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Global existence for the Klein-Gordon-Zakharov equations
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1 Introduction and Results.

In this note we present results on the Klein-Gordon-Zakharov equaﬁons, which are
based on [15, 16, 20]. We consider the Cauchy problem of the Klein-Gordon-Zakharov

equations in three space dimensions:

Ou—Autu=—-nu, t>0 z€cR} (1)
Zn—cAn=A?, t>0, ze€R}, (2)
U(O, (E) = uo(ﬂ?), atu(oa (L') = ul(z)v (3)

n(0,z) = no(z), n(0,z) = na(),

The propagation speed in equation (1) is normalized as unit, while that in equation (2)
is denoted by c. Equations (1) and (2) describe the interaction of the Langmuir wave
and the ion acoustic wave in a plasma (see Dendy [4] and Zakharov [21]). The function
u denotes the fast time scale component of electric field raised by electrons and the
function n denotes the deviation of ion density from its equilibrium. The functions u
and n are real vector valued and real scalar valued, respectively. We introduce known
results on (1)-(3) dividing into two cases (i) ¢ = 1 and (ii) ¢ # 1, that is, whether or
not the propagation speeds are the same.

Before proceeding, we give notation. For 1 < p < co and a nonnegative integer m,
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let L? and W™® denote the standard L? and Sobolev spaces on R2, respectively. We .

put H™ = W™2, For m € R, we let H™ = (—A)™™/2L2. We put w = (1 — A)"/? and
wp = (—A)Y2. We put 8; = 8/0z; for j =1,2,3. Let ' = (Tj;j = 1,---,10) denote
the generators of the Poincaré group (8;, 81, 85, 83, L1, L2, L3, Q12, a3, 13), where

L; =gz0,+1t0;, j=1,2,3,
Qij =:v,-6j—a:ja,-,1§z'<j$3,
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and we put

0 = (B¢, 01,02, 0s).

For a multi-index a = (a1, - -, ayg), we put
re=rg.-..Iie.
For m > 0 and s > 0, we define the weighted Sobolev space H™? on R? as follows:
CH™ ={ve L*(1+ |:1:|2)‘/2(1 - A)m/zv € L%}

We put H™ = H™C for m > 0.
For a function u(t,z), we denote by i(7,£) the Fourier transform in both ¢ and z

of u. For s,b € R, we define the spaces X;:, and Y;% as follows:
Xy = {ueS'RY; [lullxz, < +oo},

il = ([ [0+ D0+ bl DYt O dear)

YE = {veS®Y; Ilvllys < +oo},

(L IED(1+ I cle] )2[6(r,€)Pdgdr )
RJR

Il

=

o
b
Il

We note that X,f, and Ybﬁ, are Banach spaces for s,b € R.

1.1 Case c=1.

When the propagation speeds are the same, many results have been obtained con-

cerning the global existence of small amplitude solutions for the coupled systems of
the Klein-Gordon and wave equations with quadratic nonlinearity. Two methods are
known to be applicable to solve those systems.
(i) First one is based on the theory of normal forms introduced by Shatah [18], which is
an extension of Poincaré’s theory. The idea of this method is to transform the original
system with quadratic nonlinearity into a new system with cubic nonlinearity. We state
our results obtained by applying the argument of normal forms in Ozawa, Tsutaya and
Tsutsumi [15]. We have the following theorem :
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Theorem 1 Let 0 < ¢ < 10~2. Assume that ug € H52 N W28/5+2) 4, ¢
H N W28,6/(5+2e)) ng € H5! N W28,220/217 H—1 and n, € H50 N W27,220/217 H—2.
Then there ezists a § > 0 such that if

”Uo ” H52NW29.6/(5+26) + ”u1 " H51 AW 28,6/ (5+3¢)

+”n0"Hm,—-,wzs,no/m'rng—x + ”'n1”Hr,onwrz,nno/zunf;—z < 4, (4)
(1)-(8) has the unique global solutions (u,n) satisfying

u € (] C7([0, 00); H7),

j=0

"< [ch([O’ °°);H51"')] N [rjo (o, oo);H-l-f)} :

