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Confluence from Siegel-Whittaker functions to Whittaker
functions on Sp(2,R)
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Abstract

We discuss a confluence from Siegel-Whittaker functions to Whittaker functions on
Sp(2,R) by using their explicit formulae. In our proof, we use expansion theorems of the
good Whittaker functions by the secondary Whittaker functions.
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1 Preliminaries

1.1 Basic notions

Let G be the real symplectic group of degree two:

g 1
G:SP(Q,R)-_—{QESL(4,R)ithzg=J2: ( 1, 02)}7

with 12 the unit matrix of degree two.
Fix a maximal compact subgroup K of G by

={HAE=(_$ i)eﬂAﬁeM@Bﬁ.

It is isomorphic to the unitary group U(2) via the homomorphism

K 3 k(A,B) — A+V—-1B € U(2).
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Then the set of irreducible representations of K is parameterized by {(A1,2) € ZD Z |,
A1 > A2} and we denote by 7(y, ,) = Sym* ™2 ® det*? the representation corresponding to
()\1, Ag)

We define two spherical subgroups R; of G and their representationes. The first one is a
maximal unipotent radical of G given by

1 o 1 ny Ny
1 liny m3

Ry = { n(ng,ny,ng,m3) = I 1 ‘n@‘ €R
— g 1 1

Any unitary character n; of R can be written as
Mm(n(no, n1, nz,n3)) = exp(2rv/—1{cono + c3n3))

with some ¢y, ¢3 € R. In this paper we assume 7); is non-degenerate, that is, cocz # 0. Taking
a maximal split torus A of G by

A= {a(a1,a3) = dia,g(al,ag,al_l, a;') 1 a; > 0},

we have the Iwasawa decomposition G = B1AK.

The second spherical subgroup R; is defined as follows. Let Ps = Ls X Ns be the Siegel
parabolic subgroup with the Levi part L, and the abelian unipotent radical Ng given by

L5: {(13 tAO—l) ‘A € GL(QﬂR)}a

NS = {R(O,nl,ng,ng,) l ni,N2,N3 € R}
Fix a non-degenerate unitary character £ of Ng by

£(n(0,n1, ny, n3)) = exp(2av/—1 Te(HeT))
. h
with T’ = (Z: Zz), H; = (h3;2 h}if) € M(2,R) and det H; # 0. Consider the action
of Ls on Ns by conjugation and the induced action on the character group Ng. Define SO &)
to be the identity component of the subgroup of Lg which stabilize £:

SO(€) = Staby (6)° = { (‘g tA”_I) |*AH A = Hg} .

Then 5O(§) is isomorphic to SO(2) if det Hy > 0 and to SO,(L,1) if det He < 0. In this
paper we treat the case that { is a ‘definite’ character, that is, det H; > 0. So we may assume
hi,hy > 0 and hs = 0 without loss of generality. We sometimes identify the element of SO(£)
with its upper left 2 X 2 component. Fix a unitary character x,m, (mo € Z) of SO(£) = SO(2)

by
vhy - cos# sinb Vhi —
Xmo (( \/h2) (— sin 6 cosﬁ) ( \/h2)> = exp(v—1mof).

We define R = SO(£) x Ns and 3 = x,n, M &. Note that we also have the decomposition
G = R AK.



1.2 Spherical functions

For the pair (R;,n;) defined as above, consider the space C“(}L\G) of complex valued C'®
functions f on G satisfying

f(rg) =ni(r)f(g) forall (r,g) € R x G.

By the right translation, C;f(&\G) is a smooth G-module and we denote by the same symbaol
its underlying (gc, K)-module (g¢ is the complexification of the Lie algebra of G). For an
irreducible admissible representation (7, H,) of G and the subspace H, x of K-finite vectors,
the intertwining space

Tyior = Homyge k) (H 10, C (Ri\G))

between the (gc, K)-modules is called the space of algebraic Whittaker functionals for i = 1,
or algebraic Siegel- Whittaker functionals for ¢ = 2. For a finite-dimensional K-module (7,V;),
denote by C7? (R;\G/K) the space

{¢:G = V., C= | d(rgk) = ns(r)r(k " )p(g), forall (r,g,k) € B; x G x K}.

