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Topological pressure of Cantor minimal systems
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Department of Mathematics, Faculty of Science,
Kumamoto University

Abstract

This is a survey article of the paper [S4]: F. Sugisaki, Topological pressure of cantor
minimal systems within a strong orbit equivalence class.

1 Introduction

For a topological dynamical system (X,7'), denote M(X) by the set of Borel probability
measures on X and M(X,T) by the set of T-invariant Borel probability measures on X.
The main theorem is the following.

Theorem 1.1. Suppose that (X, ) is a Cantor minimal system and f is a potensial function
on X. Choose any a with

exp (Sup {/fdu } MEM(X,fﬁ)}) <a<oo (1.1)

and fiz it. Then there ezists a Cantor minimal system (Y,v) strongly orbit equivalent to
(X, ) such that

P(y,fob7") =loga,

where P(1, ) is the topological pressure of ¥ and 6 : X — Y is strong orbit equivalence map.
If a is finite, we can take v as an ezpansive homeomorphism.

Remark 1.2. (1) For a topological dynamical system (X,T) and a potential function f €
C(X,R), the variational principle of topological pressure (see Theorem 9.10 in {W1])

P(T, f) :sup{h,,m + [ gau | ne M(X,T>}

implies that
o P(T,f) > sup{[ fdu | p € M(X,T)},
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(2)

e P(T, f) =sup{[ fdu | p € M(X,T)} iff the topological entropy h(T') = 0.

Moreover a strong orbit equivalence map # sends M(Y, ) onto M(X, ¢) bijectively. So
(1.1) is the best possible inequality which a can take.

If f = 0, then P(,0) is equal to the topological entropy of ¥. So this theorem is
generalization of the papers [S1], [S2] and [S3].

Basically, we use notations and definitions in [HPS] and [GPS]. Here we will introduce

some notations, definitions and properties of (properly ordered) Bratteli diagrams in this
paper.

Notation 1.3. Suppose B = (V, E,>) is a properly ordered (also called simply ordered)
Bratteli diagram.

(1)

(2)

Let r : E — V denote the range map and s : E — V denote the source map. Namely,
e € E, connects between s(e) € V,_, and r(e) € V,.

Let M™ = [#r'(u) 0 57 }(v)]uevi vev,_, denote the n-th incidence matrix of B (i.e.,
M,(,Z) is the number of edges connecting between u € V, and v € V,,_1). We also write
B = (V,E,{M®™},>). Let M{™ = (M{M),cv,_, denote the w’s row vector of M which
is called an incidence vector of u. For k < n, let M(™*) denote the product of incidence
matrices MM M®=1 ... pfk),

Set Xg = {(e)ien | €& € Ei,r(e:) = s(eir1) Vi € N}. We call it the (infinite lengths) path
space of B. For v € V,, let P(v) denote the set of all (finite lengths) paths connecting
between the top vertex vg € Vo and v. Then |P(v)| = MY holds. Put P(V,) =
Upev, P(v). The range map is extended to P(V;), that is, for p = (e1,...,en) € P(Va)
r(p) = r(en).

For p € P(V,), set [pls = {(&i)ien € X5 | (€1,€2,---,€n) = p}. We call it the cylinder
set of p.

For v € V, and e € r~1(v), let Order(e) denote the order of e in r='(v). If pmin =
(e1,€n,--+) is the unique minimal path in Xg, then Order(e,) = 1 for all n € N. If
Pmax = (f1, fa,+ - +) is the unique maximal path in Xz, then Order(f,) = [r™'(u,)| for all
n € N, where v, = r(f,). Similarly, Order(-) is defined on P(V,). Le., for p € P(V),
Order(p) is the order of p in P(r(p)).

For v € V,, we write 7~} (v) = {e; | Order(g;) =i for 1 < ¢ < |[r~}(v)|}. Define List(v) =
(s(e1),s(ea), -, s(ejr-10))). We call it the order list of v.
For a sequence tg = 0 < t; < ty < t3 < .-+ in Z,, we say that a Bratteli diagram

B = (V',E' . {M"™}) is a telescoping (or contraction) of B to {ts}nez,, which we write
B = (B,{t.}), if V'n = Vi, and M'® = MUnio-1tD) We call {t,} a sequence of
telescoping depths. Especially, we define Boqq as telescoping B to odd depths (0,1,3,--+)
and define By, as telescoping B to even depths (0,2,4, ).
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(8) Let (Xg, As) denote the Bratteli-Vershik system of B. Namely, Az : Xz — Xg is the
Vershik (lexicographic) map defined by the order > on E.

