Finite support iteration of c.c.c forcing notions and Parametrized \diamondsuit -principles

南 裕明 (Hiroaki Minami) 神戸大学自然科学研究科

(Graduate School of Science and Technology, Kobe University)

概要

We present several models which satisfy some \diamondsuit -like principles by using the ω_2 -stage finite support iteration of Suslin forcing notions.

1 Introduction

In [10] Jensen showed V=L implies Suslin's Hypothesis doesn't hold. To prove this he introduced the \diamondsuit -principle:

- \Diamond There exists a sequence $\langle A_{\alpha} \subset \alpha : \alpha < \omega_1 \rangle$ such that for all $X \subset \omega_1$ the set $\{\alpha < \omega_1 : X \cap \alpha = A_{\alpha}\}$ is stationary.
- In [9] Hrušák gave a partial solution to a question of J. Roitman who asked whether $\mathfrak{d} = \omega_1$ implies $\mathfrak{a} = \omega_1$ and answered a question of Brendle who asked whether $\mathfrak{a} = \omega_1$ in any model obtained by adding a single Laver real. To prove those he introduced the \diamondsuit -like principle $\diamondsuit_{\mathfrak{d}}$:
- $\diamondsuit_{\mathfrak{d}}$ There exists a sequence $\langle g_{\alpha} : \omega \leq \alpha < \omega_{1} \rangle$ such that g_{α} is a function from α to ω and for every $f : \omega_{1} \to \omega$ there is an $\alpha \geq \omega$ with $f \upharpoonright \alpha \leq^{*} g_{\alpha}$.
- In [16] Moore, Hrušák, and Džamonja provided a broad framework of "parametrized \diamondsuit -principles" and they presented the following methods to construct parametrized \diamondsuit -principles:
- **Theorem 1.1.** Let $\mathbb{C}(\omega_1)$ and $\mathbb{B}(\omega_1)$ be the Cohen and random algebras corresponding to the product space 2^{ω_1} with its usual topological and measure theoretic structures. The orders $\mathbb{C}(\omega_1)$ and $\mathbb{B}(\omega_1)$ force $\Diamond(non(\mathcal{M}))$ and $\Diamond(non(\mathcal{N}))$ respectively.

Theorem 1.2. Suppose that $\langle \mathcal{Q}_{\alpha} : \alpha < \omega_2 \rangle$ is a sequence of Borel partial orders such that for each $\alpha < \omega_2 \ \mathcal{Q}_{\alpha}$ is equivalent to $\wp(2)^+ \times \mathcal{Q}_{\alpha}$ as a forcing notion and let \mathcal{P}_{ω_2} be the countable support iteration of this sequence. If \mathcal{P}_{ω_2} is proper and (A, B, E) is a Borel invariant then \mathcal{P}_{ω_2} forces $\langle A, B, E \rangle \leq \omega_1$ iff \mathcal{P}_{ω_2} forces $\langle (A, B, E) \rangle$.

In [15] by using ω_1 -stage finite support iteration of c.c.c forcing notions, several models were presented which satisfy some parametrized \diamondsuit -principles while others fail. The purpose of this paper is to provide several models satisfying some parametrized \diamondsuit -principles by using ω_2 -stage finite support iteration of Suslin forcing notions.

2 Definition and properties of Parametrized Diamonds

In [20] Vojtáš introduced a framework to describe many cardinal invariants.

Definition 2.1. [20][16] The triple (A, B, E) is an *invariant* if

- $(1) |A|, |B| \le |\mathbb{R}|,$
- (2) $E \subset A \times B$,
- (3) For each $a \in A$ there exists $b \in B$ such that $(a, b) \in E$ and
- (4) For each $b \in B$ there exists $a \in A$ such that $(a, b) \notin E$.

We will write aEb instead of $(a,b) \in E$. If A and B are Borel subsets of some Polish spaces and E is a Borel subset of their product, we call the triple (A,B,E) Borel invariant.

Borel invariants were introduced in [3]. In the present paper we are interested only in Borel invariants.

