oooooooooo 14120 20050 22-36

22

C. H. LEE’S RESULTS ON EXPONENTIAL CALCULUS
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1. INTRODUCTION

In this article we introduce Dr. Chang Hoon Lee’s recent results on ex-
ponential calculus of minimum type pseudodifferential operators. Fur-
ther we show their application to microlocal energy methods for micro-
functions developed in [K3].
Indeed, the exponential calculus of hermitian pseudo-differential oper-
ators of so-called ‘minimum type’ plays an essential role in the theory
above. However, the calculus used in the paper above is based on the
early results by T. Aoki and it was clear that the results should be
improved on the basis of Aoki’s latest results.

For example, Aoki’s theory is concerning the composition calculus of
the operators as follows:

exp(P(z,8;)),

where P(z, 0;) is an operator of order less than 1, for example, (—A4,)°
(0 < 8 < 1/2). On the other hand, operators of minimum type are
defined on the product space X x Y of complex manifolds X,Y.
Precisely speaking, let z = (21, ...,2y),w = (w1, ..., wy) be the local
coordinates of X,Y respectively, and (z,&), (w,n) be the local coor-
dinates of the cotangent bundles 7*X,T*Y. Then, the operators on
X x Y are expressed as their symbols; that is, some equivalence class
of analytic functions : P(z,w,&,n) : on T*(X x Y) = T*X x T*Y.
P(z,w,§&,n) is a holomorpphic function defined on a conic open set of
T*X x T*Y, which satisfies the following estimates as ||+ || — +o0 ;

|P(z,w,&,n)| < Ceexp(e(lé] + Inl)) (Ve > 0).

Here, we restrict ourselves to the operators of product type; that is,
the definition domain of P(z,w,&,n) is of the form V x W, where
V,W be conic open sets of T*X, T*Y respectively. Then we have one
difficulty concerning the boundedness of symbols. That is, even if P is
of order less than 0 (for example : & /n; :), the symbol is not bounded

‘on |§| > 1,|n| > 1. On the other hand, the operator

&n/(€* +n?)
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is bounded on V x W for suitable V, W. In 1985, K. Kataoka introduced
minimum type operators as a generalization of such good operators of
product type which satisfiy the following estimates:

|P(z,w,€,m)| < Cmin{|¢]*,|n|*} O<rk=20-1<1).

For example,

En’/ve+m (1/2<6<1). |
Indeed, the exponentials of hermitian positive operators of minimum
type on V x V* played an essential role in the theory of energy method
for microfunctions (here, V* is the complex conjugate of V).

Though Kataoka’s paper could not treat the cases of the growth
orders 1/2 < 6 < 1 concerning the exponential calculus of minimum
type pseudodifferential operators, Dr. Lee succeeded in extending the
results to all the cases. Dr. Lee’s arguments are deeply based on T.
Aoki’s proofs. However, his proofs never goes straight way. Indeed,
he needed many ideas on modifications of Aoki’s construction of many
quantities and of inequalities.

2. C. H. LEE’S MAIN RESULTS

We state the 3 main results by C. H. Lee without proofs. The com-
plete versions will be published soon as

“Exponential calculus of pseudodifferential operators of minimum
type I, II”.

Let X and Y be n- and m- dimensional complex manifolds, respec-
tively. Set '

S*X = (T*X — X)/R*, S*Y := (T*Y —Y)/R*.

We define the mapping ~ as

v T*(X X Y) 3 (2,w;€,7) — (z;é—l) < (w; %) € S°X x S*Y,

where
TH(X x Y) = T*(X x Y)\{(T"X x Y)U (X x T*Y)}.
For dy,dy > 0 and an open subset U of S*X x S*Y, we use the notation
Y U; d1,dg) ==y~ (U) N{[¢] > du, Il > d2}-

Hereafter we write (z, £, w,n) for coordinates (2, w;€,7).
Let K be a compact subset of $*X x S*Y.

Definition 2.1. P(z,£,w,n) is said to be a symbol of product type on
K if the following hold:

(1) There are a constant d > 0 and an open set U(D K) in §*X X
S*Y such that P(z,£,w,n) is holomorphic in y~}(U; d,d). -
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(2) For each € > 0 there is a constant C; > 0 such that
(2.1) |P(2,&,w,n)| < CeeBIHM on 4~1(U; d, d).

We denote by S(K) the set of all such symbols on K. Then S(K) be-
comes a commutative ring under the sum and product as holomorphic
functions.