(9) Define an equivalence relation ~ on Bratteli diagrams as follows. B ~ B' if there exists
a Bratteli diagram B such that B,y yields a telescoping either B or B', and Bee, yiclds
a telescoping of the other.

Remark 1.4. (1) In [HPS], Herman, Putnam and Skau showed that the family of Cantor
minimal systems coincides with the family of Bratteli-Vershik systems up to conjugacy.

(2) Let (X,T) denote a Cantor minimal system. In [P], Putnam showed that K°(X,T) with
positive cone K°(X,T)* is a simple, acyclic (i.e. K°(X,T) % Z) dimension group with
(canonical) distinguished order unit [1], where 1 = 1x is the constant function 1.

(3) Herman, Putnam and Skau showed in [HPS] that K°(X,T) = Ky(V,E) (= means
two dimension groups are unital order isomorphic), where (V| E) is a Bratteli-Vershik
representation of (X, T), and that all (acyclic) simple dimension groups can be obtained
in this. (dynamical) way.

(4) It is easy to see that (V,E) ~ (V', E’) if and only if Ky(V, E) & Ky(V', E).

(5) Giordano, Putnam and Skau showed in [GPS] that Bratteli-Vershik systems (Xg,, Ag,)
and (Xg,, Ag,) are strongly orbit equivalent if and only if B, ~ B,.

Definition 1.5 (distinct order list). We say V, has distinct order lists if for v,v' € V,
List(v) = List(¢’) implies v = v'.

Definition 1.6 (The minimal/maximal vertex property). Suppose B= (V,E,>)isa
properly ordered Bratteli diagram and for n € N, o2, € V;, (v}, € Vi, resp.) is the vertex
which unique minimal path (maximal path, resp) in Xz goes through. We say E,, has the
minimal/mazimal vertez property if for any e, f € E, with Order(e) = 1 and Order(f) =

Ir=1r(f)|, then s(e) = v%7! and s(f) = o3} hold. (%, =%, = v, € V)
The following is the conditions which a Bratteli-Vershik system of (Y, ) satisfies.

Property 1.7. We consider a properly ordered Bratteli diagram B = (V, E {M™}, >)
satisfying the following properties for any n € N:

(1) M™ is a positive matrix (i.e. M{% > 1 for all u and v),
(2) |Val > 3 and vy, # U,

(3) for each v € V,, Mi:,)t_l = MIE",),_, =1,

min Umax

(4) E, has the minimal/maximal vertex property,

(5) V, has distinct order lists. (In the case of n = 1, we ignore this property.)
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2 Conjugacy between Cantor minimal system and Sub-
shift

In this section we consider a properly ordered Bratteli diagram B satisfying Property 1.7. We
will show that there is a topological conjugacy between the Bratteli-Vershik system (X, A5)
and a subshift. The details of shift spaces and its topology, see [LM] in §1 and §6.

Definition 2.1 (subshift). Suppose that A is a finite set, which will be called an alphabet.
Let A% be the set of all biseqences z = ...z_ o7 ... (with each z; in A) equipped with the
product topology. Then A% is a compact metrizable totally disconnected space, and shift
map o : AZ — AZ given by (0z); = zi;; is a homeomorphism. The restriction of o to a
closed invariant subset X of AZ is called a subshift and such X is called a shift space. For
z € A% and 4,j € Z with i > j, set

Tlig) = TiTit1 " " Tjy Tlig) = Tili1 " Tj-1,
which are called blocks of z. Moreover set
B.(X) = {-'EIO,n—l) |z € X}, B(X) = UnenBn(X).

Since X is shift invariant, we see that B,(X) = {z;; | £ € X, j—i=n} and hence B,(X)
is the set of all (length) n-blocks that occur in points in X. We call B(X) the language of
X. For B€ B,(X) and 1,5 with j — i1+ 1 =n, put

[BH = {.’II e X | Z(ij) ZB}

Definition 2.2 (Subshift associated with B). Suppose B = (V, E,>) is a properly or-
dered Bratteli diagram.

(1) Let 74 : X5 — P(Vi) denote a truncation map, that is, %z = (21,%2, -, Tk) where
z = (1,3, - ). Define a shift invariant subset X; C P(V4)? to be

Xy = {(Tk/\gl‘)nez 1 TE XBZ}
One can show that X is a compact set. Let o denote the restriction of shift to Xj.

