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Multiple zeta values and connection formulas of
Gauss’s hypergeometric functions

Takashi AOKI and Yasuo OHNO

Kinki University, Department of Mathematics

A new family of relations between sums of multiple zeta values and Riemann zeta
values are established.

1 A quick review of multiple zeta values

In this section, we give an overview of multiple zeta values (cf. [2], [6]). Multiple zeta
values are natural generalization of Riemann zeta values, that is, the values of the
Riemann zeta function -
1
§) = —
=Y o

m=

at integers k > 1. Euler already knew Riemann zeta values for even positive integers:
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Here By, are Bernoulli numbers:
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However, we don’t know much about Riemann zeta values for odd integers {(2k + 1).
Now the multiple zeta values, which are natural generalization of Riemann zeta
values for multiple indices k = (k;, ks, ..., k) (ki € Z, k; > 0), are defined as follows.
If ky > 2, k = (ki,ko,...,ky) is said to be admissible. For each admissible multiple
index k, we define two kinds of multiple zeta values {(k) and ¢*(k) respectively by
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Multiple zeta values normally mean ((k) in literatures. But the main subject of this
article is concerned with (*(k).” (Note that Euler [3] was interested in (*(k).) To



distinguish them from ordinary multiple zeta values ((k), we call them multiple zeta-
star values. We note that {¢(k)} and {¢*(k)} are not independent over Q. For example,
we have

C*(ka, k) = C(ku, ko) + (ks + ko), C(Ka, k2) = ¢"(kn, ko) — " (kr + K2),
¢ (K1, ka2, ks3) = C(k1, ko, k3) + C (k1 + ka, k3) + C(k1, ko + k) + C(ky + k2 + k3),
Cky ko, ks) = C (K, Ky k) — C (k1 + ko, ks) — ¢ (K1, b + k3) + C (kB + K2 + k3),

and so on. Some multiple zeta values are evaluated in terms of powers of m. For
example, we have
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The former is obtained by comparing the coefficients of 22" of Taylor expansion of the
left-hand side with those of the expansion of the right hand side in z of the infinite

product )
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The latter is proved by using the Gauss formula that evaluates F(a,8,7;1) (cf. [2]).
Here F(a,3.7; 2) denotes the Gauss hypergeometric function. Meanwhile, some mul-
tiple zeta values are evaluated by Riemann zeta values. For example, Euler already
knew the following relations:

¢(2,1) =¢(3), ¢(2,1,1) = ((4)-

Thus the set {¢(k)} (or {¢*(k)}) for all admissible indices k is not independent over
Q. Hence it is natural to consider the structure of the Q-vector space (or Q-algebra)
spanned by {C(k)}. For any multiple index k = (ki,kz,...,ks), we set wt(k) =
ki + ky + -+ - + kn, dep(k) = n and ht(k) = #{i| ki > 1} and we call them weight,
depth and height, respectively, of k. For every integer k > 1, we denote by Z; the
Q-vector space spanned by {C(k)|k : admissible and wt(k) = k}. We are interested in
the dimension of Z,. We know, for example,

Z2 = QC(Z) = Q”sz
Z3 = Q¢(3) + Q¢(2,1) = QC3),
Zy = QC(4) +Q¢(3, 1) + Q¢(2,2) + Q¢(2,1,1) = Qr?,

and all these cases have the same dimension 1. For the case where k > 5, D. Zagier
proposed the following

Conjecture dimgZ;, = dj,. Here d; is defined by the recursion formula

do = 1,d1 =0,d2 = ].,
dy = dp_a + di—3 (’C > 3).
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Concerning this conjecture, the following result is known:
Theorem 1 (Goncharov, Terasoma [12]) For all k > 0, we have dimgZy, < d.

This theorem is proved by using highly transcendental tools and the proof does not give
enough information about concrete linear relations which should hold among multiple
zeta values. Several family of linear relations for multiple zeta values had been obtained
before Theorem 1 was established. The number of admissible multiple indices with
weight & is 252, Thus there should be at least 25~2 — dj linear relations which hold
among ((k)'s with wt(k) = k. The sequence 2¥~2 — d. grows quite rapidly:

k 0(1(2|3(4|5|6 |7 (8] 9 |10 11
220 — 1 —11]2]|4(8|16|32|64]128] 256|512
dp 1101111122 ]34} 5 7 9

To state some of known results concerning linear relations for multiple zeta values, we
introduce the notion of dual index. Let k = (ki,k2,...,k,) be an admissible multi
index. We rewrite k in the form

k=(a1+1,1,...,1,a2+1,1,...,1,...,a8+1,1,...,1).
b -1 bo—1 bs—1

Here s=ht(k) > 1,a; > 1,b; > 1 (i=1,...s). Now we set

k,=(b_.,+1,1,...,1,bs-1+1,1,...,1,...?b1+1,1,...,1'

as—1 Qy-1—1 a1—~1

and we call k¥’ the dual index of k. It is easy to see that k’ is also admissible and
(k) = k.

