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The standard (g, K)-modules for Sp(2,R), II
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Abstract

As a continuation of the previous article [?], we continue the
description of the standard (g, K)-module structure of Sp(2,R).
Here we give a complete descrition of the generalized principal
series associated with the parabolic subgroup P; corresponding to
the long root (we refer to such representations as the Py principal
series).
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Introduction

In the previous note [?], we had an explicit description of the (g, K)-
module structures of the largest principal series, i.e., the principal series
induced via the minimal parabolic subgroup Py. A notable fact is that in
terms of the canonical basis (or the crystal basis) of the K-modules, the
shift operators (the matrices of differential operators comming from the
gradient operators with respect to p+) and the matrices of eigenvalues
(the generalized infinitesimal characters) are tri-diagonal, or di-diagonal.

By subquotient teorem of Harish-Chandra or by subrepresentation the-
orem of Casselman, any irreducible (g, K')-module is realized as a sub-
quotient or submodules of a (specialization of a) principal series (g, K )-
module. Therefore roughly speaking we have done the problem in the
previous note [?]. However it is still difficult to grasp the structures of
these subquotients and submodules, as concrete algorithm. For example,
if we can embed an irreducible (g, K)-module 7 into a principal series
I, (7 < II,), it is not clear in general that for each K-type 7 how
the 7-isotypic component #[r] of 7 corresponds to a part of 7-isotypic
component II,[7] of II, when the multiplicities of both are big.

The target of our project is to fix this kind of problem completely
explicitly, at least, for the (g, K')-module strutures of Sp(2,R).

Here we consider the representations 7 obtained by parabolic induction
with respect to the parabolic subgroup P; associated with the long root.
These representations are large in the sense of Kostant-Vogan, i.e., their
Gelfand-Kirillov dimension is equal to dim N of the maximal uipotent
subgroup N of G = Sp(2,R). But the degree of the associated variety is
4, i.e., the half of the order of the Weyl group of G.



1 The Pj-principal series

1.1 The parabolic subgroup F;

The Lie algebra of the unipotent radical Ny of the maximal parabolic
subgroup P associated with the subset {2¢;} in the set {e; — e3,2e5} of
simple roots of Sp(2,R) is given by

Ny = G2e; D Gey—ep D Bertess
which is a Heisenberg algebra of dimension 3. We have
ay = RH}_, with H1 = En - E33,

and Ay = exp(ay).
The Levi part of the maximal parabolic subgroup P; is given as a
product AyM; with

n
b b
My = ‘ -1 l ’76#22{:':1}7 (a ) ESL(Q)R)a 3
n c d
c d

which is isomorphic to a direct product u, X SL(2,R). The connected
component M9 of M is isomorphic to Gy = SL(2,R).

We put Ky := M; N K, then its connected component is given by
K9 = M9 N K which is isomorphic to

K, = {ry = ( cos 8 sm9) 6 € R}

—sin@ cosf

inside (.

1.2 Double coset decomposition for the P;-principal

series

For our later need, we want to have a decomposition of the standard

basis X4 ; in ps with respect to

AdH(nyc +myc) +asc + Ec
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for a given regular element ay € A;. Since A; centralizes m; and nor-
malizes ny, it suffices to know the following.

Lemma J.1 We have
(i) Xeq1 = £2v/~1Fq, + Hy £ K{en1)
with

424/ —IEgel eny, H,€ay I‘E(en) € tc;
(i) X412 = Eppmey + V—1Ee 4o, + &(en);
X—,lz = E81—82 -V _1E61+62 - 1‘3(512)
with
Ee ., £V—1E, 1., € njc and s(en), s(e12) € tc;

(lll) .Xj;zz = (iz\/——lEzez + Hz) + ﬁ(ﬁzz)
with

+2v/—1E;,, + H; € my and &(ez;) € Ec.

Moreover we note here that

: 0 0 0
22V 1Ky, + Hy = Hy + £+/—1{Ey,, + ( ))i\/~1 ( 1)
=zy. +—1w,

01 0 1
=H, £+v/-1 = .
Ty 9 (1 0) and w (_1 0)

1.3 Definition of the P;-principal series

with

The representation o € Mj is determined by a couple oy € § E(E:R)
and € € fi; as an outer tensor product oy = ¢; ® e. We assume that
o1 is a representation of discrete series of SL(2,R). Hence oy = D} or
= D for some k > 2 (k € Z). Let Hps be the representation of D}
or of D, and denote by the same symbol its tensor product with the
representation space C of € over C.