(2) Put 'P(X:/k)* ={pip2-. . P | R EN,p1,p2,...,Pn € P(Vi)}. Define a concatenation map
Cong : V \ U V; — P(Vi)* to be

Cong(v) = (Teq1)(Trq2) -+ - (Th@Pw)|)

where {¢;} = P(v) satisfies ¢; < g2 < -++ < gjp(y)| With respect to the order on P(v)
arising from >. For t € Z,, define a shift invariant subset X} ; C P(Vi)Z to be

ch,t = {(p") l E{ni}iez CZ H{vi},-ez C Vk-}-t S.t. Plnimip) = Conk(vi) Vi € Z}

Also one can show that X, is a compact set. Let o ; denote the restriction of the shift
to Xk te
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The relationship between (X3, Ag) and (X}, 0%) is the following.

Theorem 2.3 ([S4] Theorem 2.3). Suppose B= (V, E,>) is a properly ordered Bratteli
diagram satisfying Property 1.7. Then (Xg, Ag) is topologically conjugate to (X, o) for any
k € N. The conjugacy 7y, : Xz — Xy, is defined by

M = (Tk /\gz)nez-

The relationship between (Xy40,0k+t0) and (Xg,05,) is the following theorem which
is important so as to calculate the topological pressure of (X3, Ag).

Theorem 2.4 ([S4]: Theorem 2.6). Suppose B = (V, E, >) is a properly ordered Bratteli
diagram satisfying Property 1.7. Then for any k € N and t € Z,, (Xiit0,0k4t0) and
(X1, 0k,t) are topologically conjugate. The conjugacy my; @ Xiyeo — Xiy is defined by

Tee(+ To1.Toz1 ) = (- - (Tk—1). (M) (Thz1) - -+ ).

3 Calculation of topological pressure

The aim of this section is to calculate the topological pressure of a Bratteli-Vershik system
in a special case. First we introduce the definition of topological pressure. The details of
definitions and notations are written in [W1] or [W2].

3.1 Definitions and properties of topological pressure

Definition 3.1. Let (X,T) be a topological dynamical system. (I.e. X is a compact metric
spase and T is a continuous transformation on X.) For f € C(X,R) and n € N, put
(Saf)(z) = 15 f(T'z). For e > 0, put

Qn(T, f,e) = inf {z e5»)@) | Fis a (n,e) spanning set for X} ,
zeF

Q(T, f,e) = limsup llog Q.(T, f,e),

n—oo Tt

P(T, f) = imQ(T, ,é).

Then it is easy to see that P(T, f) exists but could be cc. The map P(T,-) : C(X,R) —
R U {oo} is called the topological pressure of T

When T is expansive homeomorphism, we can calculate P(T, f) as the following way. A

finite open cover o of X is a generator for T if for every bisequence {4,}72_., of members of
a, the set N ___T~"A, contains at most one point of X. For an open cover o of X, n € N

n=-—0oo

and f € C(X,R), define

n—1
Pn(T; f, @) = inf {Z sup 5@ | 3 is a finite subcover of \/ T‘ia} .

A€f €A i=0
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Theorem 3.2 ([W1]: Lemma 9.3, Theorem 9.6). Let T be an ezxpansive homeomor-
phism of X. If a is a generator for T, then

1 o
P(T,f) :nlggoﬁlogpn (Ta faa) - lgé%_ﬁlogpN (T,f,(}i).

In the case of a subshift (X,o) with alphabet A, a = {[a]} | a € A} is generator for o.
Moreover we see that

e Vi-lo—ia = {[B]?"! | B € B,(X)} and hence ViZyo~a is a finite cover of X,

i
e {[B]?~! | B € B,(X)} has no proper subcover.
So by Theorem 3.2 we have the following.

Proposition 3.3. Suppose that (X,0) is a subshift and f € C(X,R) is potential function.
Then

1 1
P(O"f) = lim —log Z sup e(snf)(x) — inf "“10g Z sup e(SNf)(w)

n—oo T n— NeN N-
BeB,(x) *€Bl ™ BeBy(X)*€Bl !

3.2 Topological pressre of Bratteli-Vershik systems

In this subsection we assume that B satisfies Property 1.7. First we calculate the topological
pressure of (X o,0k0) with respect to some special potential functions.

Definition 3.4. Suppose B is a properly ordered Bratteli diagram. We say that f is a
simple function on Xg based on P(V,) if for any 1,1’ € Xg with r,z = 72", f(z) = f(z")
holds. Then for p € P(V,) we can define flp]z = f(z) if € [p|g. Since each cylinder set
[p]s is a clopen set, f is a continuous function.