Definition 2.2. We denote by R(K) the set of all P(z,£,w,n) € S(K)
satisfying the following;

there are constants d > 0,6 > 0, an open set U D K in $*X x §*Y, and
a positive-valued locally bounded function C(:) on (0, c0) such that

|P(2,&,w,m)| < C(€]/|n])e=¥min i}
on v~ }(U;d,d).
We call an element of R(K) a symbol of 0-class.

Definition 2.3. A formal series 75 _ Pjx(2, €, w,7) is called a formal
symbol of product type on K if the following hold.

(1) There are some constants d > 0,0 < A < 1, and an open set
U D K in 8*X x S*Y such that P;; is holomorphic in v~ *(U; (j +
1)d, (k + 1)d) for each j, k& > 0.

(2) For each € > 0, there is some constant C, > 0 such that
(2.2) |Pjx(z,&,w,m)| < C AT Rt on 4=1(U; (5 + 1)d, (k + 1)d)
for each 5,k > 0.

We denote by S (K) the set of such formal symbols on K.
We often write a formal power series Eﬂ:o t)tk P; x(2, €, w,n) with in-
determinates ¢; and ¢, instead of Y 25 _o Pjk(2, &, w, 7).

We can easily obtain the following.

Proposition 2.4. §(K ) becomes a commutative ring under the sum
and the product as formal power series in t; and ts.

S(K) is identified with a subring of 5(K) as follows:
S(K) % S(K)ly=g = {P = S tithPs; P =0 for all (5, K) # (0,0},

Definition 2.5. We denote by R(K) the set of all P(ty, ts; 2, £, w,n) :=
D5 k=0 tit5P; (2,6, w,7) in S(K) such that there are some constants
d>0,0<A<1,and an open set U D K in $*X x §*Y satisfying the
following: For each £ > 0, there is some constant C, > 0 such that

Z Pix(z,6,w,m)| < C, Amin {at} ge(l€]+n)

0<j<s
0<k<t

on Y~ }(U; (s + 1)d, (¢t + 1)d) for each s,t > 0.



We call an element of ﬁ(K ) a formal symbol of zero class.

Proposition 2.6. Under the previous identification, we have the equal-
ity: S(K) N R(K) = R(K).

Proposition 2.7. R(K) is an ideal in S(K).
Proposition 2.8. R(K) is an ideal in S(K).

S (K )/ R(K ) becomes a commutative ring by Proposition 2. 8. By

Propositions 2.6 and 2.7, the inclusion S(K) < S(K) induces the
injective ring homomorph1sm

S(K)/R(K) — S(K)/R(K).

Definition 2.9. We call an element in the ring S(K)/R(K) 2 pseudo-
differential operator of product type on K. We write : ) P; : for the
associated'pseudo-gl\ifferential operator of product type on K using an
element ) P;x in S(K).

The mapping v = 71 0 72 is the composition of the following v, and
2-

O?k . '_2_* Z. W 6 *
T (X xY) > (z,w;€,1n) (2, TEm I(gn)l)eS(XxY)

oo* . £ n &__’ 6 w * *
S (XXY) 3 (a3 o ) G g X ) € ST X XS,

where
S (X x ¥) = S*(X x Y)\{(§*X x Y) U (X x S*Y)}.

Here we consider the relationship between our symbols and T. Aoki’s
symbols [A1]~[AS8].

Proposition 2.10. If P(z,£,w,n) is a symbol of product type on K,
P is a symbol on 7 (K) in the sense of AOKI’s symbol.

Proposition 2.11. If P(z,£,w,n) is a symbol of product type of 0-
class on K, that is, P € R(K), then P is a zero symbol on i *(K) in
the sense of AOKI’s symbol.

Definition 2.12. The canonical mapping Hy is defined as follows;

S(K)/R(K)2: P+ [P]e lim ER(U).
UD'nl(K)

Proposition 2.13. Suppose that K, and K, are compact in S*X X
S*Y, respectively, and that K; O K,. Then,

Hg, (- P :)I'yl—l(Kz) = H,(: Plx; 1)
for all P € S(K)/R(K).

25
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Definition 2.14. We define the product * of two elements of S(K) as

follows:
x> [o 0] o
3 Palz,6w,m) * (D Qiwlz,&w,m) = > Ri(2,€,w,m),
Jk=0 J,k=0 5,k=0 4
where
o . 00 .
Z R, 1(2, €, w, 1) = ec1<ae,a..>+tz(an,aw.>( Z 5P, (2, €, w,7)
J1k=0 k=0
w .
X Z t;thj,k(Z*,f*,w*,'r]*)) Zr=z,L"=( -
j,k:O wi=w,n=n
That is,
Rise,6unn)i= Y = 0208Pn (2,6 win)
J1+je+]al=3
k1tko+|Bi=k

x 338562:52,102 (z’ §w, 77)'
Then we directly obtain the following by the Cauchy estimates.