We fix a complex valued linear form v on a; = Lie(As) and let ps be
the half sum of roots belonging to ny. The we consider a quasi-character

et ay € Ay v exp{(vs + ps)(logas)} € C*.
Then the reprentation space H, of the representation
T = Tpywroy = Indf (07 ® it @ 1x,)
of P; principal series, is given by

H,={ f:G— HD;“’ locally integrable
f(nymyasz) = oz(my)errte)losent ()
for a.e. z € G,ny € Nj,my € Mj,a5 € As
fi WK @], do < +o0)

The action of G on this space is the right quasi-regular action given by

m(g) : f(z) = f(zg) (z,9€G,f¢€ H,).

1.4 The K-types of P; principal series

We analyses the K-types of the representation space Hy of a Py prin-
cipal series. The target space of functions f in H, has a decomposition:

HDf = @f":OCvﬂkm).

Denote the corresponding decomposition of f by

oo

£(z) = fahraa)(Z)v(rr20)-

a=0

Let 2 € K, and let my € K be given by
mg = (773"'9) with rg € K3 and N € ta

with respect to the isomorphism Kj & py X SO(2). Then the defining

relation of f reads

f(kyz) = os(ms)f(z) = e(n) DE(ra)f(z) (aex € K ks € Kjy).
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The coefficients of v,, in the left hand side and the right hand side of this
equality are given by

fn((n,7m0)2) and fr(z)e(n)e™?, respectively.
Therefore f,, belongs to

LZ

(s eoxm) () =1 f:G = C, locally integrable

flksz) = e(n)Xm(re) f(z)
forae. z € K k;j=(n,rg) € Ky,

Jic |f1K (2)Pdz < +oo0}

for each m = £(k + 2a).
We recall here the equality of inner products:

/ K@)l pde = D [ 171K @) PdsY ot

Proposition J.2 By restriction to K, we have an idenitification of spaces:

H’ﬂ' = @:;O{L?Kj,5®xi(k+2a})(K) ® Ui(k"'za‘)}'

1.5 Construction of elementary functions

We construct elementary functions in

H7r - é\-}"ao{J:O{L?Kj,e®xi(k+2a))(Ar) ®C Ui(k—i-za)}-
First task is to contruct elementary functions in each factor LfKJ;@ ) (K
(m=k+2a).

Lemma J.3 The irreducible decompostion of K x K bimodule L*(K)
induces an isomorphism of K-modules:

Ll coxem)(K) = . cp{(T"1KD)e @ Xim] BT}
= O i)er{(T], 1) Ki)le ® Xtm] B 7, )}

Here 7 is the contragradient representation of T and (7*|Kj)le ® xm] is
the € @ X -isotypic component in the K; module ™ K.



Proof. By definition, L?Kj,a®x¢m)([{) = {C(e ® xm) ® LA K)}¥7. Apply
the decomposition of the K x K-bimodules:

LZ(I{) e}(ZIJZ)E-LT(h 12) T(ll l2)

Since the operation to take the invaraint part with respect to K is in-
volving only the first factor 7, 1,) of each 7, 1,)-isotypic component, we
have our proposition. [

Now we have to construct elementary functions in
<T61 ,32)1[(‘7)[8 ® Xam] B 711 13)-

The larger space 77, .y W 7, 1p) In L*(K) is generated by the entries in
the matrix Sym?(S{z ))det(S(sc))l2 (z € K,d = Il; — [3). To see their
intertwing properties with respect to the restriction to K of the left
regular representation of K, we compute Sym?(S(y)) det(S(y)) for y €
K given by

y= (an9> € pg X 50(2)3

which corresponds to (g (30) in U(2).
e

Fortunately Sym®(S(y))det(S(y))" (y € K) is diagonalized as

dia‘g(nd’ nd—‘l R ’770626’)7]12 ei[ze dlag( 15 ’t 7711—-167:(12-}-1)97 . nlzezh@)'

Therefore the eigenspace of ¢ @ x+m(y) = e(n)er™? occurs with multi-
plicity one, if there exists a € Z (0 < a < d) such that

nh=eeietal — o(me*™ for any n € pg, 0 € R.

In this case, the eigenspace is generated by the (d+ 1) entries the (a+1)-
th row vector of the matrix Sym®(S(z))det(S(z))"? (z € K). Thus we
have the following.