For g € C(X3,R) and k € N, let g denote a simple function based on P (Vi) satisfying
limg 0 gx = g as the supremum norm. We can extend g; as a continuous function gz on

Xrpo to be
9e(z) = grlzo5:

where z = (z,) € X0 and hence gy is a simple function on Xjp.
Before we calculate the topological pressure, we will prepare the following lemmas.

Lemma 3.5 ([S4]: Lemma 3.6). In the situation above, we have

P(00, Gi) = log ax,

where oy is the mazimum positive solution of the equation for x given by

I'(v)
Z el 1, where I'(v) =exp Z gxp) 5

veEVR PEP(v)
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Lemma 3.6 ([S4): Lemma 3.7).
-1y _ 7: ~ -1
P(Uk, go 7rk ) - tl—{glo P(ak,ta 9k+t © ﬂ'k,t)'

Theorem 3.7 ([S4]: Thorem 3.8). Suppose that B = (V,E,>) is a properly ordered
Bratteli diagram satisfying Property 1.7, g is a potential function on Xz and {gn} is a se-

quence of simple functions on Xz based on P(V,,) for each n satisfying lim,_, ||g— g,|| = 0.
Suppose ay, is the unique positive solution of the equation for x given by

Fp(v
Z xlgl’((v))l =1, where,(v) =exp Z 9n[Pl5

veVn PEP(v)
and le oy = « ezists. Then P()g,g) =loga.
n—o0
Proof. By Theorem 2.3, Az and o} are conjugate and hence P(\z,9) = P(ox,gom;'). By

Theorem 2.4, 04440 and oy are conjugate and hence P(0k4t0, Grit) = P(Okt, Gyt © w,::)
Therefore by Lemma 3.5 and 3.6 we have

P(Xg,9) = lim P04y, Gket © ;) = Him P(0k440, Gr+e) = lim log oyt = log e
t—o0 ’ t—oo t—o0

O

4 The modification of simple Bratteli diagram preserv-
ing equivalence relation

In this section, we give two modification propositions within equivalence relation of Bratteli
diagrams. The first modification proposition is useful for the construction of a based diagram
C in the main theorem. Using a given simple Bratteli diagram B = (V, E,{M™}) and a
sequence of telescoping depths {tn}nez,, C = (W, F, {N}) is constructed by the following:
(We call this construction the vertez amalgamation.)

The vertex amalgamation construction of C. Define an equivalence relation ~ on
vertices of (B, {t,}) as

ur~v (hueV) i M{tortD = Ylttaath),
We amalgamate V using ~ and construct W. For n € N, we put
Wn=V,/~.
For £ € W,_, and w € W,, define N as

N® — ZM(tmtﬂ—l‘m, where u € w.

w,T u,v
vET

(In the case of n = 1, we put vy € wy where Wy = {wp}, V5 = {ve}.) Note that this definition
is independent of the choice of u € w.
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Remark 4.1. (1) We give an example of (stationary) Bratteli diagrams satisfying the con-
ditions above. For any n € N, set t, = n, V,, = {1,2,3,4,5,6} and W,, = {w1, wa, w3}
Incidence matrices M and N are defined by

2 111111
2 111111

M0 = M N0 = [§], M0 = [%%zgzg} N = [335] (22
: S

Then we see that 1,2 € wy, 3,5 € we and 4,6 € ws.
(2) In this example, wy # w3 but N = N,

Proposition 4.2 ([S4]: Proposition 4.2). Suppose B = (V,E,{M™},cx) is a simple
Bratteli diagram and {t, }nez, is a sequence of telescoping depth satisfying that all M (tnsta—1+1) 7g
are positive matrices. Suppose C is the diagram constructed above. Then the following state-
ments hold:

(1) foranyneNandseN, #{w e W, | |r 1 (w)| < s} < 2¢,

(2) for any v € w, |P(v)| = [P(w)],

(8) for any 0 <1 <1, there exists K € N such that ) rlP@l < 1 for alln > K,
(4) B~C.

Remark 4.3. (1) Suppose B and C are Bratteli diagrams satisfying Proposition 4.2. Then
there is an onto map ¢ : E' — F, where E' = U2, E;, ;. _,+1, such that

(a) ®(Ey, t_y+1) = Fi,
(b) for any e € E’, s(e) € s(P(e)) and r(e) € r(P(e)),

(c) forany v € V;, andw € W,, with v € w, @ is a bijection between {e € E;_;, 41| r(e) =
v} and r~(w),

(d) for any € € F,, and e, €’ € &71(¢), s(e) = s(e').