Lemma 2.15. If Y P; and ) _ Q, are formal symbols of product type
on K, then > R, is also a formal symbol of product type on K.

Proposition 2.16. If Y Pk, Qjk € S(K) and at least one of them
belongs to R(K), then Y R,y is also in R(K).

By Lemma 2.15 and Proposition 2.16, the following composition of
two elements in S(K)/R(K) is well-defined;

2 Pinio: ) Queri=1 QP * Q_Qun):

We can directly verify the associativity about the operation o. That
is, S (K )/ R(K ) becomes an associative C-algebra. Hence the mapping
Hpy is a ring homomorphism concerning the operation o, where

5 = H _
Exxy (K) = S(K)/R(K) =5 €y (v} (K)).
Let K be a compact subset of S*X x S*Y.
Definition 2.17. A function A : Ry — Ry is said to be infra-linear
if the following conditions hold;

(1) A is continuous,
(2) for each a > 1, A(at) < aA(t) on (0,00),
(3) A is increasing,

(4) lim —=* AW =0.

t—oo ¢

Hereafter we fix two infra-linear functions A;, As.
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Definition 2.18. P(z,£,w,n) € S(K) is called a symbol of minimum
type of growth order (A;, A2) on K if there exist some constants C' > 0,
d > 0, and an open set U O K in §*X x S*Y satisfying the following;
(1) P(z,&,w,n) is holomorphic in v~ }(U;d, d),
(2) |P(z,&,w,n)| < C-min{A;(|€]), A2(|n])} on v~ (U; d, d).

Example 2.19. (by K. Kataoka[K3])

Let Q = @ = {(;€) € T*C;|argé| < §, & # 0} with (0 < 4é <
m/2). Let K be an arbitrary compact subset of S*C, x S*C,, such that
v HK) CQx Q. We set Ay(t) = Ay(t) :=¢t° with 0 < 0 < 1. Then

P(z,£,w,n) = (&n)"+?/(€ +n)
becomes a symbol of minimum type of growth order (A;, Az).

Remark 2.20. If P is a symbol of minimum type on K, ef is a symbol
of product type on K. Further such exponential of a symbol of minimum
type plays a decisive role in Kataoka’s microlocal energy method [K3].

Definition 2.21. 3 P, in S(K) is called a formal symbol of minimum
type of growth order (A1, A;) on K if there exist some constants C' > 0,
d>0,0< A< 1, and an open set U D K in S*X x S*Y satisfying
the following;
(1) P;x is holomorphic in y~*(U; (j+1)d, (k+1)d) for each j, k > 0,
(2) the inequality

|Pik(2, €, w,m)| < CA™* min{A;(J€]), Ax(InD)}
holds on v~ }(U; (j + 1)d, (k + 1)d) for each j, k > 0.

Remark 2.22. If Y P;; is a formal symbol of minimum type on K,
eX Fik ig a formal symbol of product type on K.

Definition 2.23. For (A\,X*) € R?, a = 3, 5o titsa;k(2,§,w,m) €
S(K) is said to be of order at most (), \*) if there are some constants
C>0,d>0,0< A< 1andanopenset UD K in S*X x §*Y such
that

1) a;x is holomorphic,

2) |ass(z,€, w,m)| < CAIH{EP

on v~ }(U; (j + 1)d, (k + 1)d) for each j,k > 0.

From now on, we use the notation t,t*, z*,£&* instead of t;,%2, w, 7.

Further, P ( tt*;. :*’ é) stands for a formal symbol of product type

P(t,t%;2,€,2°, &) = Z tit*j‘aj,j.(z,f, Z*, &%)

3,3*20

for the sake of convenience.
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Let p ( tt* zz*,’ é) and g ( tt* ;;’ 56*) be symbols of minimum

type of growth order (A, A*) on K. Further, let a ( tt* ;*’ é;) and

b ( ti;' ;’ 56* be formal symbols of order (A;, A*1), (A, A*2) respec-

tively. Then our aim is the calculation of the following composition:
taeP i bel ;.