Definition 2.2. Suppose (A, B, E) is an invariant. Then its *evaluation* is defined by

$$\langle A, B, E \rangle = \min\{|X| : X \subset B \text{ and } \forall a \in A \exists b \in X \ (aEb)\}.$$

If A = B, we will write (A, E) and $\langle A, E \rangle$ instead of (A, B, E) and $\langle A, B, E \rangle$.

Example 2.3. The following Borel invariants $(\mathcal{N}, \not\supset)$, (\mathcal{N}, \subset) , $(\mathbb{R}, \mathcal{M}, \in)$, $(\mathcal{M}, \mathbb{R}, \not\supset)$, $(\omega^{\omega}, <^*)$, $(\omega^{\omega}, \not>^*)$ and $([\omega]^{\omega}$, is split by) have the evaluations $\operatorname{add}(\mathcal{N})$, $\operatorname{cof}(\mathcal{N})$, $\operatorname{cov}(\mathcal{M})$, $\operatorname{non}(\mathcal{M})$, \mathfrak{d} , \mathfrak{b} and \mathfrak{s} respectively.

Definition 2.4. Suppose A is a Borel subset in some Polish space. Then $F: 2^{<\omega_1} \to A$ is Borel if for every $\alpha < \omega_1 F \upharpoonright 2^{\alpha}$ is a Borel function.

In [7] the principle "weak diamond principle" was introduced by Devlin and Shelah. This was the starting point for the parametrized diamond principles introduced by Moore, Hrušák and Džamonja [16].

Definition 2.5. [16](Parametrized diamond principle)

Suppose (A, B, E) is a Borel invariant. Then $\Diamond(A, B, E)$ is the following statement:

 $\Diamond(A, B, E)$ For all Borel $F: 2^{<\omega_1} \to A$ there exists $g: \omega_1 \to B$ such that for every $f: \omega_1 \to 2$ the set $\{\alpha \in \omega_1 : F(f \upharpoonright \alpha) Eg(\alpha)\}$ is stationary.

The witness g for a given F in this statement will be called $\diamondsuit(A,B,E)$ -sequence for F.

 $\Diamond(A,B,E)$ and \Diamond are related as follows:

Proposition 2.6. [16] Let (A, B, E) be a Borel invariant. \Diamond implies $\Diamond(A, B, E)$.

 $\langle (A, B, E) \text{ and } \langle A, B, E \rangle$ are related as follows:

Proposition 2.7. [16] Suppose (A, B, E) is a Borel invariant and $\Diamond(A, B, E)$ holds. Then $\langle A, B, E \rangle \leq \omega_1$ holds.

If two Borel invariants $(A_1, B_1, E_1), (A_2, B_2, E_2)$ are comparable in the Borel Tukey order, then $\diamondsuit(A_1, B_1, E_1)$ and $\diamondsuit(A_2, B_2, E_2)$ are related as follows:

Definition 2.8. (Borel Tukey ordering [3]) Given a pair of Borel invariants (A_1, B_1, E_1) and (A_2, B_2, E_2) , we say that $(A_1, B_1, E_1) \leq_T^B (A_2, B_2, E_2)$ if there exist Borel maps $\phi: A_1 \to A_2$ and $\psi: B_2 \to B_1$ such that $(\phi(a), b) \in E_2$ implies $(a, \psi(b)) \in E_1$.

Proposition 2.9. [16] Let (A_1, B_1, E_1) and (A_2, B_2, E_2) be Borel invariants. Suppose $(A_1, B_1, E_1) \leq_T^B (A_2, B_2, E_2)$ and $\diamondsuit(A_2, B_2, E_2)$ holds. Then $\diamondsuit(A_1, B_1, E_1)$ holds.

Concerning \leq_T^B , we know the following diagram holds.

(Cichoń's diagram)

(The direction of the arrow is from larger to smaller in the Borel Tukey order). Hence the following holds:

(The direction of the arrow is the direction of the implication.)

We call this diagram "Cichoń's diagram for parametrized diamonds".