Proposition J.4 The 7, ,)-isotypic component of Lk coxanm) (K 15
given by
L%KJ,st&xﬁm)(K)(T(ll I2) ) C< S Al2 >,
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if
I, < +m < Iy and g(n) = n®™ for any n € us.
Otherwise, it is {0}.

Corollary J.5 The natural surjection:

00 ~ 2/ -
GBGZOL(ZKJﬁ@X:E(k-FQa))(I()Ui(k‘"}’za’) - {ZL%I{_;,E(@X:{:(};.}.QG))(K)} - L (K)

a=0

is an isomorphism.
Proof. This is obvious from the above construction of elementary func-

tions.

Definition Let € € py and k € Zy;. Then we put

Mym(e, k; (11,12)) := {a € Zyo | Iy < £(k+2a) < [y, parity(e) = li—la+k (mod 2)}.

Proposition J.6 The 7, ;,)-isotypic component in H, = H, has

Prvyeog
a system of canonical basis consisting of vectors of elementary functions:

{s8 AR [ a € My(e, k; (I, 1)}
In particular, the multiplicity of 7, 1,) in H, is given by the cardinality
m(:l:;s, k; (llal2)) = #Mi(&, k7 (lla 12))

of the set My (e, k; (I1,13)).

From now on, we consider only the + sign in £. Therefore, the symbols
m(x;e, k; (I, 13)) and My(e, k;(1},1;)) are abbridged to m(e, k; (I, (3))
and M(e, k; (l1,13)), respectively.

In order to formulate the corollary of the above proposition, we have
to some notataion. ‘

Notation (parity function and postive part)

(i) For I € Z, we define pi(I) by

0, ifl=kmod?2
pe(l) == .
1, ifl#kmod2.



(ii) For any function f(ly,l2,k) in ({1,l3, k), we associate another func-
tion f(lhiz;k)-f- by

f([hlZa k)+ = Sup{oaf(llvl%k)}'

Corollary J.7 The multiplicity m(ly,l;) of 7, 1,) in the principal series
representation ™ = 7p, ., -, 15 given as

m(l, ) = 3{li+2 - pe(l) — kY4 — 3{b + pr(l2) = K}
= 3(sup{ly — pe(h), k} — sup{la + pe(ls), k}) + 1.

2 Contiguous Relations for the P;-principal
series
2.1 Contiguous relations along the peripheral K-
types
We investiagte the (g, K)-module structure on the subépace
Lix, caxyVt C Hip, ., Dt ee)

Inside this subspace there ocuurs K-types :

{T(k,k-za)(d =0,1,--) for even case ;

T(kh—2a-1)(@ = 0,1,---)  for odd cases

with multiplicity one. Moreover eaxh 7 x_.-isotopic component is given

either by < siUAk=2a 5 4
or by < st Ak-2aml 5 g

respectively.

Proposition J.8 (contiguous equations) We drop the generator vy here.

(i) When (—1)* =€ (i.e., the even case), we have the going-down con-

tiguous eqaution

a a —2a » a —2a—-271%_{(2a
C(—z,(lz){sgi Ak }= {Sg2a++22)Ak ? 2} ’Y(_’(_)|_2)
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with * ( (12) = vy + py—k + 2a, and the going-up equation

a a ~2a a a (20')
Ly (o817} = (AT )

with 777, = vy + ps +k — 20— 2.
(i) When {—~1)* = —¢ (the odd case), we have

2a+1){ (2214-11)Ak 2a—1} _ {ngigg)Ak 20— 3}* (2?1;

with the intertwining constant *y( C(H'l)) =v;j+p—k+2a+1, and

C_(:zz-{-;){ %::—11 Ak —2a- 1} { 22;1_ I)Ak 2a+1} +2tz+;) (Odd Case)

with the constant 'yi ‘z+;) =vy+p;+k—2a-3.

Proof. (Going-down equations) Set d = 2a or d = 2a+ 1, respectively.

Since the value of sgitz)Ak ~4-2 at e is the colum vector (0,---,0,1), it
suffices to compute the value at e of C(d(+2) d)Ak‘d. The last row of
C’(_;)( +2) is given by

(G,--,0,X_11).

