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Movement of Hot Spots
on the Exterior Domain of a Ball
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Mathematical Institute, Tohoku University
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1 Introduction

We consider the initial-boundary value problems of the heat equation in
the exterior domain of a ball,

Gu = Au in Qx(0,00),
(1.1) du =0 on 900 x (0,00),
u(z,0) = ¢(z) in Q
and
Ou = Au in Q x (0, 00),
(1.2) u(z,t) =0 on 0N x (0, 00),
u(z,0)=(e)  in O
where

Q=RY\B(0,L), L>0, N 3>2.
Here 8, = 0/0t, 8, = 8/0v, v = v(z) is the outer unit normal vector to 8
at £ € 052, and B(0,L) = {x € RV : |z| < L}. Throughout this paper we
assume that ,
¢ € L3(Q, el da)
for some A > 0. For any t > 0, we may denote by H(t) the set of the
maximum points of u(-,t), that is,

H(t) = {a: € : ulx,t) = rggﬁxu(y,t)} ,
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and call H(t) the set of hot spots of the solution u at the time ¢. In this
paper we study the movement of hot spots H(t) of the solution u of (1.1) or
(1.2) as t — oo.

Chavel and Karp [3] studied the heat equation O;u = Au in several Rie-
mannian manifolds, and obtained some asymptotic properties of solutions
concerning the movement of hot spots of the solution. In particular, for the
Euclidean space RY, they proved that, for any nonzero, nonnegative initial
data ¢ € LP(RY), the hot spots H(t) of the solution at each time ¢t > 0 are
contained in the closed convex hull of the support of ¢, and H(t) tends to
the center of mass of ¢ as t — oo. Subsequently, Jimbo and Sakaguchi [11]
studied the movement of hot spots of the solution of the heat equation in the
half space RY and in the exterior domain of a ball, under boundary condi-
tions. In particular, for the Cauchy-Neumann problem (1.1) in the exterior
domain Q = RV \ B(0, L) with the nonzero, nonnegative, radially symmetric
initial data ¢ € L2(€2), they proved that the hot spots H(t) satisfies

(1.3) H(t) c 9Q = dB(0, L)

for all sufficiently large t. Furthermore, for the Cauchy-Dirichlet problem in
the exterior domain 2 = R3\ B(0, L) with the nonzero, nonnegative, radially
symmetric initial data ¢ € L(Q), they proved that there exist a positive
constant 7" and a continuous function r = r(t) € C({T,00) : (L,00)) such
that

(1.4) lim r(¢)3t™! =2

and
Hit)={zeR" : jz|=r(@)}, t=T.

Their proofs of (1.3) and (1.4) heavily depend on the radially symmetry
of the solutions and the properties of zero sets of the heat equation in R,
and it seems so difficult to apply their proofs to the solutions without the
radially symmetry. (For the movement of hot spots of the solution for the
Cauchy-Neumann problem in bounded domains, see [1], [2], (10}, {12}, and
(14]. )

In this paper we study the movement of hot spots H(t) of the solutions of
the Cauchy-Neumann problem (1.1) or the Cauchy-Dirichlet problem (1.2)
in the exterior domain Q of a ball, without the radially symmetry of the
solutions. In Sections 2 and 3, we give the results on the movement of the
set of hot spots H(t) for the problems (1.1) and (1.2), respectively.
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2  On the Cauchy-Neumann Problem (1.1)

In this section we assume
(2.1) ¢ € L3(Q, N dy), / $(z)dz > 0,
0

and give some results on the movement of the hot spots H(t) for the solution
of (1.1) as t — oo. We first give a sufficient condition for the hot spots H(t)
to exist only on the boundary 9 for all sufficiently large ¢.

Theorem 2.1 (See Theorem 1.1 in [8].)
Let u be a solution of the Cauchy-Neumann problem (1.1) under the condition

(2.1). Put
LN
_4N=/a:¢a:<1+ z:“N>d$ / z)dz.
$ = ) wo@ (1 g™ ) do/ | o(a)
Assume _
(2.2) AY € B(0,L) =R\ Q.
Then there exists a positive constant T such that
(2.3) Ht)ycdQ=L{zeR" :|z|=L}
forallt > T.

In particular, we see that, under the condition (2.1), the hot spots H(t) of
the radial solution of (1.1) exists only on the boundary of the domain Q for
all sufficiently large t.

Remark 2.1 Let u be a solution of the Cauchy-Neumann problem (1.1) under
the condition (2.1). Let C(t) a center of mass of u(t), that is,

C'(t)=/”xu(a:,t)dw//gu(:c,t)dx.