<u>Note</u> When we deal with Borel invariants in Cichoń's diagram, we will use the standard notation for their evaluations to denote the Borel invariants themselves (e.g., we will use $\Diamond(\text{add}(\mathcal{N}))$ to denote $\Diamond(\mathcal{N}, \not\supset)$).

3 Construction of Parametrized Diamonds

By using ω_2 -stage finite support iteration of Suslin forcing notions we present several model which satisfies some parametrized \diamondsuit -principles.

3.1 Suslin forcing

Firstly we will introduce Suslin forcings and their properties.

Definition 3.1. [2, p.168] A forcing notion $\mathbb{P} = \langle \mathbb{P}, \leq_{\mathbb{P}} \rangle$ has a Suslin definition if $\mathbb{P} \subset \omega^{\omega}, \leq_{\mathbb{P}} \subset \omega^{\omega} \times \omega^{\omega}$ and $\perp_{\mathbb{P}} \subset \omega^{\omega} \times \omega^{\omega}$ are Σ_1^1 .

 \mathbb{P} is Suslin if \mathbb{P} is c.c.c and has a Suslin definition.

Definition 3.2. [2, p.168] Let $M \models ZFC^*$. A Suslin forcing \mathbb{P} is in M if all the parameters used in the definition of \mathbb{P} , $\leq_{\mathbb{P}}$ and $\perp_{\mathbb{P}}$ are in M.

For convenience we will interpret Suslin forcing notion in forcing extensions using its code rather than taking the ground model forcing notion.

Definition 3.3. Let \mathbb{A} and \mathbb{B} be forcing notions. Then $i : \mathbb{A} \to \mathbb{B}$ is a complete embedding if

(1)
$$\forall a, a' \in \mathbb{A}(a \le a' \to i(a) \le i(a')),$$

- (2) $\forall a_1, a_2 \in \mathbb{A}(a_1 \perp a_2 \leftrightarrow i(a_1) \perp i(a_2)),$
- (3) $\forall A \subset \mathbb{A}(A \text{ is a maximal antichain in} \mathbb{A} \to i[A] \text{ is a maximal antichain in } \mathbb{B}).$

If there is complete embedding from A to B, then we write A < B.

Suslin forcing notion has the following good property:

Lemma 3.4. Assume $\mathbb{A} \triangleleft \mathbb{B}$ and \mathcal{P} is a Suslin forcing notion. Then $\mathbb{A} * \dot{\mathcal{P}} \triangleleft \mathbb{B} * \dot{\mathcal{P}}$.

Proof. Let $i: \mathbb{A} \to \mathbb{B}$ be a complete embedding. Then define $\hat{i}: \mathbb{A} * \dot{\mathcal{P}} \to \mathbb{A} * \dot{\mathcal{P}}$ by $\hat{i}(\langle a, \dot{p} \rangle) = \langle i(a), i_*(\dot{p}) \rangle$ where i_* is the class function from \mathbb{A} -names to \mathbb{B} -names induced by i (see [12, p.222]). It is enough to show following claim.

Claim 3.4.1. If $\mathcal{A} \subset \mathbb{A} * \dot{\mathcal{P}}$ is a maximal antichain, then $\hat{i}[\mathcal{A}]$ is also a maximal antichain in $\mathbb{B} * \dot{\mathcal{P}}$.

Proof of Claim. Let $\mathcal{A} = \{(a_{\alpha}, \dot{p}_{\alpha}) : \alpha < \kappa\}$ be a maximal antichain of $\mathbb{A} * \dot{\mathcal{P}}$. Assume there exists $(b, \dot{p}) \in \mathbb{B} * \dot{\mathcal{P}}$ such that (b, \dot{p}) is compatible with all $\hat{i}((a_{\alpha}, \dot{p}_{\alpha}))$. Let G be \mathbb{B} -generic over V such that $b \in G$ and let $H = i^{-1}[G]$. Look at $\{\dot{p}_{\alpha}[H] : i(a_{\alpha}) \in G\} = \mathcal{A}' \in V[H]$.