For this aim, we use Aoki’s idea on exponential calculus in [A1]~[A8].
By the definition of composition, we obtain the following.

taexpp :: bexpq :=: 7| ta; w, 7 (1; z, €\°7
(5; w, 77*)_ 1; 2%, f*)
where

* t, 2z ¢ tow, 7
T = exp (220 - Oy, + t5t"Oe - Dr) @ (t*; 2, 6*) ’ (t*; w*, 77*)

t; z, t, w,
enlo(t 2 6) el 2 )

We notice that 7 is the unique formal series solution to the following
system of partial differential equations.

O™ = 10 - OpT, Opy™ = t*Ope « Oy,

t, =z, t, w
Tla=043=0 = @ (t*; 2", 55*) ’ (t*; w*’, 7;7*)
t; =z t; w,
X exp (p (t:. . f) +q( w* 7;7*))

We can find the solution of the above Cauchy_ problem in the following
form: '

[e]
— tl/t*l/*c . t; z) g? w) 77
E*—: 2%2 L4 t*; z*’ 5*’ w*, ,’7*
v,v* =0
Z t; 2, , W,
X exp ( tzt;k ’I"k k* (t* o é; w* 7;1)) .
) ) )

k,k*=0

We can verify that 7' is the solution if {ryz+} and {cyx-} satisfy the
following (2.3)-(2.8). That is, 7' = .

Define formal symbols {ryx«} and {c,,+} of product type by the
following recursive relations:

—p(l % £ o ow,
(23) 'r0,0 =p ( g*) + q ( ,wa:, n*) )



_ [t oz & o ow, 7N
(24) CO,O—a(t*; Z*, £*> Xb(t*, ,w*, n*)a

t’ Z, {, w, n
(2.5) Tk+1,k"‘ (t*; z*, 5*’ w*, 77*)
t
- k+1 {BE . aw'f'k,k* + Z af,rk’,k" : aw'rk",k"' },

k'+k'"=k
klt +kllax =k-

tJ 2 §) w, n
(2.6) T+ (t*; 2, &, v o
t*
T 1 {35; . a‘w"‘rk,k"' + E Bgl'rkl’klu . aw-T'kll’k/u},

kl+k"=k
kl‘-{-k"' =k*

t; 2z & w, Y\ _ _t
@) e (t*; 2z, £, w, 77*) _u+1{3fa'”c”’”'

k*

+ Z (8€CVI’V'. . Bw’l‘yu,ym -+ 61_00,//,“/. . 851"'/[/’””#) },

vV+u'=y
yl:+yllt____ut

t oz & w, 2
(28) Cyp*+1 ( g 5 v ’r{:) = {af*aw“cu,u*

t 24, &, wh,om vt +1
+ Z (af*cy',ylt . awn-?"yn,yru + awtcul’ult . 35*7‘”::’”1/.) }.

If we put
oo
t; z z* *
r= Z Tkk* (t*,, Z*,, é:’ Z*: g*)7

Zoo t, =2, & =z &

— " ? ) Y )

¢ Ck,k (t*; 2*7 g*a Z*) E*> ’

we obtain the following theorem (C. H. Lee’s first main theorem).

Theorem 2.24. There exist a formal symbol r of minimum type of
growth order (A, A*), and a formal symbol ¢ of product type of order at
most (A1 + Az, A} + A3) respectively on K such that

:aexpp::bexpg:=:cexpr:.

Next, we consider the exponentials of minimum type operators.
Suppose

_(t = &) _ ipity (T 0§
p—p(t*; .’E*, £*>~ Ztt Dj g+ (xt’ g*

4:3*20
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is a formal symbol of K—type on K, where

A(¢,€7) = min{A(l€]), A*(I€"])}-

We define the operator exp(s.p.) (s € C) as follows by introducing
copies t1, 1], ta, t5 of t,t*.

(29) p(O) (tl; t2; <, g) — 1’

1, t3; zv, &

1 t;7 x*7 5*
ly z, 5 )] t, l2; 9, Tl)
X * * * % *
p(l; x*,€>p Lothoy, n
By the definition of p(), we obtain
pB = (p)
Therefore we have the following expression of exp(s : p :).

t1, to; 8, z, § — ¢ o [t b2 oz, §
E ’ , ’ X x| = ITl *, * * * s e ().
(* ty; g) lz:gup ty =% € (sC)

1 17

t1, to; ’ *
(2.10) p«+1>(1 5 2 5) = exp(ta(3e, 8,) + t3(0e-, )

Y, n . % §

¥y, 7 z*, §&*

Firstly, we must prove that £ ( ti’ tt*;_ 5 ;,3 é) is a formal symbol

of eb type on K.