Then it does not necessarily hold that C(t) = C(0) for allt > 0. On the
other hand, we put

AN (@) = /Qru(x,t) (1 + NLN1|x|"N) da://(;u(a:, t)dz, t>0.

Then we have A} (t) = A} for allt > 0, and limeo C(t) = AL
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Next we give a result on the limit of the set H(t) as t — oo.

Theorem 2.2 (See Theorem 1.2 in [8].)
Let u be a solution of the Cauchy-Neumann problem (1.1) under the condition
(2.1). Assume AL #0. Put
_ A N _ AN i AN -
Too —Lm if AY eB(0,L) and zo=A; if Ay €l
¢
Then
tlim sup {|Zoo —y|l:y € H(t)} =0.
—00

By Theorem 2.2, we see that the hot spots H(t) tends to one point T
as t — oo if Ay # 0, and see that (1.3) does not hold if A € (2.

Next we will explain the outline of the proofs of Theorems 2.1 and 2.2. As
in stated in [11], it is difficult to know the sign of differential of the Neumann
heat kernel even for the case that ) is the exterior of a ball, and so it seems
difficult to obtain Theorems 2.1 and 2.2 by using the fundamental proper-
ties of the Neumann heat kernel. We consider the following two eigenvalue
problems,

1 .
Pop = =div(pVp) = =Ap in RY,
(E) f lyl?
¢ € H'(RY, pdy), p(y) = exp (—4—>
and
(2.4) ~Agn-1Q=w@Q on SN
such that 0 = wg < wy = N —1 < wy = 2N < w3 < ---, where Agn-1

is the Laplace-Beltrami operator on SV¥~!. Let I} be the dimension of the
eigenspace of the eigenvalue problem (2.4) corresponding to w = wj and
{Qri}%, the eigenfunctions of (2.4) corresponding to w = wy such that

(Qii» Qrj)r2sv-1) = 8ij, 4,5 = 1,.. ., l;. In particular we may take
x x;

2.5 =) =c= j=1,...,N

( ) Ql,l (tml) ct] |1‘I’ ? b b 3

for some positive constant ¢, = ¢,(N) > 0. Furthermore we have the follow-
ing lemma on the eigenfunctions of (E) (see {5] and {13}).
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Lemma 2.1 Let k =0,1,2,.... Let {\;}2, be the eigenvalues of

Pup = Pyp — ‘—;—J’%'p =-X¢ in RV,
(Ex) @ is a radial function in RN,
¢ € L*(RY, pdy),

such that Arp < Mgy < M2 < ... and @  the eigenfunction corresponding to
ki such that ||owillL2(0,pd) = 1. Then

N+k

. _ k IyP
5 T ©ro(y) = ckly|" exp

Ak = e

for some constants cy. Furthermore { A i Yha—o give all eigenvalue of (E), and
the eigenspace of (E) corresponding to A are spanned by the eigenfunctions
{ri(¥)Qua (y/ly)) Hy with A = M.

In order to prove Theorems 2.1 and 2.2, we may assume, without loss of
generarilty, that ¢ € L*(Q, pdz). Then, by Lemma 2.1, there exist radial
functions {¢; }reNuio},j=1....4, Such that ¢, € L*(9, pdz) and

o

00 6=3 Y b0 (L) L)
k=0 j=1
Furthermore let vy ; be the radial solution of the Cauhy-Neumann problem
Ov = Lyv=Av — 2 in Q x (0, 00),
k ov=20 on 09 x (0, 00),
v(z,0) = ¢ ;() in Q.

Then the function

Uk 3 (2, 1)@ 5 (}—i—l)

is a solution of (1.1) with the initial data ¢ ;(z)Qk,;(x/|z|). Furthermore we

see that 1
o0 k
zt) =Y uklz,t) in C}Q),

k=0 j=1
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for all t > 0. Therefore we have only to study the asymptotic behavior of
the radial solution of the Cauchy-Neumann problem (Ly) in order to study
the one of the solution u of (1.1).

Let v, be the solution of the Cauchy-Neumann problem (LY) with the
initial data o, where ¢ is a radial function belonging to L*(£2, pdz). In order
to study the asymptotic behavior of the solution v, we define a rescaled
function w; of the solution v as follows:

)T g

wily,s) = (1+1t 2,t), y=(1+t)"7z, s=1log(l+t).