Define a map 9" : P(V;,) = P(W,,) as 2122 ... z¢, = P(2(4,]) (Tt 12]) - -+ PT(tnr,ta])-
We see that " is surjective and by Proposition 4.2 (2), the restriction of " to P(v)
(v € V) is injective and hence bijective. Moreover 7, ("' (21, .,1)) = @"(2[1,1,) holds
for any n € N. Using ®"’s, we define ¢ : Xp — X¢ as

©((Zn)nen) = (Yn)nen & forany n € N, "(z14,7) = Ypu,0)-

Then we can show that o is bijective by the following. It is clear that ¢ is surjective.
For any fixed y € X¢, the number of paths in P(V},) corresponding to y;1, via ¢"
is |V4, ry.)|- However, by the condition (d), sorce vertices of each edge in Ey j14,,,
corresponding y,,, via @ are a same vertex. Therefore we can choose uniquely the path
in P(V,,) corresponding to y;; ) via . This means ¢ is injective.
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(2) ¢ preserves the cofinal relation. Le,
z#1 €XgandVn>N,z, =13, = Vn>N, o), = ¢(z')n

Therefore, if we assign any proper order <p, <¢ on B, C respectively, ¢ is an orbit
equivalence map. Moreover if <p and < satisfies ¢(Zmin) = Ymin aDd Y(Tmax) = Ymax,
 is a strong orbit equivalence map.

(3) If f is a simple function on Xz based on P(V;, ,), then f o ¢! is a simple function
on X¢ but not based on P(W,_;) in general. Indeed, we can construct f satisfying
flpls # flp']s where p # p' € P(V;,_,) with &"(p) = "(p'). However, f o ¢! is based
on P(W,). We regard f as a simple function based on P(V;,) by the following:

f(.’E) = f[Tt-n—lp]B ifze [p]B) D€ ,P(‘/tn)

By the condition (d), "(zp4,) = "(z'1t.)) implies s(z,_,1.]) = $(T'(t,_,,0,) and
hence by the condition (c), Z[14,_,] = *'1,¢,,]- Therfore we have

foe () = flm..,pls ify€[@(p)c

Here we introduce the “converce” construction of the vertex amalgamation, which are
called the vertez splitting.

The vertex splitting construction of B.~Suppose C = (W,F,{N"™},cn) is a simple
Bratteli diagram. We construct B = (V, E, {M(™},cn) satisfying

oV, = Uwewnf/,,,w as disjoint union. (L.e., we split w into \Vn’wl verteces in V},.)
e For any u,v € 17",,,,, Mén) = -én).
e For any u € Vn,w, Zveffn_m M,,S'L) = Neszn%

Remark 4.4. Inthe case of the vertex amalgamation construction, C is uniquely determined
up to permutations of verteces. However, in the case of the vertex splitting construction,
there are ambiguities of a number of veteces and connecting edges and hence B is not uniquely
determined.

Proposition 4.5 ([S4]: Proposition 4.5). B ~ C.

Remark 4.6. (1) Suppose B and C are simple Bratteli diagrams constructed by Proposition
4.5. By similar arguments of Remark 4.3 (1), we have a bijection ¢ : X3z — X preserving
the cofinal relation. Suppose that B and C are simple Bratteli diagrams constructed by
Proposition 4.2 and B, B and C have proper orders <z, <z and < satisfying

‘P(mmin) = (.a(jmm) = Ymin and Qo(zma.x) = @(imax) = Ymax-

Then ¢! o ¢ is a strong orbit equivalence map between (Xg, Ag) and (X3, Az)-
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(2) Let " : P(V,) — P(W,) be an onto map which provides a conjugacy ¢ (see Remark
4.3 ( )) and h be a simple function on X based on P(W,). Then we see that for any
%,i' € Xz with ®" o 7,(%) = " 0 7,,(&") = g,

ho@(Z) = ho@(') = Alglc.