Let (7*,V;+) be a K-type of m and ¢ : V;« — H, be an injection. Here 7* means the
contragredient representation of 7. Then for ® € Z,, ., we can find an element ¢, in

Coin(RAG/K) = C2 (R\G) ® Vrs & Hompg (Vi OF (RAG))

via ®{c(v*))(g) = (v*, 4.(g)) with {, ) the canonical paring on Vi» x V,.

Since there is the decomposition G = R;AK, our (generalized) spherical function ¢, is
determined by its restriction ¢,|4 to A, which we call the radial part of ¢,. For a subspace
X of C2 (R\G/K), we denote X|4 = {¢|lsa € C*(A) | $ € X}.

Let us define two spaces Wh(m,m,7) and SW(r,n,,7) of spherical functions and their
subspaces Wh{r, 1, 7)™ and SW{m, s, 7)™ as follows:

Wh(ﬂ"mv"-) = U {¢.]2¢ Im,w}v

EHom g (7*,7)

Wh(r,m, 7)™ = {¢, € Wh(m,m,7) | ¢.|4 is of moderate growth as a;,a3 — oo},

SW(W,T)%T) = U {¢¢ I e 1-772,”}’

teHomp (7*,7)

and
SW(r, 2, 7)™ = {¢, € SW(m,72,7) | ¢.|4 decays rapidly as a1,az2 — oo}

We call an element in Wh{m,m,7) (resp. SW(m,m2,7)) a Whittaker function (resp. Siegel-
Whittaker function) for (7,1, 7).

As we shall see in the next two sections, radial parts of spherical functions satisfy certain
holonomic systems of regular singular type. We ¢all the power series solutions at the regular
singularities of the systems secondary spherical functions, and the elements of Wh(r, ny, T)m°d

and SW(rr, g, 7)™P good spherical functions.
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1.3 Pj-principal series representations

In this section we recall the generalized principal series representations of G associated with
the Jacobi maximal parabolic subgroup Py of G corresponding to the long root. A Langlands
decomposition Py = M;AjNy is given by

b

My |ee (%1}, (Z’ d) e SL2,R) },

Ay = {a(ay,1) = diag(as, 1,a7},1) € A | a; > 0},

Ny = {n{ng,n1,n2,0) € N=R; | n; € R}.
A discrete series representation (o, V,) of the semisimple part My = {£1} x SL(2,R) of F;
is of the form o0 = e ® D¥ (k > 2) , where ¢ : {£1} — C* is a character and D} (resp. D)
is the discrete series representation of SL(2,R) with Blattner parameter k (resp. —k). For

v € C, define a quasi-character exp(v) of Ay by exp(v)(a(a1,1)) = af. We call an induced
representation

I(Py;o,v) = C“-Indgj (c@explv+1)®1y,)

the Pj-principal series representation of G.

The K-types of I{Pj;0,v) is fully described in [23, Proposition 2.1] and [13, Proposition
2.3). In particular, if # = I(Py;e ® Df,v) with e(diag(-1,1,-1,1)) = (=1)* (even Pj-
principal series), then the corner K-type 7 = 73, ;) occurs in 7 with multiplicity one.

2 Whittaker functions

2.1 Basic results

Let 7 = I(FPy; E‘D;:, v) be an irreducible even Pj-principal series representation of G’ with
e(diag(—1,1,~1,1)) = (-1)*, and 7* = T(k,k) is the corner K-type of =. We first prepare
some basic facts on the Whittaker functions for (m,m, 7). Throughout this section we use a
coordinate z = {21, z3) on A defined by

ay 2 2
1= |meo— ], =z3=4rczas.
a3

By combining the results of Kostant ([18, §6]), Wallach ([30, Theorem 8.8]), Matumoto ([19,
Theorem 6.2.1]) and Miyazaki and Oda ([23, Proposition 7.1, Theorem 8.1]), we obtain

Proposition 2.1. Let 7 and T be as above. Then we have the following:
(i) We have dimZ,, » = dim Wh(r,5;,7) = 4, and a function

dw (a) = a¥F1aE+ exp(—2mesal) hyy ()

on A is in the space Wh{m, m1,7)|4 if and only if hw(a) = hw (z) is a smooth solution of the
following holonomic system of rank 4:

(2.1) {80, (- 0y + 05, + %) + wl}hw(w) =0,
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where 8, = x;(8/0z;) (i =1,2) is the Fuler operator with respect to x;.
(i) dim Wh(r,n,7)™°% < 1. Moreover this inequality is an equality if and only if c3 > 0.