Then the function wy satisfies

N O,wy = Powg + kwk in W,
(Pe) O,wi =0 on OW,
wi(y,0) = ¢(y) in Q,
where
Qs) =, W= [J (Qs) x {s}), W = [ (89(s) x {s}).
0<s<o0 0<8<0

We study the asymptotic behavior of the first eigenvalue and the first eigen-
function of the operator P, and obtain the asymptotic behavior of the so-
lution wy in the space L? with weight p. Furthermore, for k = 0,1,2, by
using the radially symmetry of vy, the equations (LY) and (PY), and the
Ascoli-Arzera theorem, we study the asymptotic behavior of v, 8,vx, and
vy as t — 0.

For the case k = 0, we extend the domain of wy to R", and apply the
Ascoli-Arzera theorem to wg. Then, by using the results on the asymptotic
behavior of wp in the space L? with weight p, we obtain a result on the
asymptotic behavior of vy and 8,vg, where 7 = |z|. Furthermore we obtain a
result on the asymptotic behavior of 8%vy as t — oo by using the ones of v
and O,vg.

Proposition 2.1 Let ¢ be a radial function in  satisfying (2.1). Let vy be
a radial solution of (L{') with the initial data ¢. Then

tlim t%z;o(a:,t) = (47r)‘%q' / p(z)dx



uniformly on any compact set in Q. Furthermore, for any positive constants
€, there exist positive constants C, R, and T such that

Orv(z,t) < Ct‘ﬂ*ﬂ/

forallz € Q with (1 +)V2 < |2| < RQ+t)Y2 and allt > T.
Proposition 2.2 Let ¢ be a radial function in Q satisfying (2.1). Let vy be

a radial solution of (LY) with the initial data ¢. Then there exist positive
constant R and T such that

Brio(a, 1) < — 7 (4m) 517 F (fa| - )/ﬂ(p(a:)dm

for allz € Q with |z| < L+ R(1+t)"/? and t > T, where r = |z|. Further-
more, for any R > L,

Orup(2, t)
500+ o)lal(1 = Ll [ i
83’00(1', t)

- -.;_(47r)—%(1+o(1))(1 + (N = LN V)2 / olz)de

2

as t — 0o, uniformly on QN B(0, R).
On the other hand, for the case k = 1, the inequality

sup V2w (-, 8)llcas) < 00
3>

does not necessarily holds, and w(y, s) tends to 0 uniformly for all y with
ly| < Re™*/? with any R > L. So it is not useful to apply the Ascoli-Arzera
theorem to w; for the aim at studying the asymptotic behavior of w; and
Orw, in the domain {y € Q(s) : |y| < Re™%/?}, as s — o00. To overcome this
difficulty, we may apply the Ascoli-Arzera theorem w; in the any annulus
D(e,R) = {y € RY : ¢ < |y| < R} with 0 < ¢ < R, and obtain the
asymptotic behavior of w; in the annulus D(e, R). Furthermore, by using
the equation (L,) effectively, we study the asymptotic behavior of vy, 8,
and 82v; as t — oo, and obtain the following proposition.

181
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Proposition 2.3 Let ¢ be a radial function in Q0 satisfying (2.1). Let vy be
a radial solution of (L) with the initial data . Put

UN(r)=cer (1 + NLflr'N) , ay = Lw(m)Ufo])dm.

Then there erists a positive constant C such that
_Ni2
V1 (2, )| Leoiy < Cillag | +0(1))t™ 2
for sufficiently large t. Furthermore, for any R > L,
vi(z,t) = (ag + o(l))Ugt“%ﬁ,
Brvi(z,t) = afa) +0(1)) (1 - LVrN) =
Pui(z,t) = ey(ad +o(1)) NIV~ N+,
as t — oo, uniformly on QN B(0, R).

Similarly we study the asymptotic behavior of vy, J,v2 and 0%vy as t — o0,
and obtain the following proposition.

Proposition 2.4 Let ¢ be a radial function in Q satisfying (2.1). Let va be
a radial solution of (L)) with the initial data ¢. Then there ezists a positive
constant Cy such that

_Nt2
vz (-, )|l Lo () Cit™ 7,
N+3

Il@rvg(-, t)”Loo(Q) < Clt—T,

IA

for sufficiently large t. Furthermore, for any R > L, there exists a constant
’> such that v
|02va(z, 1) < Cot™

for all x € Q with |z} < R and all sufficiently large t.

By Propositions 2.1-2.4, we may obtain the asymptotic behavior of the so-
lutions uxj, k =0,1,2, j =1,..., k. Finally, by (2.6), we put

2 7
27) b3 =6-33 bus(e)Qns (I&T) ,

k=0 j=1

and study the solution of (1.1) with the initial data ¢s. Then we have



Proposition 2.5 Assume (2.1). Let ¢3 be a function defined by (2.6) and
(2.7). Let uz be a function of (1.1) with the initial data ¢3. Then there exists
a constant C such that

IVEus (-, t) Loty < Ct™°F°, k=0,1,2,
for all sufficiently large t.

