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Some Coefficient Inequalities and Distortion
Bounds Associated with Certain New
Subclasses of Analytic Functions

Shigeyoshi Owa, Kyohei Ochiai and H. M. Srivastava

Abstract

The authors introduce and investigate two new subclasses M*(a) and N*(a) of
normalized analytic functions satisfying certain coefficient inequalities in the open unit disk
U. The main results of the present paper provide various interesting properties of functions
belonging to the classes M*(e) and A*(a). Some of these properties include (for example)
several coefficient inequalities, distortion bounds and inclusion relationships for the function
classes which are considered here.
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1 Introduction

Let A denote the class of functions f(z) normalized in the form:

oc
(1.1) f(2) = z+ ) an ",
n=2
which are analytic in the open unit disk
(1.2) U:={z:2€C and [z <1}.
We denote by S the subclass of A consisting of all functions f(z) which are also univalent
in U.
Let S*(a) be the subclass of A consisting of all functions f(2) which satisfy the
following inequality:

(1.3) R (ZJ{;S):)) >a (2€;05a<).



A function f € 8*(a) is said to be starlike of order o in U. Furthermore, let () denote
the subclass of 4 consisting of all functions f(z) which satisfy the following inequality:

(1.4) %(1+f}%§)—)>a (2€ U 0L ax<l).

A function f € K{«) is said to be convez of order a in U. We note that
f(2) € K(a) <« zf'(z) € §*(0).

(See, for details, {1] and [2]; see also [3] and [6], and the references cited therein.)
About three decades ago, Silverman [5] gave the following coefficient inequalities for
the function classes §*(a) and K(e).

Theorem A (Silverman [5]). If f(z) € A satisfies the following coefficient inequality:

(15 Sn -l S1-a 0<a<),
then
(1.6) z}cES)—l}<l—a (€U0 a<1),

that is, that f(z) € S*(a).
Theorem B (Silverman [5]). If f(z) € A satisfies the following coefficient inequality:

(1.7) Ynrn-a)a) $1-a (0La< ),
then

zf”(z)’ .
(18) !—f,—(-z—)-1<1—05 (ZGU,0§Q<1),

that is, that f(z) € K(a).
More recently, Sekine and Owa [4] considered the subclass of functions f € A which

satisfy the following inequality:

2f'(2)

—= —a

(1.9) )

<a—-a (2€eG0La<lia> ).

In this paper, we consider a new subclass M(a) of the class A consisting of functions
f(2z) such that

flz) 1

(1.10) 70 o

1
<% (z€eU0<a<l).
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We also introduce and investigate here the subclass A'(a) of the class A consisting of
functions f(z) which satisfy the following inclusion relationship:

2f'(z) € M(w).

Let us now define the function F'(z) by

Pl = 2 (7 € M),

Then f(z) satisfies the inequality:

(1.11) F(z) + F(z) > 2 (€U 0<a<l),
so that
_w (DN ., hew
(1.12) R(F(2)) = ‘}t( e ) > (z€U;0<a<l).

1t follows from (1.12) that
M(a) € 8*(a) and N(a) C K(a).

Example. Let us consider the function given by
1
(1.13) f(z) =z + Ez2 (k 2 2).

Then we have

zf'(2) k+ 2z z
1.14 -1= -
(1.14) f(2) ! k+2 k+z
Since

- z 1 k

we see that

) g Loy k=2
(1.16) " S k=1 T T k-

which readily implies that

(1.17) f@eS%%%)

On the other hand, we observe that

f(2) 1 k+z 1 1 1 k
1.1 IAC NI L ,
(1.18) 2f'(z) 2a k+22 20 2 1 a + k+ 2z
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Noting also that

k k? 2k
(1.19) ik+2z—k2-4 <poz U
we have

ECREEI
(1.20) ‘zf,(z) %) < S Ak 0),
where
3 1 k|| k
(121) Alk,0) = max{il- 2+ e i- a+ml}
Thus we obtain
1 1

(1.22) a = EA(k,a)

for f(z) € M(c). Let us put @ = . If @ is given by

(1.23) a =

then f(2) € M(ayg). By the fact that M(a) C S*(a), we have
-2

k
>
(124) Gy = E—1"
If we set
k-2
(1.25) &= F

then we have

1 koo kE—1 ko (k+1)(k—49)
(1.26) T S R T R F ) [ )
and

1 k-1 k k-1
(1.27) L S S R Rl

Therefore, in the case when & 2 4, we have

k=1 (R+1)(k-4) _ 22k+1) oo

(1.28) k-2 (k+2)(k—-2) k+2k-2) =
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Moreover, in the case when 2 £ k£ < 4, we have

k—1 (k+1)(4—k) _ 2k -k=3)

(1.29) k-2 (k+2)(k—2) (k+2)(k-2)
Thus, if
2< k< 1+2‘/ﬁ = 2.3027-- -,
then we have
k-1 _ (k+1)4—k)
(1.30) P2 S (=)
Therefore
(k-1 (k > H‘/ﬁ)
k-2 -2
(1.31) Ak, ) = |
E+1)(4 - k) 1+ V13
| k(-2 (2§ F<T )

k—2 14413
_fkz= >
(132) Qo -1 (k = 2 )
such that
(1.33) flz) e M (:—}%) (k > 1 +VI3 2.3027---) .