Subclaim 3.4.1. $V[H] \models \mathcal{A}'$ is maximal antichain of $\mathcal{P} = \dot{\mathcal{P}}[H]$.

antichain: Suppose $\alpha \neq \beta$ and $i(a_{\alpha}), i(a_{\beta}) \in G$. Since $(a_{\alpha}, \dot{p}_{\alpha}) \perp (a_{\beta}, \dot{p}_{\beta}), \dot{p}_{\alpha}[H] \perp \dot{p}_{\beta}[H]$.

maximality: Assume to the contrary, there exists $p \in \mathcal{P}$ such that $p \perp \dot{p_{\alpha}}[H]$ for any $\dot{p_{\alpha}}[H] \in \mathcal{A}'$. Then there exists $a \in H$ such that

$$a \Vdash \forall \alpha < \kappa(a_{\alpha} \in \dot{H} \to \dot{p} \perp \dot{p_{\alpha}}).$$

Hence $(a, \dot{p}) \perp (a_{\alpha}, \dot{p_{\alpha}})$. This is a contradiction to the maximality of \mathcal{A} .

Subclaim

Since $V[H] \models$ " \mathcal{A}' is maximal antichain in \mathcal{P} " and " \mathcal{A}' is maximal antichain of \mathcal{P} " is a $\Pi^1_1(\mathcal{A}', \mathcal{P}, \leq_{\mathcal{P}}, \perp_{\mathcal{P}})$ -formula, $V[G] \models$ " $\mathcal{A}' = \{i_*(p_\alpha)[G] : i(a_\alpha) \in G\}$ is maximal antichain of \mathcal{P} " by Π^1_1 -absoluteness. But this is a contradiction to the fact $V[G] \models \dot{p}[G] \perp i_*(\dot{p}_\alpha)[G]$ for $i(a_\alpha) \in G$.

Claim

Hence $\mathbb{A} * \dot{\mathcal{P}} \lessdot \mathbb{B} * \dot{\mathcal{P}}$.

Corollary 3.5. Let $\langle \mathcal{Q}_{\alpha} : \alpha < \kappa \rangle$ be a sequence of Suslin forcing notions. Let \mathbb{P}_{κ} be the finite support iteration of $\langle \mathbb{P}_{\alpha}, \dot{Q}_{\alpha} : \alpha < \kappa \rangle$ where $\Vdash_{\mathbb{P}_{\alpha}} \dot{Q}_{\alpha} = \mathcal{Q}_{\alpha}^{V^{\mathbb{P}_{\alpha}}}$. If $\mathbb{A} \lessdot \mathbb{B}$, then $\mathbb{A} * \dot{\mathbb{P}}_{\kappa} \lessdot \mathbb{B} * \dot{\mathbb{P}}_{\kappa}$.

Proof. We shall show that if \mathcal{A} is a maximal antichain of $\mathbb{A} * \dot{\mathbb{P}}_{\kappa}$, then $\hat{i}[\mathcal{A}]$ is also a maximal antichain of $\mathbb{B} * \dot{\mathbb{P}}_{\kappa}$ where $\hat{i} : \mathbb{A} * \dot{\mathbb{P}}_{\kappa} \to \mathbb{B} * \dot{\mathbb{P}}_{\kappa}$ is induced by the complete embedding $i : \mathbb{A} \to \mathbb{B}$. It is enough to prove the following claim.

Claim 3.5.1. Let $\mathcal{A} \subset \mathbb{A} * \dot{\mathbb{P}}_{\kappa}$. If for each $p \in \mathbb{A} * \dot{\mathbb{P}}_{\kappa}$ there exists $q \in \mathcal{A}$ such that $q \| p$, then for each $r \in \mathbb{B} * \dot{\mathbb{P}}_{\kappa}$ there exists $q \in \mathcal{A}$ such that $\hat{i}(q) \| r$.

Proof of Claim. We shall show this by induction on κ .

The successor Step is as in Lemma 3.4.