By Propositions 2.1-2.5, we obtain the asymptotic behavior of u, V u, and
V2u as t — oo, and may obtain Theorems 2.1 and 2.2.
3 On the Cauchy-Neumann Problem (1.2)
In this section we assume that
(3.1) ¢ € L*Q, pdz), my >0,

where p(z) = exp(|z|?/4) and

LN—2 ) i

o(z) log l%'dx if N >2.
Q

L

We first give the following results on the asymptotic behavior of the so-
lution u of (1.2), which imply that the hot spots H(t) run away from the
boundary 9 as t — oo.

Theorem 3.1 (See Theorem 1.1 in [9].)

Let u be a solution of the Cauchy-Dirichlet problem (1.2) under the condition
(3.1) and N > 3. Then

(3.2) tlirgo A u(z,t)dr =mgy >0
and [N-2
. N _N
(3.3) tl}gtt zu(z,t) = (4m)"2my (1 — W)

uniformly for all x on any compact set in Q1.

183
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Theorem 3.2 (See Theorem 1.2 in [9].)
Let u be a solution of the Cauchy-Dirichlet problem (1.2) under the condition
(3.1) and N = 2. Then there ezists a constant C such that

(3.4) lu(, )l < Clogt) 1@l L2a,pdz)
for allt > 1. Furthermore

(3.5) tlim (logt) / u(z,t)dx = 2my,
-— 00 Q
and
(3.6) lim t(logt)? u(z,t) = Im log =l
’ t—o0 ’ T ? L

uniformly for all z on any compact set in Q.

Remark 3.1 Collet, Martines, and Martin [4] used the probability method
to prove the asymptotic behavior of the Dirichlet heat kernel G = G(z,y,1)
on the exterior domain of a compact set as t — oo. In particular, for the
exterior domain RN \ B(0, L), they obtained that

) N N LN—2 LN—2 .

(3.8) lim t(logt)*G(z,y,t) = 1 log Il log vl if N =2,
t—o0 s L L

for all z,y € Q (see also [6]). By (3.3) and (3.6), we may obtain (3.7) and
(3.8), and the proof of this paper is complete different from the one of [4].
Furthermore we remark that Herraiz [7] applied the comparison method to the
Cauchy-Dirichlet problem (1.2) in the exterior domain of a compact set, and
obtained the similar results to Theorems 3.1 and 3.2 for nonnegative initial
data ¢.

Next we give a result on the rate for the hot spots H(t) to run away from
the boundary 2 as t — oo.

Theorem 3.3 (See Theorem 1.3 in [9].)
Let u be a solution of the Cauchy-Dirichlet problem (1.2) under the condition
(3.1). Put

C(t)=2(N -2)LN"%t f N>3, ((t)=2t(logt)™ i N=2.



Then
(3.9) lim sup [¢()7Hz[N —1|=0.
E=0 pe H(¢)
Furthermore there exists a positive constant T such that, if x € H(t) and
t>T, then
(3.10) H(t)Nnl, ={z},

where I, = {kx/|z| : k> 0}.
Next we give a sufficient condition for the hot spots H(t) to consist of one

point z(t) after a finite time. Furthermore we give the limit of z(¢)/|z(t)| as
t — oo.

Theorem 3.4 (See Theorem 1.4 in [9].)
Let u be a solution of the Cauchy-Dirichlet problem (1.2) under the condition
(3.1). Assume that

N
Ag?s/nxcp(x) (1— T%V_) dx # 0.

Then there exist a positive constant T and a smooth curve z = z(t) €
C™([T,00) : Q) such that H(t) = {x(t)} for allt > T and

z(t) A7

3.11 lim = T
(3:11) % T2 )] TAD]

Therefore, by Theorems 3.3 and 3.4, we see that, under the assumptions (3.1)
and Ag # 0, the set of hot spots H (t) consists of one points z(t) after a finite
time, and

lim (O N at)] =1, lim 2(0)/la(t)] = AD/|AB].