Indeed E (ti’ tf’ % ;*’ é) formally satisfies the following dif-
1 2y ’ .
ferential equation.

4
ty; z, &
83E=exp(t2(3g,3y)+t3<3f*aay‘>)p( ’ ZL'*’ )
xp (s o o\’
ﬁ 1, Loy ¥y, n ¥ "): ”’ 5)
v 1) =t ¢
ti, t2; 0, =z,
E{Y 2 not) =
\ t5, ts; ", §
t; s, z, £

?
, t*; x*, §*

. t, t s z, £\.
= (t*, AR E)
which satisfies

. t,, t; s, z, £\.
68 -E (t*, t*; x*, 5*) .

Hence FE ( ti‘, ) defines an operator
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. i, =z, &Y. . t, t s, zx, €Y.
—-p(t*; J,‘*, €*>. -E (t*, t*; x*’ 5*)-

. ., ¢ 0, =, &Y.

Therefore we define

- . t, t s, =z, .
e(oip)= B (p 5% 2 L)
We put
(1) t, t2; <, 6 . j g xk* (1) z, §
g (tI, tg; ¥, f*) N ;L;o 0Bt 840G e, e (o, ¢+
k20

Then by (2.9) and (2.10), we obtain the following recursive formulas.
(2.11) p® (x 5) _ {1, if (4, k,5*, k*) = (0,0,0,0)

G, B>, k*) z*, 6* 0, otherwise
(+1) z, £
(2.12) PG, k)G*, k) (z", E*>

L 1 1 a aa z, £
= > ol o1 € O Pisi (x*, £*)

t+u=j, |a|+v=k
it+#t=jm,latl+ut=k-

agat, (1) z, £
X 0 O Py (um ) (:c g*) '
It is clear that szk)(j*,m is holomorphic on y~Y(U; (j +1)d, (* +1)d)
for 3,5 > 0.

Theorem 2.25. For each s € C, the formal series E is a formal symbol
of product type of growth order e®.

Then the second main theorem.of C. H. Lee is concerning the rela-
tionship between exponentials of minimum type operators and opera-
tors whose symbols are given by exponentials of minimum type formal
symbols.

That is, let p ( ti;' ;j é) be a formal symbol of A-type on K. We
see that exp(s.p.) (s € C) defined by

. . ti, t2; 8, =,

1 t1=t2=t:

=ty =t

is a formal symbol of product type of growth order eh.
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Therefore our aim here is to construct g ( té‘;' % ;’ g,,) as a for-
3 4

mal symbol of .K.-type such that for each s € C

exp(s.p.) = .exp (q (ti;; ) ;*’, 55*>)

We put
— it (S, I, £
= Z bt q””( z*, 5*)
1,3* 20
w2 €
_ Exi® l
- e (2 8).
1,i*>0 I=1

Due to T. Aoki’s idea [A1], we construct g as the solution of the fol-
lowing equation:

9s . exp(q). = p. .exp(q):,

t, 0
:equ b) ? z? § : — 1.
t* z*, &

Here,
. * ¢ . ° * t; x’ 5
p. lexp(q): = - exp (£(0, By) + (0 Byr)) [p (t*; z*, 5*)
t; s U n A *
X exp (q(t*; Y, ﬂ*))]l(y "7)___(3’ f).
v nt) \z* &

Hence we introduce another formal symbol 9 by the equation:

x t1; T,
219)  exp (istalde,5) + 63000 [p (1 2 &)

ti, ty 8, ¥, n))]
Xe * L
Xp'(q(la t;» y*7 n

_ tla t2’ t3’ s, X, 67 Y, n
_"p * t; * *

%, *
1 3» z, E*i Yy, n

t, b S, U
(o5 3 2)

q(, t; s, v, 17)= t, s, Y, 7
tr, 1% v, t*; v, )’

s 4 3 i*  wk* 1 T
¢ = Z Sltlit%tgt;z t;J t; ¢éi;k)(z'*j~k-) (.’L‘*,, 6{,’ - 77) .

% *
Li,jk,i*,5* k* v , n



Then, it is easy to see that 1 expgq in the right side of (2.13) satisfies
the equations

Ot = €790, (ved) = ety 0; - Oy(1e?)
= t2(0 - Oy + Oyq - Oey),
O = € 0 (ed) = e Ut50es - Oy (Ye?)
= 850 - Optp + Byrq - Br),
and that q ( tt*;; 5 ;’;’, é) satisfies the equations

.e%0,q (t* S’ ;..” g,) L =0,(.€%) = ip. €.