Therrefore, utilizing the double coset decomposition
Xo11==2/=1Eg, + Hy — 7(en1),

we have to compute the value

Xou(s 85N (o = {Hi(s32°A %) (e) — m(en)(s5:4%7%)(e)}
= {vs+p;—(k—d)}v

(Going-up equations) Put d = 2a or d = 2a-+1. Then we have to compute
the constant 7§, _, in

C(d( Z)S(d)Ak d _ 'y_,_( 2)Sd—2Ak d+2.
Since the last row of the operator Ci)( 2) is

(07 ot 7O:X+227 _2X+121 X+11)a



we have to compute the sum of the three values

Xyna(s s 2AF ) (e) = 0,
~2X12(s2185; ' AP () = —2k(en)(s2185; ' AF ) (e)
= —2(s§,A% %) (e)
- 2

and
Xi11(s5,0% %) (e) = (vs + py) + (k — d).

Therefore *yj_;(_z) =vy+ps+(k—d)—2.0

Remark (Comparison with the principal sereis} Let us specialize one of
the parameters as v, — k — 1, i.e. 15+ p; = k in the even P,;,-principal
SEIIeS (P, .1 waer,e0)- Lhen its contiguous relation at the K-type 7 )
(p_-side, going-down) gives

X_22(Ak) SglAk__z
X__lg(Ak) = (V]_ +2— k) 321322Ak—2
X_n(Ak) S§2Ak_2

This gives formally the same contiguous equation at 7 x) of the even P;-
principal series, when we put v; = v;. Needless to say, this corresponds
to the exitence of the embedding of the Py-principal series to the Pin-
principal series. We already use this fact substancially in former papers.

2.2 Contiguous relations for general K-types

Before to discuss the contiguous relations, we compare firslty the mul-
tiplicities between contiguous K-types, i.e., the multiplicities

m(sak; (llalz))v m(s,k; (l;,l;))

when |l§ — L+ |l — | =2, but [, + 1 # 1L +15.
Claim J.9 Set

m =m(e, k; (l1,13)), m =m(e k;(,13)).
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Then in the case of even principal series representations, we have the

following:
For (I{,14) = (I; + 2,13), m' =m+1.
m ifly <k
For (I{,15) = (I1,1y + 2), m' =
(h) = (hoha+2) {m—L if Iy > k.

m-—1 fli=l=kmod2andl, >k
(Lh+1L,L+1), m'=(m ifl, =0, =kmod2and l, <k—2
m+1, iflij=lhL=%k+1mod?2.
For (I3,15) = (lh — 2,13), m' =m —1
{m if I, < k,

For (1,15

For (I 1)) = (Il —2),  m'=
() = (b, o =2) m4l, ifl>k

m—1 ifly=I;=kmod?2
For (I{,l5) = (lh—1,l—1), m'={m ifly=l,£kmod2andly <k
m+1, il =I[#kmod?2andl;>k.
In the case of odd principal series representations, we have
For (13,15) = (I1 + 2,15), m' =m+ 1.
| L [m ifh<k-2
nz_{m—L if I, > k—1.
m ifly =k mod 2o0r iy > k;
m+1, ifljZkmod2andl, <k-2.

For (I, 15) = (I3, 12 + 2),
For (I,13) = (I + 1, +1), m'= {

For (I3, 63) = (l — 2,2),

ifl, <k
For (14,15) = (I1,1, — 2), m = m iy S K,
m+1, ifl>k+1.
m ifliyZkmod2orl, >k

%qgmzup4@—n,wz{

m—1,

ifly=kmod2andl; < k.

Now we have the canonical blocks of elementary functions, which are
the source and target of the Dirac-Schmid operator considered in the
section 1. Then we have the contiguous relations, if we determine the
matrices of intertwining constants. To describe these results economically,
we introduce more new symbols.



More local symbols For a dominat weight (I;,ls) € LF, using the
former ’local’ symbols:

C_fo iti=kmed)
pk(l‘)'—{1 i1, % k (mod 2) (=12

we set

21 = ll - pk(il) and ZQ = 32 + pk(lz).