This implies that for any v,v' € V4,

Z ho glpls Z ho &lplg = Z higle.

pEP(v) pEP(v') q€P(w)
5 Sketch of proving Theorem 1.1

5.1 Requirements of a simple Bratteli diagram for (Y, v).

By Theorem 9.7 in (W1], for a topological dynamical system (X,T) and potential function
f e C(X,R),

h(T)+inf f < P(T, f) < h(T) +sup f

and so P(T, f) = oo iff h(T) = oco. In the case of a = oo, there exists a Cantor minimal
system (Y, 1) strongly orbit equivalent to (X, ¢) such that h(y)) = oo (see [S2]). This means

P(y,fof™") = co.

So we only consider the case where « is finite. Let B = (V, E,{M{}, >) be a properly
ordered Bratteli diagram which is a representation of (X, ). So we identify (X,¢) with
(Xg, A\g). From the simplicity of diagram, we may assume that all M{™’s are positive
matrices. We only consider within a strong orbit equivalence class of (X, @). So applying
Proposition 4.2 to B, we may also assume that

Vn,s €N, #{v eV, | |r ' (v)] < s} <29, (5.1)
0<Vr<l, 3K eNst¥n>K, ) rP0l<1. (5.2)
veV,

Choose any sequence {e,}nen satisfying 0 < 3¢, < Ens1 < 3en and fix it. Now we will
construct a properly ordered Bratteli diagram B = (V, E, {M(™},>) which is a representa-
tion of (Y,4). First, applying the vertex amalgamation construction to (B, {t,}) for some
suitable telescoping depths {¢,}nez,, we have a based Bratteli diagram C = (W, F,{N 1)
with C ~ B (see Proposition 4.2). Second, applying the vertex splitting construction to C,
we temporarily have B with B ~ C (see Proposition 4.5 and Remark 4.4). Suppose C is
determined. Define ¢ : Xz — X as Remark 4.3 (1) and @ : Xz — X¢ as Remark 4.6 (1).
Define a simple function f, on Xz based on P(V;_ ) as

fu(z) =min{f(y) | y € [p|s} where z € [p]5 -
(Set P(Vy) =0 and [@]p = Xp. Then fo(z) = min{f(y) | y € Xp}.) We see that
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e {fn} is monotone increasing and lim, , ||f — fa|| =0,
e f._10 ¢ !is asimple function on X based on P(W,,),

e for any v € w (w € W,,),

> faalreapls= Y, fa10o¢ gl (5.3)

PEP(v) geP(w)
(see Remark 4.3 (3)). Define
gn=fa1097 0@ and g=foyp 0.

Then g, is a simple function on X based on P(V,) and for any w € W,, and v,v' € Vn,w,

Y alpls= Y gmlpla= Y faro9 (gl

pEP(v) pEP(v') qeP(w)

(see Remark 4.6 (2)). So we define I',[w] as

Tofw] =exp | Y fnlow‘l[Q]c) =exp | D galdls | =Talv), (5.4)

geP(w) pEP(v)

where 7 € 17,1,,,, (see Theorem 3.7). We will completely construct B satisfying the following
conditions: For each n € N,

Vn,wlrn[w] 1—‘n('U)
(1)a+5"<an<a+6n_1andZW:1 @Zmzl ,

weW, ’UEVﬂ.
(2) B satisfies Property 1.7.

Then (X, ¢) is strongly orbit equivalent to (Y,%) and § = g~ o : X = Y is a strong orbit
equivalence map (see Remark 4.6 (1)). Applying Theorem 3.7 to B, we have

P(y,fob7!) = P(Az,9) = lim loga, = loga.
n—00
Finally by Theorem 2.3, (Y, %) is topologically conjugate to a subshift.

5.2 Preliminary

In this subsection, we will introduce some lemmas.

Lemma 5.1 ([S4]: Lemma 5.3). Foralln €N, (2)" <n! < (ﬂ__e;__g)n+2-
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Let f be a function of Xg. For z € Xg and m € N, put

m-—1

S(fmm) = = 3 f(¥ea).

t=0

Lemma 5.2 ([S4]: Lemma 5.4). Suppose B = (V,E,>) is a properly ordered Brattel:
diagram, f is a simple function on Xg based on P(Vy). For any 3 > exp(sup{[ fdp | p €
M(Xg,Ag)}), there exists N' > N such that for anyn > N' andv € V,,,

APl > exp | > flrapls

pEP(v)

5.3 The construction of a based diagram C.

If {t,} is decided, we can construct C by the vertex amalgamation construction. Now, we
will decide {¢,} by induction.
The 1st step. Put ¢t = 0. Applying Lemma 5.2 to f; and B, there exists {; € N satisfying