Limit step. Let κ be a limit ordinal and for $\alpha < \kappa$ the induction hypothesis holds. Let $\mathcal{A} \subset \mathbb{A} * \dot{\mathbb{P}}_{\kappa}$ such that for each $p \in \mathbb{A} * \dot{\mathbb{P}}_{\kappa}$ there exists $q \in \mathcal{A}$ such that $p \parallel q$. Assume to the contrary there exists $p \in \mathbb{B} * \dot{\mathbb{P}}_{\kappa}$ such that $p \perp \hat{i}(q)$ for any $q \in \mathcal{A}$. Let $\alpha = \sup\{\beta < \kappa : \Vdash_{\mathbb{P}_{\beta}} p(\beta) \neq 1\} < \kappa$. Since for each $r \in \mathbb{A} * \dot{\mathbb{P}}_{\kappa}$ there exists $q \in \mathcal{A}$ such that $r \parallel q$, for each $r' \in \mathbb{A} * \dot{\mathbb{P}}_{\alpha}$ there exists $q \in \mathcal{A}$ such that $q \upharpoonright \alpha \parallel \hat{i}_{\alpha}(q \upharpoonright \alpha)$ where $\hat{i}_{\alpha} : \mathbb{A} * \dot{\mathbb{P}}_{\alpha} \to \mathbb{B} * \dot{\mathbb{P}}_{\alpha}$ is induced by i. By $\hat{i}_{\alpha}(q \upharpoonright \alpha) = \hat{i}(q) \upharpoonright \alpha$, $p \upharpoonright \alpha \parallel \hat{i}(q) \upharpoonright \alpha$. So $p \parallel \hat{i}(q)$. It is a contradiction.

Claim

Let $\langle \mathcal{R}_{\alpha} : \alpha < \kappa \rangle$ be a sequence of Suslin forcing notions where all parameters appear in the ground model. Let \mathbb{P}_{κ} be the finite support iteration of $\langle P_{\alpha}, \dot{Q}_{\alpha} : \alpha < \kappa \rangle$ where $\Vdash_{P_{\alpha}} \dot{Q}_{\alpha} = \mathcal{R}_{\alpha}^{V^{P_{\alpha}}}$. Let $I \subset \kappa$. Recursively define \mathbb{P}_{I}^{α} by

(i) \mathbb{P}^{α}_{I} is given. Then $\mathbb{P}^{\alpha+1}_{I}=\mathbb{P}^{\alpha}_{I}*\dot{Q}'_{\alpha}$ where

$$\Vdash_{\mathbb{P}_{I}^{\alpha}}\dot{Q}'_{\alpha} = \left\{ egin{array}{ll} R_{lpha}^{V^{\mathbb{P}_{I}^{\alpha}}} & lpha \in I \\ \{1\} & otherwise. \end{array}
ight.$$

(ii) Suppose α is a limit ordinal and \mathbb{P}_I^{β} is given for $\beta < \alpha$. Define \mathbb{P}_I^{α} as the finite support iteration of $\langle \mathbb{P}_I^{\beta}, \dot{Q}'_{\beta} : \beta < \alpha \rangle$

Put $\mathbb{P}_I := \mathbb{P}_I^{\kappa}$.

Lemma 3.6. $\mathbb{P}_I \lessdot \mathbb{P}_{\kappa}$.

Proof. We shall show for $\alpha \leq \kappa \mathbb{P}_I^{\alpha} \triangleleft \mathbb{P}_{\alpha}$ by the induction on $\alpha \leq \kappa$. Successor step. Suppose $\mathbb{P}_I^{\alpha} \triangleleft \mathbb{P}_{\alpha}$. If $\alpha \notin I$, it is clear that $\mathbb{P}_I^{\alpha+1} \triangleleft \mathbb{P}_{\alpha+1}$. If $\alpha \in I$,

then $\mathbb{P}_{I}^{\alpha+1} \lessdot \mathbb{P}_{\alpha+1}$ is proved as in Lemma 3.4.