Proposition J.10.A
The case of even Pj-principal series ((—1)F = ¢).
Going-up relations:

(i) If I, < k — 2, we have

d d—2
C'*';("Z)s%k)—lw--,d-pk(lz)]Alz = S%k——lz)—Z,‘-- ,d—z—pk(lz)]Amz’P+;(—2)("TPJ,kQ (lla lz))

with some %{f; +2 -k} X %{il + 2 — k}4 intertwining matrix
T 4.—2)(mp,,k; (I1,12)) which is given by

0 , 0
= diag%(k_f2)s,is_§___1__pk(h)(k’ + 12 + 2’&) , 0
+ diag%(k—jg‘——ﬂSéS%—1-?}:(’1)(VJ +pst+l—d+2)

F+;(_2)(7TP;,A:; (11 3 12))

(ii) If I, > k, we have

d d—
Cost)So tmpatty A = o orpiy D Ty (msss (1, 2))

with some (£ —pi(l1)) x (£41—pe(ly)) matrix Ty —2)(7p, 85 (I1,13)),
given by

F+;(—2)(7TP_;; (l]_, Zz)) B diagosisg_l_pk(ll)(k + iz + 22), 0]
+ 10, diagogigg—l—pk(h)(VJ +pr+l—d+ 22)} :

Slant-up relations: Cio) : Ty i) = T(i+1b1) (3 cases)

(iii) If pe(ly) = pe(lz) = 0 and [z < k — 2, we have m’ = m and

C+:(0)5Eif)—zz,-~,d]Alz = Sg:-)—lz—l,-" ,d-ﬂAZZH Ty (s (s 2))
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with some 2{l; + 2 — k}; x 3{l; + 2 — k}, intertwining matrix
Lii0) (7P, k; (I, 12)), which is given by
| 0, 0
- diagKK I —(k—2) _I(—-%;l (k -+ lz + 22), 0
>t 3 . -
+ diag, ;. u-0a  (FF (v +ps + b +24)),

Ty y0)(7p, 85 (U, 12))

(iv) If p(ly) = pr(la) = 0 and I, > k, we have m’ =m — 1 and
d .
c+;(0)5$) .,qull = Sf],,)... ,d—le[ T

R

with some £ x (£ + 1) intertwining matrix T', which is given by

F.}.;(O)(WPJ’A;; (Zla lz)) = diag05i5§~1 (“' 22‘;1 (k' + 12 + 21)) ,0] )
+10, diagy;ca_; (5w +ps+l+ zi))} :

(v) If pr(ly) = pe(l2) = 1, we have m’ = m + 1 and

d ) d .
C+;(0)stqu{k—lz, e g A = S%Sizp{k—-lz-—l,()},-“,J}A12+I'F +i0) (TP k3 (115 2))

with some 1(I; +4 — sup{k, o} x -;(Zl +2— sup{k,l»}) intertwining
matrix Iy o) (7P, (,13)), which is given by

F_,_;(o)(ﬂpj,k; (l1,42))

diagys-1,)cic1amzy (L2 +ps+ 1 + 2 - 1))}
0

0
+ } . .
diag; . 7,)cicia-o)(— 25k + 2+ 2i + 1))]

Going-right relation: Coyya) : Ty 1) = T(+2,0)

{vi) We have,

{d) Iy .
C+§(+j_)zs[3up{k~lz, pr(l2)}e ,d—Pk(lz)lA ‘=
{ .
Stouplk=lz, pi(la)h 42D Drita) (TRsks (1 12))

with some

1~ ~ 1 - -
=(ly = sup{ly,k}) x 5(11 + 2 — sup{ly, k})

[SW]
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intertwining matrix I';(y2)(7p, k5 ({1, 12)), which is given by

Ly (mp, ks (1, l)
0
B Liagsup{%(k—z'zp}gs%—m(m ((Corremaiisgaml ;4 1, + 2) }
4 {diagsup{%(k—fz,oxké_pk(gz) ((d+l—2i—p?£fz§§¢;i;’)—2i-z?k(32))(VJ tpy+la+d+ Qi))}

0
Going-left relations: C_y_a) @ Ty i) = T(hi-2,05)

(i) We have m’' = m — 1 and

(d) l2
C-x;z)j[gw{k*zz,pk(zz)},«-,d—pkuznA =
(d—2) AR T _oy(mpp; (b))

Sisup{k—l2,px(12)} - 1d—2—pi (i2)]

with some %(fl - sup{k,fz}) X %(fl + 2 — sup{k, iz}) intertwining
matrix [ -2 (7p,; (l1,42)), which is given by

F—;(—2)(7rpf,k; (I, 43))
= [diaguip 3 izt (94 20) — (@4 b +204)) 0]
+ 10, diag,p (i oycic-1-puin)(F — 2 = 20— 2)] :

Note here that we have % —1—pe{ly) = %(fl — Z~2) - 1.
Slant-down relations: C_y0) * Ty lp) = T(li-12-1) (3 cases)