1\ P ot ey \ PO
(a + 351) > €Xp 2 fO[Ttop]B 3 ( 2 ) > 2

1
-+ €
pEP(v) 3°2

for all v € V;,. (The second part of inequality above holds because min,ey, |P(v)| is mono-
tone increaseing with respect to t;.) We fix ¢;. Then we can construct W; and N of C by
the vertex amalgamation construction. Since [P(w)| = |P(v)] holds for v € w, the first part

of inequality above is equivalent to (o + %61)17’(11)” > T'y[w] holds for any w € W, (see (5.3)
and (5.4)). Let {A%) € N | w € W, } satisfy

where V;, ,, = {v € V;, | v € w}. Then there exists a unique number oy > « + €; such that

a-+€ |'P(w)|
AS) > 2 + max {E—T{z)]——, Vi w

Z AS)Fl['UJ} -1

() P@l —

weWw,

Choose any €y > a1 — « and fix it.

The n-th step. For n > 2, suppose the (n — 1)-th step data are given by the following:
For any w € W,_,,

(Dno1-1) (@ + g,1)P®N < (AT — ),y [w],

(Du1-2) Vs 0| < A7V — 2.
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Choose r,, € R satisfying (5.5) and fix it.

(n—1)
1 <7y < min (§ (Au 2)Fn_1[w]) (5.5)

27 (a+ep_ )P

For any fixed t,, > t,_1, we can temporarily construct W, and N(® by the vertex amal-

gamation construction. Define Q;,, € N and R;, € Z, to be the unique numbers such
that

N -2 = (A" —2)Quu + Rey and 0 < Ry, < APD 2, (5.6)

Define B,,Cy 4, Dy 4 as

(W — 2)/e) -2
[uew,_, (reQaw + 2)/e)N=(’,‘3,+2A1(3-1) ’

o= {n ennet | S0 =],
vEw

A(n—-l) 9
Z n; = N(" =2, 1< <ryQzw

B, =

Dzw — (nz) € NAENn—-l)_z

3

Now we can show that Claim 5.3 holds for sufficiently large t,,.

Claim 5.3. For any z € W,,,
(1) Talz] < (a + geq) P,
(2) B.Lylz)(a +enq) P@ > 1,
(8) for any w € W,_1, |Co | < |Dswls
(4) ew, el < L.
Put ¢, satisfying Claim 5.3. Then we can define A" € N as
(AW — 3)Tolz] < (@ +&0) P < (A — )T, [z] < APT,lz) < 2@+ 6,)P@1  (5.7)
becase of Claim 5.3 (1). So we have the n-th step data by the following: For any z € W,,,
(Dr1) (e €a) D) < (A7 — )T a],

(Dn-2) Vil < AT —
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5.4 The construction of B.

In this subsection we will construct V,,, M™ and an order > on E, satisfying Property 1.7
and check that for each n € N,

a+e, <ap,<a+e,.; and Zlv—””)'ll;—[—-l_l. (5.8)
zeW,

The construction of V,. For z € W,, we set

Vol = A, (5.9)

By the condition (D,-2), 1Vn,wi > 3 holds. Let x € W,, (xx € W,, resp.) denote the vertex
satisfying that the minimal path Ty, € Xg (the maximal path Tm., € Xp resp.) goes
through some vertex in V;, . (Vi, .. resp.). We can choose any distinct vertices o2, € V,,,
and v}, € Vn « becase of |Vnw| > 3 and fix them.

The constructlon of M™), We consider the following conditions with respect to M

(c.0) If z,2’ € W,, with z # 2/, then M # ]\;IIE,"), where v € ‘7,,71 and v’ € Vn,xl.
(c.1) For any v,v' € V,,,, 1 = M,

n,v

(c.2) For any v € V,,,

where Dz,w is defined by

(

(ny) € N/Ve-1.0] | Zueffn_l,w Ny = Néf'u),, 1 <ny <7rypQzuw } if w # *, *x,
Do (ny) €N|‘:’al | et M :Nﬁ) ~1, 1< ny, <74Qy. } if * # xx and w = *,
(ny) € NIVl I D uctn, Tu = N; - 1, 1 <ny <1ryQg if * # ** and w = *x*,
L (ny) € NIVess! Y ouein., T = Nx(,* —2, 1 <ny <71yQpx ¢ if ¥ =%+ and w = x,

where V Vn—l*\{vmm} ‘/** - n 1,**\\{Umax} and ‘/*** - Yn— 1*\{vmln’vrnr'm;
(c.3) M(") 1_M() =1 for any v € V.

mi Umax

It is easy to construct M® satisfying the conditions (c.1), (c.2) and (c.3) and these conditions
imply that B and C satisfy the assumptions in Proposition 4.5. Now we will show that we
can construct it satisfying also the condition (c.0).