Limit step. Let α be a limit ordinal and for $\beta < \alpha$ the induction hypothesis holds. Define $i: \mathbb{P}_I^{\alpha} \lessdot \mathbb{P}_{\alpha}$ by $i(p) = i_{\beta}(p)$ if $p \in \mathbb{P}_I^{\beta}$ for some $\beta < \alpha$ where $i_{\beta}: \mathbb{P}_I^{\beta} \to \mathbb{P}_{\beta}$ is the complete embedding. It is enough to prove the following claim.

Claim 3.6.1. Let $\mathcal{A} \subset \mathbb{P}_I^{\alpha}$. If for each $p \in \mathbb{P}_I^{\alpha}$ there exists $q \in \mathcal{A}$ such that $q \| p$, then for each $r \in \mathbb{P}_{\alpha}$ there exists $q \in \mathcal{A}$ such that $i(q) \| r$.

Proof of Claim. Let $\mathcal{A} \subset \mathbb{P}_I^{\alpha}$ such that for each $p \in \mathbb{P}_I^{\alpha}$ there exists $q \in \mathcal{A}$ such that $q \| p$. Let $r \in \mathbb{P}_{\alpha}$. Since \mathbb{P}_{α} is the finite support iteration of $\langle \mathbb{P}_{\beta}, \dot{Q}_{\beta} : \beta < \alpha \rangle$, there is $\beta < \alpha$ such that $r \in \mathbb{P}_{\beta}$. Since for each $p \in \mathbb{P}_I^{\alpha}$ there exists $q \in \mathcal{A}$ such that $q \| p$, for each $p' \in \mathbb{P}_I^{\beta}$ there exists $q \in \mathcal{A}$ such that $q \mid \beta \mid p'$. By induciton hypothesis there exists $q \in \mathcal{A}$ such that $i_{beta}(q \mid \beta) = i(q) \mid \beta \mid r$. So $i(q) \mid r$. Hence for each $r \in \mathbb{P}_{\alpha}$ there exists $q \in \mathcal{A}$ such that $i(q) \mid r$.

Claim

Lemma □

For \mathbb{P}_{κ} -name \dot{x} for a real, there is following property.

Lemma 3.7. Let \mathbb{P}_{κ} is the κ -stage finite support iteration of Suslin forcing notions. If \dot{x} is \mathbb{P}_{κ} -name for a real. Then there exists countable $I \subset \kappa$ such that \dot{x} is \mathbb{P}_{I} -name.

3.2 Niceness

In this paper we will force $\Diamond(A, B, E)$ for Borel invariants (A, B, E) which satisfy the following properties:

There exist $\langle E_n : n \in \omega \rangle$ and $\langle U^n : n \in \omega \rangle$ such that

- (0) E_n is a Borel set for $n \in \omega$,
- $(1) E = \bigcap_{n \in \omega} E_n,$
- $(2) E_{n+1} \subset E_n,$
- (3) $U^n: A \to \wp(A)$ such that $U^n(x)$ is a Borel set
- (4) xE_ny implies that there exists $m \ge n$ such that $U^m(x) \subset \{z \in A : zE_ny\}$.
- (5) $U^m(x) \subset \{z \in A : zE_ny\}$ is absolute with parameters x, y, U^m and E_n .