. t, 1, s =z €& =z, £\.
— q ) ) 3 3 ’ ’ y .
'“”(t*, A £*>'

Hence by putting

(2.14)
tl, t2, s, I, 6 _ *1* (l) z, 6
o 50 2 §)- 5 e e (2 )
L g™ .g*
(2.15)
® o z, §
Qi+ ( ) Z A(i=j,5)(*=5*.5%) (x*, £*>’
0<5<t
0<_7‘<z

we have the following recursive formulas:

(2.16) .
(1+1) z, £)__1 zZ, & o ¢
q(u)(z‘a)( f*) T I+l Z ¢(’Jk)(z* k) ("E*’ & 7 &)
0<k<j
o<k <j*
(k+ 1)y noen
(i,j',k+1)(‘i',j‘yk*) m*, g*’ y*, ,'7*
_ @ z, €, Yy, N
= {9 0y)¥ii5-1, )60 3 k%) z*, £, Yy, Tl*>
(2.17)

T, & Y N
E Z (651,0('/,]/16)(,1* % k" (:E*, &*’ y*, n*)’

V4=l
() Yy, n
8yq(iu’ju)(iln,jnu) (y*’ 77*) )7

33
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(2.18)
" (l) x) g) y) 77
(K* + 1)%(i,3.y 060,57 1) (37*, £, v, 77*>
z, €7 Y,

= (Og+, 0 W(z,a,k)(z*u *=1,k*) (x*, 5 y, )

”* @) z, y
+Z Z (35*w(z",j',k)(z"*,j'*,k*) (m Y )’

V4=l
(")
'ay‘q(i”,j”)(i”',j"") ( )

Here }_" is the sum over

J1* %

i+ = z,‘7_{__‘7//__‘7_111_‘*_z// "‘Z,j +] = j
and 3" is the sum over
i,+7:”=i, jl+jll___j, il*+z‘ll*:i*, j/* +jll*=j*__1.

Lemma 2.26. We have the following initial and boundary conditions:

® z, & ¥, n\_ Y YR A3 £
(219) w(z’jO)(i‘j*O) (.'ZT*, &'*, y*’ n*) _61,05 ,06_7*,0 Diix (27*, g*):

(l) :B, E) y) "7 —_
(2.20) Ygijiyiejere) (z & v ’7*> =
(G<lorj<korj <lorj <k,

(2.21) gy =0 i I>j+lor 1> +1.

Proof. The first equation directly follows from (2.13). Further, the
second equation is also clear from (2.13) when j < k or j* < k*. On
the other hand, using the recursive formulas above, we can prove the
second equation for j < ! or j* < [, and the third equation for j+1 <
or j* + 1 < [l simultaneously by double mathematical induction on !
and k + k*. That is, the main induction on ! and the supplementary
induction on k£ + k£* hold. O

In particular, we have the following equation:

min{j,j*}+1 ) z, £
1 @ y
+ 2 Z $ Qlig ) 5% ~3" 3*) ( g*) '

0<;5<i

0<j <i*

(7,3*)#(0,0)

The followings are the second and the third main theorems of C. H.
Lee. o



Theorem 2.27. For each s € C, the formal series q is a formal symbol
of A-type on K satisfying the following.

 ox t, t s T, £Y\. _ . (t oz, EY.
. pPg t*, t*, 17*, 6* . = €exXp S.p t*, x*’ 5* -' .

Further we have the inverse version of the above theorem.

Theorem 2.28. Let g be of A-type. Then there exists p as a formal
symbol of A-type satisfying the relation e*P = [e9..

In fact, if we have such a solution p = Ei,i. Diie (2,6, 2%,€%), we
can construct a formal symbol g(s) = Y, . ¢ (8, %,€, 2%, ") with a
holomorphic parameter s satisfying

&P = et

as seen in the preceding theorem. Hence, we construct p from the
equation
q(1) =g,

where ¢ = 3, .. ¢i (2, €, 2%, £*) is the given formal symbol of A-type.
Indeed, we have some recursive formulas obtained by (2.22), (2.16),
(2.17), (2.18) (we omit the details).

Finally, we obtain the following theorem as a direct corollary of the
three main theorems above.

Theorem 2.29. The space of pseudodifferential operators of the form
of .eP. , where p is of minimum type, forms a group under the compo-
sition. ‘
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