with | k/2] algebraically independent generators, and their explicit
forms are

Xd‘—= Z PfGII'PfFH (d“—‘ 1,2,...,7‘; r= l_k/2J) (41)
Iezk,

where Pf denotes the Pfaffian of a alternating matrix. Note that the generators
above belong to the symmetric algebra S(p), and that G;; and Fy; appearing in
the generators commute with each other in this context.

4.2 Capelli identity for Case H

Theorem 4.1. For 1 < d < min(|k/2],n), we have the Capelli identities for the
symmetric pair of Case H in Table 1:
> PfGy-Pf FH>

o
ez},
= w( > det(Esgyrg) + (2d -5~ k/ 2)5S(i),:r(j))1se,jszd) :
So,To€l}

On the right-hand side above, S € I27 is defined using So € I} by S(i) = So(%),
S(d+14) =n+ S() (1 <i<d), and T is defined from Ty similarly.

The expression on the right-hand side is the image under w of a sum of 2d X
2d minors with entries in U(m). There are |k/2| generators of S(p)¥ as (4.1),
however the equation above is trivial when n < d < |k/2] since the right-hand side
becomes an empty sum.

For proving the theorem, we use the following lemma to compute Pfaffians:

Lemma 4.2 (Ishikawa-Wakayama [IW00]). Let R be a commutative ring and
d < n. For A, B € Mat(n,2d; R), X € Sym(n; R), define P = 'AXB — ‘BXA €
Alt(2d; R). We then have

0 X A
Pf(P)= Y  Pf (_X 0) det (B) .
Sezan ss S,
In particular, when X = I, we have
P(*AB — 'BA) = (-1)%¢=/2 3" det (A) :
B
Soely S,e

where S € T2 is defined using So by S(3) = So(3), S(d+%) =n+5(i) 1 < i L d).
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Proof. The first formula is due to Ishikawa-Wakayama [IW00, Corollary 2.1]. For
the second formula we use two facts. The condition Pf ( G, )¢y # 0 implies the
condition S(d+ i) = n + S(5) (1 < i < d), and we have the formula Pf (5 %) =
(—1)4@-1)/2, These facts give the second formula. O

Proof of Theorem 4.1. Similarly to Case R and Case C, define matrices by

X = (Tsi)1<o<n,1<i<ks X = (Tsi)1<s<n,1<i<ks
0= (asi)1sssn,15i5k, 5 = (65.‘)1539,151'51:,

and we have the equations of matrices

w(GII) = \/:T( t(Xo,I)Yo,I - t(.X.,I)X‘,I))
w(Frr) = —vV—=1({0e,1)8e,1 — (0)e,100,1),

for I € Z%,. Using these equations we can prove the theorem as follows:

> w(PtGyr - PIF)

Iezy,
= Y PH({Xe)Xes — (Xe)Xe,1) - PE((801)Bur — (B01)0s,1)
Iez3,
=3 > (1% 2 det Xer) 3 (~1)%D/2 det Oy
T s X.I aoI
o€L} ¥/ 8o To€l} ) 1

(by Lemma 4.2)

= Z det (;) det (g)
1,50,To SI TI

= Z w det(Es(,-)T(j) + (2d - ] - k/2)63(i),T(j))1$i,j$2d) .
So,Tg'GI;'
(by Lemma 2.6)

O

4.3 Invariance of the Capelli elements

The Capelli element is
C¥= Y det(Bsury) + (2d — j — k/2)8s0),106) hr<ig<aa
So,To€Ly

ford =1,2,...,n, which appears on the right-hand side of the formula of Theorem
4.1. Note that w(CH) is zero when |k/2] < d < n, while C§ #0for1 < d < n. As
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in Case R and Case C, the Capelli element C3! is not a central element of U(m),
but an H-invariant element. We omit the proof of the following proposition.

Proposition 4.3. The Capelli element is H-invariant, that is, Ci € U(m)¥,
where H = Spy(C). ad
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