1 -
3 16{ut) lwas-sera-ae0 = O~ ) (t = o0),

§=0

1
S 188 n(8) |l was—samors = OE07110) (¢ — o0),
=0

where § depends only on €. Furthermore, the above solutions (u,n) of (1)-(3) have the
free profiles uyg € H*?, uyy € HYY, nyo € H and nyy € H*® such that

31188 (u(t) — s (&) || sa-s

i=0
+ 3 1EH00) = OVt 0 (6 0),
where
ur(t) = (coswt)uyy+ (wisinwt)uy,
niy(t) = (coswgt)nyo+ (wp sinwot)nys.
Remark 1.

(1) uy(t) and n,(t) are the solutions of the free Klein-Gordon equation and the free
wave equation with the initial conditions (u(0), 8;u+(0)) = (u+0, u4+1) and (n(0),
9n,(0)) = (ny0,n41), respectively.

(2) In the case of one or two space dimensions, the global existence result for small

initial data can be proved more easily than the case of three space dimensions. We do
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not need the time decay estimates to show the global existence of solutions in the one
and two dimensional cases.
(3) Recently, M. Ohta has proved the blow-up in a finite time for (1)-(3) with large

initial data.

The following corollary is an immediate consequence of Theorem 1.

Corollary 2 Let 0 < € < 1072 and let m be a positive integer with m > 52.
Assume that ug € HPNW26/(5+2) o, e Hm-1NW286/(5+2) ) ¢ gm-1nW28.220/217n
H1, ny € H"2NW2T220/217 "\ (12 gnd (ug, uy, no, ny) satisfy (4). Then the solutions
(u,n) given by Theorem 1 satisfy
m m—1
ue [ C/([0,00); H*), ne [ C([0,00); H™ 7).
=0 =0

In addition, if ug,u;,ng, My € ﬂji”:lHj , then we have

u(t,z), n(t,z) € C([0,00) x R3).

The existence and uniqueness of local solutions for (1)-(3) follows from the standard
iteration argument. The crucial part of the proofs of Theorem 1 and Corollary 2 is
to establish the a priori estimates of the solutions for (1)-(3). We use the argument
of normal forms of Shatah [18] to transform the quadratic nonlinearity into the cubic
one. However, in our problem the transformed cubic nonlinearity is represented in
terms of the integral operator with singular kernels. The singularity of the integral
kernels makes it difficult to solve (1)-(3). This is different from the case of the system
containing only the Klein-Gordon equations, where the integral kernels of the resulting
integral operators are regular (see [18]). Therefore, our main task in the proof of
Theorem 1 is to evaluate the singularity of the integral kernels of the transformed
cubic nonlinearity. Then we can apply the usual L? — L? estimate to the transformed

system.

(ii) Another method to solve (1)-(3) is to use the invariant Sobolev space with respect

to the generators of the Lorentz group. This was developed by Klainerman [11]. He also



introduced the notion of the null condition to prove the existence of global solutions
for the wave equations with quadratic nonlinearity. We note that the null condition
technique is based on the Lorentz invariance of the equations. -

In Theorem 1, one needs the high regularity assumptions on the data to ensure
the global existence. Moreover, the global solution n of (1)-(3) given by Theorem 1
must belong to the homogeneous Sobolev space H~! of negative index. In this part
we show that there exist the global solutions of (1)-(3) for small initial data using
the invariant Sobolev space but without applying the null condition technique and
improve the regularity requirements on the initial data. We do not need the null
condition technique due to the nonlinearity of (1)-(2). The nonlinear terms in (1)-(2)
do not seem to satisfy the null condition as in [1] or [5].