Example

- (i) For $(2^{\omega}, 2^{\omega}, \exists^{\infty} n \ (* \upharpoonright I_n = *' \upharpoonright I_n))$ let $x E_n y$ if $\exists m \geq n (x \upharpoonright I_m = y \upharpoonright I_m)$ and $U^n(x) = [x \upharpoonright I_n] := \{y \in 2^{\omega} : y \upharpoonright I_n = x \upharpoonright I_n\}$. Then $\langle E_n : n \in \omega \rangle$ and $\langle U^n : n \in \omega \rangle$ satisfy (0)-(5).
- (ii) For $(\omega^{\omega}, \not\geq^*)$ let xE_ny if $\exists m \geq n(x(m) < y(n))$ and $U^n(x) = \bigcup_{m \leq x(n)} [\langle n, m \rangle]$. Then $\langle E_n : n \in \omega \rangle$ and $\langle U^n : n \in \omega \rangle$ satisfy (0)-(5).
- (iii) Let $\mathbb{LOC} = \{\phi : \phi : \omega \to [\omega]^{<\omega} \text{ where } |\phi(n)| \leq (n+1)^2 \text{ for } n \in \omega\}$. If $\phi \in \mathbb{LOC}$, we call ϕ slalom. Then for $f \in \omega^{\omega}$ and $\phi \in \mathbb{LOC}$ $\phi \supset f$ if $\forall^{\infty} n \ (f(n) \in \phi(n))$. For $(\mathbb{LOC}, \omega^{\omega}, \not\supset)$ let $\phi E_n f$ if $\exists m \geq n (f(m) \not\in \phi(m))$ and $U^n(\phi) = \bigcup_{s \subset \phi(n)} [\langle n, s \rangle]$. Then $\langle E_n : n \in \omega \rangle$ and $\langle U^n : n \in \omega \rangle$ satisfy (0)-(5).

For a Borel invariant (A, B, E) with $\langle U^n : n \in \omega \rangle$ and $\langle E_n : n \in \omega \rangle$ which safisfies (0)-(5), we will define the notion (A, B, E)-nice and show that the ω_2 -stage finite support iteration of some Suslin forcing notions forces parametrized \diamond -principles.

Definition 3.8. Let (A, B, E) be a Borel invariant with $\langle E_n : n \in \omega \rangle$ and $\langle U^n : n \in \omega \rangle$ satisfying (0)-(5). Let \mathbb{P} be a forcing notion and \mathcal{Q} be a Suslin forcing notion or finite support iteration of Suslin forcing notions.

Then Q is (A, B, E)-nice for \mathbb{P} if for all Q-names \dot{x} for an element of A for each $(p, \dot{q}) \in \mathbb{P} * \dot{Q}$ there exists $x \in A \cap V$ such that for all $r \leq_{\mathbb{P}} p$ for all but finitely many n there exists $q' \in Q$ such that $(1, q') || (r, \dot{q})$ and $q' \Vdash_{Q} \dot{x} \in U^{n}(x)$.

There are following examples of niceness.

Proposition 3.9. Suppose I is countable subset of some ordinal κ . Then

- (1) \mathbb{D}_I is $(2^{\omega}, \mathcal{N}, \in)$ -nice for \mathbb{D}_{ω_1}
- (2) $\mathbb{B}_{\mathbb{I}}$ is $(\omega^{\omega}, \not\geq^*)$ -nice for \mathbb{B}_{ω_1} .
- (3) \mathbb{E}_I is $(2^{\omega}, \mathcal{N}, \in)$ -nice for \mathbb{E}_{ω} and $(\omega^{\omega}, \not\geq^*)$ -nice for \mathbb{E}_{ω_1} .
- (4) $(\mathbb{B} * \dot{\mathbb{D}})_I$ is $(\mathbb{LOC}, \omega^{\omega}, \not\supseteq)$ -nice for $(\mathbb{B} * \dot{\mathbb{D}})_{\omega_1}$.

Proof.

We shall show only |I| = 1. The General case is similar but more complicated.

(1). Let $\langle I_n : n \in \omega \rangle$ be a partition of ω such that $I_0 = \{0\}$, $I_1 = \{1, 2\}, \ldots, I_{n+1} = \{\max(I_n) + 1, \ldots, \max(I_n) + n + 1\}$. For $x \in 2^{\omega}$ let

$$A_x = \{ y \in 2^\omega : \exists^\infty n \in \omega(x \upharpoonright I_n = y \upharpoonright I_n) \}.$$

Then A_x is null. So If $\Diamond(2^{\omega}, 2^{\omega}, \exists^{\infty} n(* \upharpoonright I_n = *' \upharpoonright I_n))$ holds, then $\Diamond(\text{cov}(\mathcal{N}))$ holds. So instead of showing that \mathbb{D} is $(2^{\omega}, \mathcal{N}, \in)$ -nice for \mathbb{D}_{ω_1} we shall show \mathbb{D} is $(2^{\omega}, 2^{\omega}, \exists^{\infty} n(* \upharpoonright I_n = *' \upharpoonright I_n))$ -nice for \mathbb{D}_{ω_1} .