Suppose that M (™ satisfies the conditions (c.1), (c.2) and (c.3). It is clear that if N #
N then M™ # MM where u € Vow and v € V5. In general, z # z' € W, does not
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imply Ng(c") # N (see Remark 4.1 (2)) and so we will show that for any z £z eW,

with N{" = N,/ (n) , we can construct M{™ and M (m) satisfying g 7é M ) forv e Vn,z and
v € Vn - By the construction of N(™, we see that

#{seW, [NV =N"}< ] ICol- (5.10)

wEW,,..l

As M{™ and M satisfy the condition (c.2), by Claim 5.3 (3) and (5.10) we have

#{s €W, [NW=NM}Y< [ 1Dewl < [[ 1wl (5.11)

wEWn—l !UGW"__]_

The right part of the inequality (5.11) means what the maximum possible value for incidence
vectors in Niv»-1l satisfying the condition (c.2) is. Therefore, we can choose incidence vectors
satisfying M{™ # M, (n),

The construction of > We will check that we can construct > on E with the property
that each V), has distinct order lists (Property 1.7 (5)). For z € W,,, define Dist(z) € N as

(Suery, 952): _ (M -2y
HuEV,:_l M’Eg‘)‘ Huef/:_ Mlggl)'

1

Dist(z) =

where v € V,,, and V>, = V,_,/ {vps!, vnzl}. Dist(z) means the maximal possible number
of order lists of v € V ne Satisfying Property 1.7 (4). Suppose w # z, u € V,,,, and v € V.
By the condition (c.0), if we assign any order on r='(u), r=!(v) respectively, List(u) # List(v)
always holds. Therefore V, can have distinct order lists if and only if

Dist(z) > H'/,,,m[

for any z and hence we check this inequality. Since M™ satisfies the conditions (c.2) and
(c.3), using Claim 5.3 (2) and Lemma 5.1, we have

N g
(Dist(z) — 3)T,[z] ((Nz”’ - 2)/@) [plz]
(a+e)P@

(W ~276) ™ 10

() o0
[T ((roQsp +2)/e)"=et?nmtel
weW, 1

>

x (a+en 1) P@ = B,T,[z] > 1

where v € V,, ;. (We use the fact that if n > 4, then n! — 3 > (2)™ holds.) Therefore

Dist(z) > (o + &,) PO, (2] +3 > |V, |
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because of (5.7) and (5.9).
The check of (5.8). By (5.7), (5.9) and Claim 5.3 (4), we have

IVn,zIFn[x]
> (@t en)P@ < L

zeW,

The n-th step data (D,-1) implies that (a + £,)/P@! < |V, ;|,[z]. Therefore there exists
unique a, with a + €, < an < @+ €,1 such that

|V,,_,,,,|r‘
Z IP(w)l =L

References

[GPS] T.Giordano, I.LF.Putnam and C.F.Skau, Topological orbit equivalence and C* crossed

products, J. Reine Angew. Math. 469 (1995), 51-111

[HPS] R.H.Herman, LF.Putnam and C.F.Skau, Ordered Bratteli diagrams,dimension

[LM]

[P]

groups, and topological dynamics, Internat. J. Math. 3 (1992), 827-864

D. Lind and B.Marcus, An Introduction to Symbolic Dynamics and Coding, Cam-
bridge University Press, 1995

I. F. Putnam, The C*-algebras associated with minimal homeomorphisms of the Can-
tor set, Pacific J. Math. 136 (1989), 329-353.

F. Sugisaki, The relationship between entropy and strong orbit equivalence for the
minimal homeomorphisms (1), Internat. J. Math. 14, No. 7 (2003), 735-772

F. Sugisaki, The relationship between entropy and strong orbit equivalence for the
minimal homeomorphisms (1I), Tokyo J. Math. 21 (1998), 311-351

F. Sugisaki, On the subshift within a strong orbit equivalence class for minimal home-
omorphisms, preprint

F. Sugisaki, Topological pressure of cantor minimal systems within a strong orbit
equivalence class, preprint

P.Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathemat-
ics,vol.79, Springer-Verlag (1981)

P.Walters, A wvariational principle for the pressure of continuous transformations,
Amer. J. Math. 97 (1975), no. 4, 937-971