Remark 1. Since [23] treated the case o = ¢ ® D, we need a minor change by using the
explicit formulas of ‘shift operators’ ([22, Proposition 8.3]).

2.2 Explicit formulas of secondary Whittaker functions

In this section we determine the space of smooth solutions of the holonomic system in
Proposition 2.1, therefore the space of the Whittaker functions Wh(rm, m, 7), explicitly. Set

hw(a) = hw(z) = Z I R

mn>0

with ag o # 0. Then we have the following difference equations for {a . }:

1
(2.3) (o1 + m){—(al +m) + (o2 +n) + §}am,n + Gm-1, = 0,

. y)am,n + {(0‘1 +m) - (o2 +n) + %}am,n—l = 0.

(2.4) <0'2+ n+ k—_—;—y) (0‘2 —}—ﬁ—{—

Here we promise @n, , = 0 if m < 0 or » < 0. By putting m = » = 0 in (2.3) and (2.4), we
can find the characteristic indices

-k+tv —-k+v+1l -kxv
(01,02)=(01 2 )s( 2 3 ) )
If v is not an integer, we can determine the coefficients a,, , inductively for each case and
thus obtain

Proposition 2.2. (cf. /29, Proposition 2.1]) For v ¢ Z, define the functions hyy(v;a) =
Riy(viz) on A by

1 (e m) = 1 -k 2
hw(l/,ﬂ.?) - Z Cm,anln$2‘+( )/ ’
m,n>0
2 () — 2 mint(—k+v+1)/2 at(-k+v)/2
hW(Vv w) - Z cm,nml Iy )

m,n>0

with

3

R B Vs
C =T SO
~v, zhtydl Y 1 m!n!

mn -yl mln!

2 —p|lThY —m —n+ ==L (—l)m“"n.
—-v, E 5

Then the power series hiy (v;z) converges for any © € C? and the set {Kig(ev;z) | i =
1,2, ¢ € {£1}} forms a basis of the space of solutions of the system in Proposition 2.1.

11
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2.3 Explicit formulas of good Whittaker functions

When ¢z < 0, Proposition 2.1 tells us that there is no non-zero moderate growth Whittaker
function. Therefore let us assume c3 > 0 in the following discussion. The integral expression
for the Whittaker functions of moderate growth was obtained by Miyazaki and Oda.

Proposition 2.3. (/23, Theorem 8.1)) Let m and T be as before. Define

t b

tz 163311172) dt
16172 tZ

ow(a) = gw(z) = 277 / W, (1) exp -
0
with W, the classical Whittaker function. Then the function
dw(a) = a,}f“"lag“ exp(—2mezal)gw (a)

gives a non-zero element in Wh(m, ny, 7)™°4| 4 which is unigue up to constant multiple.

2.4 Expansion theorem for Whittaker functions

Now we express the moderate growth Whittaker function gw as a linear combination of
Ry
Theorem 2.4. Forv ¢ Z, let hiy (v; a) and gw(a) be the function defined in Proposition 2.2
and 2.3, respectively. Then

gw(a) = cw Z (I‘[mey, _—kj_;ﬁi]hiv(su;a) +F[—5v, w]hﬁy(su; a))
2
ec{£1}
with e = 2172k r—1/2,

3 Siegel-Whittaker functions

3.1 Basic results

Miyazaki ([21]) studied the Siegel-Whittaker functions for Pj-principal series and obtained
the multiplicity one property and the explicit integral representation for rapidly decreasing
function. As in the previous section, we introduce the coordinate y = (y1,y2) on A by

h1a2
n = ‘_"“‘“h2a;, Yo = 47rh2a§.
2

We remark on a compatibility condition. For a non-zero element ¢ of Cgf},(_k k (R\G/K),
we have ’

¢(a) = p(mam™) = (xm, BE) (M) Tt 1) (M) d(a),

where a € A and m € SO(€) N Zx(A) = {£14}. If we take m = —14, (Xm, RE)(m) =
Xmo (M) = exp(my/—1myg) and T(—k—k)(m) = 1 imply that mo is an even integer.
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Proposition 8.1. (/21, Proposition 7.2]) Let © and T be as in §2.1. Then we have the
Jollowing:

(i) We have dimZ,, . = dim SW(m,n2,7) < 4 and a function
bsw(a) = a¥T ek exp(—27(h1ad + hoad))hsw (a)

is in the space SW (m, m2, 7)1 4 if and only if hsw (a) = hsw (y) is a smooth solution of following
system:

1 m:

-0 pibiel U S h =

9 '.i!2> + 4 (yl — 1)2} SW(y) 0,
1

82 {(00+510) (00 + 55Y) ~ v (B + 5) — (-0 + 00+ 5) Jhowla) =0,

with 8y, = y:(d/0y;).
(it) dim SW(m, 7, 7)™ < 1.

8.1) {83 (<8 +0,,+3) + = (0w +

3.2 Explicit formulas of secondary Siegel-Whittaker functions

We consider the power series solution of the system in Proposition 3.1 around (y1,y2) =
(0,0). In the notation in [16], this is the solution at Qeo.

Proposition 3.2. For v ¢ Z, set hiy, (v;a) = hiy (viy) by

r k+t|mo|—v lmol|+1
m-n+ —5——, M+ —5
1 v — (1 — Imol/2 E 1 2 ! 2 m, nt{—k+v}/2
hSW(V’y) - (1 yl) ° C"n’“r _ k+|mol—» [mol+1 ] t ’
mn>0 L n+ 2 ’ 2
Ky (v;y) = (1 — yy)Imol/? Z 2 [m+n+ —kﬂgoby +1, m+ gt kHW;o‘_U }
swil ¥) = - Cmon et |4y m mal—v
30 I k-Hz ol + +1, 02H-1 n+ k4] 201

mabnt(—k+v+1)/2 n+(-k+v)/2
. yl y2 .

Here c}, , and cZ, n are the coefficients defined in Proposition 2.2. Then the power series

By (viy) converges |yi] < 1 and y; € C and the set {hiy(eviy) |i=1,2, e{£1}} forms a
basis of the space of solutions of the system in Proposition 3.1.

3.3 Explicit formulas of good Siegel-Whittaker functions

The integral representation of the unique element in SW(r, 72, T)™P| 4 is given by Miyazaki
(121, Theorem 7.5]). For our purpose, however, we need another integral expression for this
function. Inspired by the work of Debiard and Gaveau ([1],[2]), we obtain the following Euler
type integral. See also lida ([15]) and Gon ([6]).

Proposition 3.3. Define

gsw(a) = gsw (y) = (1 — y)mol/2ylmel/?

! y
/ fimol=13/2(y _t)(lmo]—l)/2F<_22{1 - _yl)})dt,

0



80

with
F(z) = e*(22)Th-lmol =02y, 202 (22).
Then the function
$sw(a) = af T af ™! exp(-2m(hial + hoa}))gsw ()
gives a non-zero element in SW(rm, mp, 7)"P| 4 which is unique up to constant multiple.

Proof. See [6, 8.4]. a

3.4 Expansion theorem for Siegel-Whittaker functions

Theorem 3.4. For v ¢ Z, let hiy, (v;a) and gsw(a) be the function defined in Proposition
3.2 and 8.3, respectively. Then

~k4+ev+1
gswia) = csw Z (P[usv, ““—‘—}h}gw(gl/;a)

ee{+1} 2
k—ev—1 —k+|mgltev
—&v, > 5 +1
+T { ko e } Ry (ev; a))
Stimeizer
with
|moi+1
csw = I’[ 2 ]
—k+|mo|—u —k+|mol+v ’
]2 O[ + 1’ 5 4] + 1

4 Confluences

4.1 Confluence of the differential equations
Theorem 4.1. If we substitute

‘27!’00
t

(4.1) hy =t%c3, hy=rcs, mo=

in the system in Proposition 3.1 and take the limit t — 0, then we obtain the system in
Proposition 2.1.

4.2 Confluence of the secondary spherical functions
Theorem 4.2. For v ¢ Z, define the functions by, (v,t;a) (i = 1,2) by substituting (4.1)
n hfS.W(V;a). Then

gl PR N

13‘% hsw(V,t, Cl) = hw(V, a),

}E% tk_"'lhzsw(v,t; a) = h3y(v;a).