(ii) When pi(l) = pr(la) = 0, we have m’ = m — 1 and
d 1 gl - .
C‘?(O)sEsip{k—lz,O},m ,d]Al = S§sip{k_z2~1,1},.-. ,d—l}Azz Nl oy (s (1)

with some 2(d+1 — sup{k — I + 1,1}) x 5(d + 2 — sup{k — b, 0})
intertwining matrix I'_0)(7p;; (I1,12)), which is given by

[y (s (1, 12) = |di883 syt opcic it (B (va +pa) = (la 28+ 2)) ,0]
+ |0, diag%sup{k—zz,o}gigg—l (d—ld_% (k —ly— 2 — 2))} .




100

(iif) If pa(ly) = pr(l2) = 1 and I; <k — 3, we have m’ = m and

S S it g AT Ty (T s (11, 12))

with some 4=kl » L=htd intertwining matrix I'— o) (7p,,k; (1, 12)),
which is given by ‘

0, diag%{k—fz)-i-lSigg—l(é%(k — 21— lp))
T o) (mPs 55 (li, 1)) = |0, 0 | i
+diag%(k_f2)+19$g_l(—213;2-(1/]' +ps—lg—21-2))

(iv) If pe(ly) = pe(ls) =1 and I, > k — 1, we have m' =m + 1 and

CooSip agA = sy g ATy (Tys (11, 2))

with some (g——é-l) X % intertwining matrix I'_;0)(7p, z; (I1,l2)), which
is given by

F_;(o)(ﬂ'PJ,k; (lh lﬁ)) =

di?‘gogigg—i (e~ -2~ 1))}
0

0,
+ diagoéisg_1 (—&%g(yj +pr—1l2—2i— 3))} :

Going-down relations: C_.(y2) : T(, 1) = T(1, l;—2) (EWo cases)

(v) When I, < k, we have

@ b _ (@+2) - .
Coi+ )8ty iD= Sectyazm drz—pe D=2 (TRsis (5 12)

with some (& —k+2) x (& =k£2) intertwining matrix T'_ 9y (7p, &5 (l1,12)),
which is given by (m' = m) :

P_;t+)(7rPJ,k; (ll, 12))

. d+1—pr(l2)—28) (d42—py(la) —2i 7 .

= 0, dlag%{k-fzﬂ)_isg—pk(lz) (( e 2()d+1%§d12) o) )(k — b= 21))
0, 0

+diag%(k—zz)$i5é—iﬂk(lz) ((23+1+pfc§-l§8§§:—+22)+pk([2))(VJ +ps—l—2i+ d)) .

2




(vi) When [, >k +2, we have

(d) L (d+2 _
c—;(+2)S[Pk(z2)1“' :d-'pk(lz)iA ‘= S[Pk(lz))r“ ,d+2.—?k(lz)]Alz Z'F“;('F)(WPJJV; (ll, 12))

with some (£—p(l2)) X (2+1—py(ly)) intertwining matrix Ty (7P, &; (I, 12)),

which is given by
F_;(+)(7TPJ,k; (lls 12))
(a1 —pe(la)—20)(d 2opulla)=2) (f ], 2’&'))}

- diagﬁé@'ﬁ%w;:(b) ( (d+1)(d+2)
0

0

+ 3 % 2 7 T . .
dingogicspn (EEHAEEE 0y + sl - 204 d))]

Next we discuss the case of odd Pj’s. We define the micro-parity of
each K-type 7, 1)

Definition 1f ((—1), (=1)%) = (¢, (~1)¥) (resp. ((=1)", (~1)"2) = (—&, ~(~1)")),

we say that the miro-parity of (I,1;) is +1 (resp. —1) (or even (resp.
odd)).

Proposition J.10.B

The case of odd Pj-principal series ((—1)* = —¢). In this case only those
K-types 7, 1,y such that d =[; — l; is odd occur.

Going-up relations: Ciy—2) : Ty ) — T(hl+2) (tWo cases)

(i) If I, < k — 2, we have
d 1. d—2 12 .
C+;(_2)S§k)—lz,-",d—Pk(ll)]A = ka—lz)"ﬁr“,d*2~Pk(11)]A +2.F+;(_2) (73, &3 (h, t2))

with some 22£ x i=F intertwining matrix Ty.(_o) (7, k; (I, {2)), which
2 2 +i(=2)

is given by
yy2)(m, ks (1, 12))
0, 0
- diag%(k—~1'2+2.)5a5(d—3)/2(k +1 + 2a), ©
+diag%(Icwfz)gaS(d—ﬁ)/Z(UJ +pi A+l —d + 2a).