Next we explain the outline of the proofs of Theorems 3.1-3.3. In the
similar way to the Cauchy-Neumann problem (1.1), we have only to study
the asymptotic behavior of the radial solutions vy, of the Cauchy-Dirichlet
problem

Ov = Lyv=Av — %vk in Qx(0,00),

(LkD> v=20 on 052 x (0,00),
v(z,0) = () in Q,

185
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where ¢ is a radial function belonging to L*(Q, pdz) and k = 0,1,2....
Furthermore, by the same argument with in the Cauchy-Neumann problem
(1.1), we introduce a rescaled function wy of vy, and study the asymptotic
behavior of the rescaled functions wy as s — oo. For the case N > 3, we
study the asymptotic behavior of wp = wo(y, s) in the space L? with weight
p, and obtain the one of vy = wvo(x,t) for all z € Q with |z ~ t/? as
t — oo. Furthermore, by using the radially symmetry of vy and (L), we
obtain the asymptotic behavior of vy, 8,v, 8219, and dyvg for all z € Q with
lz| = O(t!/?) as t — o0,

Proposition 3.1 Let ¢ be a radial function in Q satisfying (2.1). Let vy be
a radial solution of (L) with the initial data ¢ and N > 3. Put

DO LN-2 DO D0
Uri(r)=c (1~ N3 ) a,” = Q‘P(I)UL’ (|z|)dz.
Then there hold that

vg(r,t) = t7% (a2 + o(1)UL(r) + %t“ﬂ#(ao +0(1))0(r?)

+O(t~ )o@,
Bg)(r,t) = t7%(aD0 +o(1))8,UL(r)
Ncg

—Tm-”eﬂ(afjﬁ +o(1))(1+0r™) + 0o,

@)t = @00 +o()GVRr) ~ URr) 1 (@20 + of1)

+O(t=F)0(r?),

@ui)rt) = —517 (@20 +o(D)UL() + O~ F)0()

forallr > L andt > 1.

For the case N = 2, the behavior of vy is different from the one for the
case N > 3. By the similar way to in the case N > 3, we first ob-
tain maxgesq |0,v0(x,t)] = O(t '(logt)™) as t — oo. This gives that
vo(, )iy = O((logt)™!) as t — oo. By using the similar argument
to in the case N > 3 again, we have max,caq |0,v0(z,1)| = O(t 7 (log t)~2) as
t — 00, and obtain the following proposition.
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Proposition 3.2 Let ¢ be a radial function in 0 satisfying (2.1). Let vy be
a radial solution of (LE) with the initial data ¢ and N = 2. Put

a2 =4 /Q o(z) log -l%—’da:.
Then there exists a function (1 = (1(t) and Co(t) with
lim t(log2)’Ci(t) = a2, lim £*(log)® Ga(t) = &),

such that

w(rt) = G(t)log T +0(2logr)a(t) + 040 (logt)™),
S Gy logr(1+o(1) + 04401~ (log 1)),
G —-Q—Q ~ US(rGi{t) + OGO (0 1) ™),
(Bwo)(r,t) = (log 7) G(t) + 020 logt)™)

(8TUO) (7‘, t) =

forallr > L andt > 2.

Furthermore, by the similar argument to the problem (1.1), we obtain
the asymptotic behavior of the solutions v; and wvs.

Proposition 3.3 Let ¢ be a radial function in Q satisfying (2.1). Let v, be
a radial solution of (L) with the initial data ¢ and N > 2. Put

LN
R (- Ny e

Then there hold that

vi(nt) = t7F (@D 4+ o)) UL(r) + O(r2)O(t~*F),
Bui(r,t) = ’“TWD +0(1))8,U}(r) + O(r)O(t~"7%),
B2vi(rt) = t°F (a2 4 0(1)PUL(r) + Ot~ *F)

forallr > L andt > 1.
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Proposition 3.4 Let ¢ be a radial function in Q0 satisfying (2.1). Let va be
a radial solution of (LY) with the initial data ¢ and N > 2. Then there hold
that

vrt) = O F logt)UP2(r) + O(t~F)O(r* logr),
opvy(r,t) = O(t—ﬁiﬁlogt)arUfg(r)+O(t”§fi)rlog—%,

B2us(r,t) = 0(r¥1ogt)a,?(ffv2(r)+0(t-%*—‘)1og-r[:

for allr > L and t > 1, where

D3 N V+2
U (r) = cor (1— rN+2>'

Therefore, by the similar argument to the problem (1.1) and Propositions
3.1-3.4, we may prove Theorems 3.1-3.3. In order to prove Theorem 3.4, we
study the asymptotic behavior of z/|z| for all z € H(t) and all sufficiently
large t, by using the asymptotic behavior of v and v;. Furthermore we
compare the hot spots H(t) with the radial solution of (1.2) with the initial
data ¢ € L2(Q, pdz) with m, = mg. Then we may prove that, if ¢ is
sufficiently large, then the matrix {—085,0,u(z,t)}1;=, is positive definite for
all points near the hot spots H(t), and complete the proof Theorem 3.4.
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