4.3 Confluence of the spherical functions

Theorem 4.3. Define the function gsw(t;a) by substituting (4.1) in gsw(a). Then

lim gsw(tia) _ gw(a)‘
t—0 CSW (%2774

5 Deformation from (R, 1) to (Ry,7:) and the confluence

In this section we explain the main results in the previous section from the points of view of
deformations and contractions of Lie groups (cf. [3]). This is to supply a heuristic background
for the computations in the previous sections.

5.1 From SO(2) to No

We first consider the deformation of two subgroups of SL(2,R):

cosf sinf
2) = #ecR;,
SO( ) { (— siné cos 6) l € }

= )leex)

Under the usual action of SL{2,R) to the upper half plane § = {z € C | Im(z) > 0}, SO(2)
is the stabilizer subgroup of v/—1 and Ny fixes /—1oo. Set z; = 4/—1/t for t > 0. Then
lim¢—e0 2 = /=100 and the stabilizer subgroup Stabgrar)(2:) of 2 in SL(2,R) is

StabSL(z,R)(Zt) = {T‘g(t) — ( cosf  sin 0/3) 10 c R}

—tsin@ cosé

t=i/z 0 /20

For our purpose, we have to move § = 6(t) such as sin8(t)/t — c ast — 0. Let 6(t) = ct.
Then

cos b sin ¢ L e
(5.1) Ta(2) = (—-t sin Q(Qt()t) cos ét()tgt) - (0 1)

as desired.

5.2 From Rg to R1

ht* 0
Let & (t # 0) be the definite character of Ng associated with He, = ( g h) (h > 0):

ft (n((), 1y, 12, ’1’23)) = exp(?ﬂ'\/:_l(htznl -+ h/n,g)) .

Then the stabilizer subgroup SO(&;) is identified with {rg(t) | £ > 0} . Therefore if we take
6 = 6(t) = tno as in the previous subsection, (5.1) implies

(5.2) lim SO(&) = {n(n0,0,0,0) | no € R}

in Lg makes up Ry = N together with Ng, as we expected.
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5.3 From n; to n;
Define the character x,,,(;y of SO(&;) by
Xrmo(t) (o (t)) = expv/~T(mo(t)8).
and put 72t = Xmo() B &s-
M2,¢(ro(s) (1) - n(0,m1, no, n3)) = exp 2my/~1(ht*ny + hna) - exp /=L (mo(t)0(t)).

Since 6(t) = not, we should take

27
mo(t) = : 0.

Then the right hand side goes to exp 2m/—1(csng + cono) (after the replacement h = ¢3),
and thus combined with (5.2), we obtain

l}_ﬂ% M2, (Tos) (8) - 7(0, n1, ng, n3)) = m1 (n(ng, n1, N2, n3)).
Remark 2. Our result should be regarded as the investigation of the intertwining spaces:
Hom(gc,K) (HW,K’ Og;, (R’t\G))
with

Ry=SO(&) x N, (t>0).

6 Further comments

We only treat the even Pj-principal series, however, we also have the same results for the
odd case, that is, e(diag(-1,1,-1,1)) = —(-1)%.

In the case of the principal series (induced from minimal parabolic subgroup of G), the
holonomic systems of rank 8 for the radial part of Whittaker functions (resp. Siegel-Whittaker

functions) are obtained in [22] (resp. [21], [16]) and we can prove the same assertion as

Theorem 4.1. However, explicit formulas for secondary spherical functions are known only
for Whittaker functions ([17]), we can not say any more.

The other kinds of spherical functions on Sp(2,R) are studied by Moriyama ([24]) and by
Hirano ([12], [13], [14]). The spherical subgroup of [24] is SL(2,C) and of [12], [13] and [14]
is SL(2,R) X Hj3, with H the 3-dimensional Heisenberg group. We hope that similar results
hold between the two spherical functions.

We finally remark on the case of the special unitary group SU(2,2), which has the same
restricted root system as Sp(2,R). (Siegel-) Whittaker functions on SU(2,2) are studied
by Hayata and Oda ([10], [8], [9]) and by Gon ([6]). Since their differential equations are
compatible to those of Sp(2, R), analogous argument seems to be possible.
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