(ii) If I, > k, we have

d _(d-2) Io+2 .
c+:("2)sgp:(lz)w~d—pk(h)]Ale - S[Pk(lz):"':d"2—Pk(ll)]A 2+ ‘F"”‘(O)(W‘I’k’ (51’12))
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with some (1) x (%) intertwining matrix I'yyo)(7s, k5 (11, 12)),

which is given by

F+;(—2)(lla l) = (diagogag(d—s)/z(k + fz + 2‘1)70)]
+ O, diagos“s(d_g,)/z (VJ + PJ + l~2 —d -+ 2(1)] .

Slant-up relations: Cyy0) : Ty 1) — Ti+14.41) (3 cases)

(iif)

(iv)

If micro-parity is odd, we have m’ = m and

d . (d
C+;(0)S§sip{k—zz,1},w,cz]Al - sfszip{k*-lg—l,o},m ,d—l]Al2+1 ) erj,k (ls2)
with some $(I;—k+2) x 3 (l; —k+2) intertwining matrix Liipme, k(01 12),
which is given by

. d—2a
[i0p0(ln, l2) = dlagsup{%(k—lg-l),o}gag%( y (v +ps+ils+2a~1))

0, 0
+ 5. o
dlagsup{%-(k—lg—i—l),l}ﬂai%(—%(k + 1l +2a— 1))’ 0

If the micro-parity of (I1,13) is even, and [y > k, we have m' = m

and
() I o(d) L+l
C+;(0)S[0'.4. ,cg__l]A b= S{(l,...,d]A 2+t T
with some 4;’—1 X ‘“2'—1 intertwining matrix I', which is given by

. 2a+1
F.[.;(O);Ol(ll, 12) = dlagUSaS-d,z;l(_ d (k -+ P2 + 12 -+ 2@))

{0: diagyc,ces (5= (v + ps + o + 2a))
0, 0

If the micro-parity of ({;,{5) is even and [, < k—2 we have m’ = m+1

d I d I
C+3(0)SEk)—lz,---,d—1]A ?= S%k)—iz—l,m,d]A . F+;(0);7rpj,k(lla l2)

with some t;;l X % intertwining matrix P+;(0)7er,k(l1, l3), which
is given by

, 0
diag%(k-—12+2)§a§i;_1(—2a;—1(k‘ 4 Iz 4 20:))

n {diag%(k_zz)gagégé(dhzdami(w +ps+l+ Qa)):l

ool lz) = [

0
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Going-right relations: Cy(42) 1 Tao ) — T(h+2,,) (ONE case)
(vi) We have m’ =m + 1 and

]Alz — S(d+2) ]Alz'r+;(+2)(lla 12)

()
C+;(+2)S[Suio{k‘i%l?k(lz)}:"' A=pr (1) [sup{k—I2pr(l2)}, ,d+2~p5 (I1)

with some (ll+2“s§p{k’£2}) X(Z‘H”sgp{k’b}) intertwining matrix I'y;(42)(l1, 12),

which is given by

di _ _ (d—2a)(d+1—2a ZN d+9
F+;(+2)(llalz) = lag%{k—bhsaﬁéz—l( 4+1)(d-62) (stpstlatdt a))

0
+ s 2a+2){2a 7
dlag%{k—?2}+édﬁd—;—1((v%%?§l(k + 0+ 2“))}

H

Going-left relations: C_y—a) : T( 1) = T(h—-2,2) (ON€ Case only)
(i) We have m’ =m — 1 and

() b (3-2) L |
C )ity ol (D = Slouplie o pplia) b d=2-pult] T =)

with some %(l} — sup{k,l5}) x %(l} — sup{k, [y} + 2) intertwining
matrix [__z), which is given by
I gyl = (diagogag(d—s)/z{(’/-f +p5) — (22 +d + 20+ 2}, 0)]
+ 10, diagyc,ca-a)2{k — (I, +2a + 2)}] :

Slant-down relations: C_,0) * Tiy,1) = T(h—112-1) (3 cases)