Thus we have

(1.34)

5~ V13 < :“3 <1 (5’6‘/E = 0.23241--->.

When 0 < o« £ 8 < 1, we have the following inclusion relationship:
(1.35) M(e) > M(B),

which results from the definition of the class M(a). Thus we conclude that

(1.36) fl2) € M({%ﬁ) c M(S—gffé) cs (5-(;/1’3)_




We now consider the following function:

(1.37) flz) = 2z + 2—11?2 (k> 2),
which immediately yields
(1.38) 2f'(z) = z + %22 (k 2 2).

Since, by definition,
f(z) e Nla) <= zf'(2) € M(a),

we finally obtain the following inclusion relationship:

(1.39) flz) € N(u) cCN (5 ﬁﬁ\/ﬁ) ck (5__‘/15)

k-1 6

(k; 1+2\/f§

= 2.3027--‘> .

2 A Set of Coefficient Inequalities

Our first coefficient inequality is contained in Theorem 1 below.

Theorem 1. Let 0 < a < 1. If f(2) € A satisfies the following coefficient inequality:

1
< -
oo « <O<a___2)

(2.1) Z(n — o)laa] £ %(1 - 1-2q]) = 1
n=2 1 - (§§a<1),

then f(z) € M(a).

Proof. By virtue of the condition (1.10), we have to show that

20f(2)
(2.2) !——zf’(z) 1] < 1.

We first observe that

o0
1-2a+ Z(n - 2a)a, 2!

n=2

20.f(2) — 2f'(2)
2f'(2)

o0
‘ 14 Z Nap2" "}
=2

(2.3)




120+ 3 - 20)an - 27

n=2

o0
1- nlan - |2(*

n=2

A

o o]

11— 20+ (n—2a)|an|

n=2
=)

1- Znianf

n=2

<

Now, by using the coefficient inequality (2.1), we have

11— 2a|+ i(n - 20)|an)

(24) i <1,
1-) nlag|
n=2
which, in conjunction with (2.2) and (2.3), completes the proof of Theorem 1. 3

By means of Theorem 1, we introduce the subclass M*(«) of the class M(a) consisting
of all functions f(z) which satisfy the coefficient inequality (2.1) for some a (0 < a < 1).

Theorem 2. Suppose that 0 < a < 1. If f(z) € A satisfies the following coefficient

inequality:
1
o (0 <« é 5)

= | 1
n=? 1 -« <§§a<1),

then f(z) € N(a).

Proof. The proof of Theorem 2 follows from Theorem 1 and the aforementioned fact that
f(z) e Nlo) <= zf'(z) € M(a).

O

By means of Theorem 2, we also introduce the subclass N*(c) of the class N (c)

consisting of all functions f(z) which satisfy the coefficient inequality (2.5) for some a
(0 < a<1).



3 Distortion Bounds

For f € A, we define the integro-differential operators Iy f(z) given by

I f(z) = f'(2), DLf(z) = f(2),
and .
If(z) = /(; I 1 f(t)dt (ke N:={1,2,3,---).

Then we find from (1.1) that

l = ! n+
(3.1) I f(2) = mzk+l + ;(E—i—la—ianz tk
Theorem 3. If f(z) € M*(a), then
—1=2¢
32) T - A S )
1 1—-11-2qa] 9
fE T Ee-at

(z € U ke Ny U{-1}; Ny :=NU{0}).
Proof. We begin by noting that

. 1 = n!
(3.3) Ief(2)| = mzk+l + ZM%Z“”
n=2 ‘
1 - n!
< o+l - Ll intk
= Gy g(nw)!a"[ 4
1 k+1 | k+2 = n! |
<wmIo tIE ;(nJrk)!!a""
Now it is easy to see that
k+2(2-a) = n! 1< = e b 0
(34) 9 ; (n+k)!!aﬂ| = ;(Tl - a)la"fl‘ = 2(1 Il - "‘al)’
which implies that
. >~ n A 1—|1-2¢]
3. ———— |ty £ .
(3:5) Z;(mk)z'“*— k+ 212 —-a)
Therefore, we have
) 1—11-2¢
(3.6) i f(2)} = (k+1)!izlk+l + mlﬂkw (z € U).
Also we can easily observe that
‘ 1-1-2a
61 W) 2 g - g (e

93
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By setting k = —1,0,1 in Theorem 3, we deduce Corollary 1 below.
Corollary 1. If f(z) € M*(a), then

ey 1- 2R e g I =),
89) ol = Log e < ) £ el + S E=0)
and

10) Yo ~ Lo 220up < injGo) < Gle? + g

For f € A, we consider again the following integro-differential operators:

(e ]

Iaf(2) = f'(2) = Y _n(n — Nana"?, L1f(2) = f'(2), Tof(2) =

n=2

and

Lf(z) = fo Lf(dt (ke N).