1 (Duality) (Drinfeld, Kontsevich, Zagier) For any admissible multi index k., we have
¢(k) = ¢(K').

2 (Hoffman’s relation) For any admissible multi index k = (ki, kg, ..., k»), we have

Zcm kic ki Lk, Ra)
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1<l<n. j=0

3 (Sum formula) (Granville, Zagier) For any integer £ > 1 and n > 1 (n < k) we

have
Yo (k) = (k)

wt(k)=k,dep(k)=n
k:adwissible



This can be rewritten in terms of ¢*:

> cw= (i) o

wt(k):k.dep(k):n
k:admissible

It is known that there is a large family of relations which includes all of above
relations:
4 (Ohno [9)) For any admissible multi index k = (k1,kz,...,k.) and for any integer

1 > 0, we have

Y (it kate) = Y, CKitenookten) (2

e1+ten=l T ey +tel =l
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where k' = (k{,kb, ..., k) is the dual index of k.

For example, if wt(k) = 11, there should be at least 2'~2 — dy; = 512 — 9 = 503
relations for {¢(k)|wt(k) = 11}. We know that (2) gives 411 relations. Some other
families of relations, such as [8], [10] and [5), are known. However we do not know the
complete set of explicit relations that hold for all multiple zeta values.

2 Relations for multiple zeta-star values and the
Gauss formula

Our main result is

Theorem Let s and k be integers such that s > 1 and k(> 2s). Let Iop(k,s) denote
the set of all admissible mutltiple indices of height s and weight k. Then we have

> o =2(y 7 )a-2"e. 3

kelo(k,s) 2s

Outline of the proof of Theorem Let k = (k1,k3, .. ., kn) be a multi index and ¢ a
parameter. If we set

o= 3 il (1t < 1).

ky kg ... kn
mipmasemazl T T2 T

then it is clear that L;c(l) = ¢*(k) holds. Hence if we define X, by

Xotk,sit) = D Lg(®),

kelo(k,s)
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then Xo(k, s; 1) is the left-hand side of (3). For generic parameters x and z, we introduce
a generating function

Bo(t) = Y Xo(k,s;t)z* 2222,
k.8>0
After some calculation, we see that ®y(t) is a unique power series solution of the
following differential equation:

2@,
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Let us construct dlrectly the unique solution

®g(t) = Bp(z, 2 t) = Z a,t"®

n=1
of (4). Substituting this into (4) and comparing the coefficientof each power of t, we
have the recursion relation for {a,} and thus we get
Fn)ln—-z)'l—z—2)[(1 -z +2)
FMl-z)(l-z—-2z+n)l(l-z+2+n)

n T

Here I'(2) is the gamma function, Therefore we have ®o(1 Z an. To evaluate this

n=1
sum, we rewrite a, in the following form:

__Z (+) AS@TI)
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where

Hence we have
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We can calculate the sum of A,” with respect to n as follows:
iA(i) - 1),2( l+n)'(:{:z—-l+1)(:i:z——l+2) (£2+n—-1)
: i - D22 -1+ 1)(:l:2z ~14+2)--- (22 +n)

l(:l:z l+1)( z—1+2)-. -1)
(i2z—l+1)(:l:2z—l+2) (:i:2)

n=|

= (-1) F(l,+2,+2z + 1,1).



Here F(a, 8, v;t) denotes the Gauss hypergeometric function. Using the Gauss formula

Py —a = 6)
L(y=a)T(y=B)’

Fla,B,7:1) =

we get

Z A% = )'

n=l|

ia,l=~§:(—— (:c+z—l x—lz—l)'

n=1

Hence we have

We expand the right-hand side in z and z and take the coefficient of *~25229=% which

is equal to
k—1) w— (-1
2 .
(oot 27

© _1)-1
If we rewrite this by using the formula Z ( }2 = (1 — 27%)¢(k), then we obtain

=1
the right-hand side of (3).
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