We have the following theorem concerning the global existence of solutions to (1)-
(3).
Theorem 3 Let 0 < € < 1/6 and k > 4. Assume that ug € HF*4 ;€

HFt4k+H g € HEH45+ gnd ny, € H*+3%+4 Then there exists a § > 0 such that if
l[woll rrssirs + [|us || mrerase + [ mo0]| resants + ||| grssisa < 6,

then (1)-(8) has the unigque global solutions (u,n) satisfying

k+5 . )
u € [ C/([0, c0); H**79),
3=0
k+4 .
n € () C%([0, 00); H*+7),
j=0
> sup(l+ &) {laT*u(t)llz2 + llwT*u(®)l|r2}
laj=k+4 120
+ > sup(L+8)°Mu(t)llz= + D sup [Mn(t)]lze
laj<k+4 120 lo| <k-+4 *20
+ Y sup{|(1 +t+ |2))¥* T u(t, z)|
la|<k fezga

+|(1 + ¢t + |z|)I*n(t, z)|} < oco. (5)
Remark 2.
(1) We see that the solutions (u,n) of (1)~(3) given by Theorem 3 asymptotically
approach the free solutions as ¢ — oo since the right hand sides of (1)-(2) are integrable
in time by (5).
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(2) Compared to Theorem 1, the regularity assumptions on the initial data has im-
proved significantly. Instead, we need some spatial decay on the data.

The following corollary follows easily from the proof of Theorem 3.

Corollary 4 In addition to all the assumptions in Theorem 3, if ug, Uy ,\no,
N1 € Nu>1 H™, then the solutions (u,n) given by Theorem 3 satisfy

u(t, z), n(t,z) € C=([0,00) x R?).

We can prove Theorem 3 by using two methods : the decay estimate of the inho-
mogeneous linear Klein-Gordon equation by Georgiev [6] and the Sobolev inequality
in the Minkowski space by Klainerman [10, 12] and Hérmander [8]. See for details in
[20].

1.2 Casec#1.

We may assume that 0 < ¢ < 1 without loss of generality. In fact, this condition is
natural from a physical point of view since the propagation speed in (1) is about one
thousand times as large as that in (2).

It seems impossible to use the method of normal forms because the integral kernels
have stronger singularity that in the case ¢ = 1. Those kernels are difficult to handle.
The Lorentz invariance method does not seem useful, either since the operator L; does
not commute with the d’Alembertian 82 — c2A with ¢ # 1. We use another method to
show the global existence for the case ¢ # 1.

We note that .the solutions u and n of equations (1) and (2) formally satisfy the
following energy identity:

E(u(t), du(t), n(t), n(t)) = Euo, us,no,ma),
where
E(u,8u,n,dn)
= 1 v+ L iz + L ol
2 L 2 27 2 L

+&Inl3 +l[anll}-. + Re [ n(t,2)lu(t, ) da. (6)



Here and hereafter, 9(£) denotes the Fourier transform of v(z) in the spatial variables.

The following theorem is about the time local well-posedness in H' @ L?® L* @ H™!

of (1)-(3).

Theorem 5 Assume that 0 < ¢ < 1 holds. Let (ug,u1,m0,7) € H* O L?® L2 ®
H™ [resp. H'® L* ® L* ® H™']. Assume that 1/2 < b < 1 and b is close enough
to 1/2. Then there ezists a T > 0 such that the problem (1)-(3) has unique solutions
(u,m) on the time interval [T, T] satisfying

u e C([-T,T}; H) nC'([-T,T}; L*), (7)
ne C(-T,TH L) N C*([-T, T); H™Y) (8)
[resp. C(I-T,T}; L) nCY([-T, T HY),
wti(l— A)V20u € XE,
n+i(l—A)?0n € Yih
[resp. n +i(cwo) En € Yig),

where T depends only on ||uo||a, ||ui]|z2, ||nollz2 and ||nalla-1 [resp. ||nal||g-1). In

addition, if n, € H™!, then the solutions (u,n) satisfy the energy identity:
E(u(t), Byu(t), n(t), Oen(t)) = E(uo,u1,n0,n1),  t € [T, T]. )

Furthermore, the solutions as above depend continuously on the initial data in the

topology of (7) and (8) on the time interval [-T",T'] for 0 < T’ < T.