Next we state and prove the following result.

Theorem 4. If f(z) € N*(a), then

f(2),

G 2l - T2 < g € 2 ¢ T2
and

|
(3.12) (—kjl_w o (—1——2*—)1-,—(—3—«);;:{“2 < [Lf(2)|

Proof. We note that, for k € Ny U {—1},

(3.13) Tef(2)] = (kil), +> (nfk)ia”zm

G i 1)!1:4'““ n Z( +‘k) lag] - |27

Il

/\

n!
(k+1) lzlk+1 4 ||k Z — )!|an{.

n-‘z
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Since, for f(z) € N*(a),

(e <] oS 1
(3.14)  (k+2)Y <) n(n - o)laa) < 5(1 =11 - 2a),
n=2 n=2
we find that
= nal 1-1-2¢]
1 — < ' .
(3.15) ;(n%—k)ll% T 2(k+2)(2-a)
Therefore, we have
1 k+1 _ !1 LR+ <
1-]1-2a]
E+1 1k+2
=Y tarroe—a)
(zeU; ke NgU {-1}).
In the exceptional case of (3.16) when £ = —2, we have
617 2l — T2 < () < oy + 222

(zeU).

By setting k£ = ~1,0,1 in Theoem 4, we deduce the following corollary.
Corollary 2. If f(z) € N*(a), then

18 1- s e s S e
319) el ~ P S U@ S Bl + Tt (6= 0)
and

320 312" — Sl S I S g + L2 -,

4 Inclusion Relationships Between the Function Classes

M*(a) and N*(a)

Using the coefficient inequalities for the classes M*(a) and N*(a), we now derive
Theorem 5 below.
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Theorem 5. The following inclusion relationships hold true for the class M*(a) :

(A) M+ (a) C M*(1—-a) (o <acx %)

(%§a<1).
B

© M@ camE) (0<asssy).

®) M@ c Mm@ (3Sasp<i),

Proof. (A) For

0<at and

N o=

we consider the maximum value of 5 such that

™

(4.1) y ’11 -

n

™

o0
n=9 «

o0

| n-—o

an] £ lan] 1.
n=2

Thus we need to find the maximum value of 3 such that

n(l-—a)—a

(4.2) 2 DAL

(n € N\ {1}).

By taking the derivative of the right-hand side of (4.2) with respect to n, it is easily seen
that the right-hand side of (4.2) is monotonically decreasing for n. Thus, upon letting
n — oo, we have § = 1 — . Noting also that

£B8<1 for O0<afS

H

[SCR R
N | o=

we have
M*(a) ¢ M*(1-a) (o <oc< %)

which evidently completes the proof of (A).

The proofs of (B), (C), and (D) are much akin to the proof of (A).
a

Finally, we consider some relationships between the function classes M*(¢) and

N*(a).

Theorem 6. Fach of the following assertions holds true:



(A) Iff(2) € N*(a) for0 < a < % then f(z) € M

N NGNS
(I
WL NN
QIQ
N’

(B) IFf(2) € N*(a) for 3 < o < 1, then f(2) € A"

(Cy If f(z) € N*(a) for 0 < a £ %, then f(z) € M*

[\]

(D) If f(z) € N* () for% < a < 1, then f(2) € M*

w > (2
[\
11 4B g
QIR
. . S

Proof. (A) Let

1 1
< = - <
0<at 5 and 5 = B <1
We consider the maximum value of 8 such that
Zn—-8 =\ n(n — a)
. P < <1
(43 Y gl < Y
n=2 n=2
This means that
n? - 2na
4 € — .
(44) FS % meN\{1))

If we take the derivative of the right-hand side of (4.4) with respect to n, then the
numerator becomes

1
(4.5) na — 2na +20% 2 0 (O <aZf 3 € N\{l}) )

Therefore, the right-hand side of (4.4) is monotonically increasing for n.
Thus, by setting n = 2, we have

It is easy to see that

1
£8 <1 for 0<a§-2—,

N =

which obviously completes the proof of (A).

The proofs of (B), (C), and (D) would run parallel to the proof of (A).
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