(ii} If (I;,l3) has odd micro-parity with I, <k —1, we have m’ =m — 1
and
d d -
c—s(0)5§k)—lz,-~,d]Al2 = S%k)—fwl,m a2 T

with some Zl—gﬁ X 51;5—‘*—2 intertwining matrix I'_q), which is given
by

P_jopo(l, o) = [diag%(k—lz-{—l)gagd—;l-(d—_}g{k —(la+2a+ 1)})]
1242y 4 py) — (12 + 2a+3)}) 0]

+ [diaglgagd_;z(—
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(iii) If (I1,1;) has odd micro-parity with I +1 > k, we have m’ = m and
d) ! (d) Ip—1
cﬂ;(O)SEI,m,d}A P = S[o,-‘-,d—le 7Ty
with some i“;—l X 4—*23 intertwining matrix T'_q), which is given by

. d—2a
I ool lg) = dlagogagég.l—( d {k—(ls+2a+1)})

0, 0
diag15a5i§l(“%{(w +p5)—(b+2a+3)}) O

(iv) If (I;,{;) has even micro-parity, we have m’ = m and

() I _ (@) Ip~1
C—§(O)S[sup{k—lg,0},m,af—l]A P = Slsup{k—lz+1,13, ,d]A e F—:(O);***

intertwining matrix I' (o),

with some ( h—sup{zk,lz}+l ) % ( llwsup{zk,lz}-i-l)

which is given by

\ . 20 +1
I —;(0)501(517 52) = dlag%sup{k—l;,o}gagizi(_ d {(Vl + pl) - (iz +2a + 2)}

0, diag%sup{k—zz,o}gag-d-;-%(d_zf_l{(Vz +p2) — (b +2a+2)}
0, 0

Going-down relations: C_(1q) : T( 1) — T j3—-2) (2 case)
(v) If I, < k, we have m’ = m and

d d _
Coir 08y D" = Sl a7 T (s (1, 2)

with some %—(il—k—f-?)) X%(Zl-—k-{-?;) intertwining matrix I'_,(49y(7p, 13 (11, 12)),

i

which is given by

3 d—2a)(d+1—2a 7
0, dlag%(k-fz+1)ga_d-g—‘(‘( d+i§(z+2) ‘)(k ~ Iy — 2a))
0, 0

+diag%(k_;2h1)stzs%l((2(—;g%5§(u] +pr—l+d— 2a})

I l) =

(vi) If i, > k +2, we have m’ =m + 1 and

I _ (d+2) foe
A% =80 1) drampn (Y 2Ty, 1)

c

{d)
=(+2)8[py (11), d—pi(12)]



a+1

t ) X ("1'2"—3) intertwining matrix I';(y2)({1,12), which is

with some (
given by

dr1)(d12)
0

0
+ {5 e . N
dlagogagd—;i(@(d_ﬁ%%)ﬁ(l’.f +pr—la+d— 2a))}

dia -1 E‘Md;ﬂ:ﬂ k_l” _9
Dol ly) = | Bosesd (kT —2a))

3 Embedding of the discrete series into P
principal series as (g, K) modules

Here we discuss an example. Th embedding of the holomorphic discrete
series is well-known. So wi omit that here.

3.1 Successive composition of the contiguous rela-

tions

We have the contiguous eqaution:

C) {5 A Y = (D A0 - (v i — k- 20).

An equivalent equation for generic vy is

(26) A (k=2b) _ 1 o(2=2) ((20=2) Ab-2042,
o Dt h— kb2 it

Remark The successive application of the above equations gives

b—1

(38) k25 _ L (-2 | 0 | AF
Sy O *Hyj+pj_k+2i'c—;(+2) Coeny B
1=0

3.2 Embedding of the large discrete series

Proposition E.2 Let DE;:’;)_) be a large discrete series with Blattner

parameter (k1) (k+1> 2,0l < 0). Then there is a embedding of (g, K)
modules into the Py principal series mp (,; .qn# (if and) only if vy = —L.
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Proof) vy + py+ k — 2a4in — 2 = 0, e, vy = 2a5in —k = —1. And
| =k —2agy, or agyr, = (k —1)/2. The assumption | < 0 and k+1/ > 2
implies that ‘

k/2<aﬁn <k-—1.

Reamrk The vanishing of intertwining constant:
vy +ps—k+ 2 = 0is equivalent to 2a i, — 2k + 2i—, L.e., 1 = k — @yin.

This means that 1 <i =%k — % = %'"i < Ufin.

S5 XAk
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