Corollary 6 Assume that 0 < ¢ < 1 holds. Let (ug,u1,n0,71) € H' O L’ L*®
H-1. Assume that 1/2 < b < 1 and b is close enough to 1/2. Then there ezists an
1n > 0 such that if

|[woll e + llual|z2 + |Imol|za + ||l -2 < m,
the solutions (u,n) given by Theorem 5 extends globally in time.

Remark 3.
(i) We note that
H'cH™.
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Since the energy functional E defined in (6) includes the H~! norm of &;n, we need
ny € H! for the proof of Corollary 6.

(i) Corollary 6 is an immediate consequence of Theorem 5 and the Sobolev embedding
theorem. In fact, we can obtain the a priori estimate of (u,8u,n,0n) € H' & L* @
L? @ H! from the energy identity (9) and the Sobolev embedding theorem for small
initial data. This leads to the global existence result. The constant n in Corollary 6
depends only on c and the best constant relevant to the Sobolev embedding H* — LA,

but not on b.

Outline of Proof of Theorem 5.
We suppose that
(to, u1, o, 1) € H @ L2 @ L* @ H™L.
We first put
uy = utiw Gu,
ny = n % i(cw) 19,

where w = (1 — A)Y/2. Then (1)-(3) are rewritten as follows:

(0, F w)uxr = +(4w) (ny + n_)(us +u-), (10)
(i0; F cw)ns = +(4c) wiw Huy +u_|® F e(2w)H(ng + 1), (11)
u+(0) = uxo, n+(0) = nzo, (12)
where
Ugg = Ug £ i wluy,
nio = ng £ i(c w) 'n,.
We note that

(uio, ’nio) € H! ) L2

We try to solve (10)-(12) locally in time. For that purpose, we consider the following
integral equations associated with (10)-(12):

ux(t) = or(t) Wa(t)uso



F i(40) pr(t) [ Walt — 5)(n(5) + () (ue(s) + u(s))ds,

teR, (13)
nt(t) = or(t)Wes(t)nao
F i pr(t) [ Weslt ~ 9)[(40) o fus(s) +u_(s) |
—o(2) X (n4(s) + m_(s))]ds, teR, (14)

where W4 (t) = €T, W .(t) = €7 T is a positive constant to be chosen small in
the process of the proof and ¢r is a function in C*(R) such that or(t) = 0 for |t| > 2T
and ¢7(t) =1 for |t| < T. We note that the solutions of (13)-(14) in a suitable class is
a solution of (10)-(12) on the time interval [T, T7.

We use the Fourier restriction norm method to show the well-posedness of (13)-(14)
for small T > 0. For the scheme of the Fourier restriction norm method, see Bourgain
[2, 3] (see also Kenig, Ponce and Vega [9] and Ginibre, Tsutsumi and Velo [7]).

If we try to apply the Fourier restriction norm method to (13)-(14), we have only

to prove the following proposition:

Proposition 7 There ezist two positive constants ag and by such that for a and

b withag <a<1/2<b< by,

(v, wu )| < Clollx,|lwlly |lwul|x,. (15)

[{w, wo )| < Cllwlly, |lwllx,|lv]x,, (16)

where X, and Y, denote either of X,fo and either of Y},fo, respectively, and

(f.9)= /m f(t,z) 9@, 2) dtdz.

Remark 4.
The duality argument with (15)-(16) implies that

Inullx_. < Clin|ly|lwullx,, (17

llwlul*|ly_. < Cllwullx, |lwullx; (18)

for a and b with ap < a < 1/2 < b < by, where X; and X, denote either of Xp;,
and Y, denotes either of Y. Estimates (17) and (18) enable us to apply the Fourier
restriction norm method to (13)-(14). See [16] for the proof of Proposition 7.
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