Let \dot{x} be a \mathbb{D} -name such that $\Vdash_{\mathbb{D}} \dot{x} \in 2^{\omega}$. Let $\langle p, \dot{q} \rangle \in \mathbb{D}_{\omega_1} * \dot{\mathbb{D}}$. For $s \in \omega^{<\omega}$ define $D_s \subset \mathbb{D}$ by $p \in D_s$ if there exists $f \in \omega^{\omega}$ such that $p = \langle s, f \rangle$. Then $\mathbb{D} = \bigcup_{s \in \omega^{<\omega}} D_s$.

Without loss of generality we can assume $p \Vdash_{\mathbb{D}_{\omega_1}} \dot{q} = \langle \check{s}, \dot{f} \rangle$ for some $s \in \omega^{<\omega}$. Then define $x_s \in 2^{\omega} \cap V$ so that $\forall m \in \omega \forall p \in D_s \neg p \Vdash x_s \upharpoonright I_m \neq \dot{x} \upharpoonright I_m$. Let $r \leq p$ and $m \in \omega$. Define $\langle r_n : n \in \omega \rangle$, $f \in \omega^{\omega} \cap V$ so that

- (i) $r_0 < r, r_{n+1} \le r_n$ and
- (ii) r_n decides $\dot{f}(n)$ and $r_n \Vdash \dot{f}(n) = f(n)$.

Let $q' \leq \langle s, f \rangle$ such that $q' \Vdash_{\mathbb{D}} \dot{x} \in [x_s \upharpoonright I_m] = U^m(x_s)$.

Claim 3.9.1. $\langle 1, q' \rangle || \langle r, \langle s, \dot{f} \rangle \rangle$.

Proof of Claim. Let $q' = \langle t, g \rangle$. Then $r_{|t|} \Vdash \dot{f} \upharpoonright |t| = f \upharpoonright |t|$. So $\langle r_{|t|}, \langle t, \dot{f} \rangle \rangle \leq \langle r, \langle s, \dot{f} \rangle \rangle$. Hence $\langle 1, q' \rangle || \langle r, \langle s, \dot{f} \rangle \rangle$.

Claim \blacksquare (1) \square

(2). Let \dot{x} be a \mathbb{B} -name such that $\Vdash_{\mathbb{B}} \dot{x} \in \omega^{\omega}$. Define $x \in \omega^{\omega} \cap V$ so that $\mu([\dot{x}(n) \leq x(n)]) \geq 1 - \frac{1}{2^{n+1}}$. Let $(p,\dot{q}) \in \mathbb{B}_{\omega_1} * \dot{\mathbb{B}}$. Without loss of generality we can assume $p \Vdash_{\mathbb{B}_{\omega_1}} \mu(\dot{q}) \geq \frac{1}{2^n}$. Then for any $r \leq p$ and $m \geq n$ $(r,\dot{q}) \| (1,[\dot{x}(m) \leq x(m)])$ and $[\dot{x}(m) \leq x(m)] \Vdash_{\mathbb{B}} \dot{x} \in \bigcup_{i \leq x(m)} [\langle m,i \rangle] = U^m(x)$.

(3). $(2^{\omega}, \mathcal{N}, \in)$ -niceness is shown as (1).

 $(\omega^{\omega}, \not\geq^*)$ -niceness: For $s \in \omega^{<\omega}$ and $k \in \omega$ let $E_{s,k} = \{p \in \mathbb{E} : p = \langle s, F \rangle \text{ and } |F| = k\}$. Then $\mathbb{E} = \bigcup_{s \in \omega^{\omega}, k \in \omega} E_{s,k}$. Let \dot{x} be \mathbb{E} -name such that $\Vdash_{\mathbb{E}} \dot{x} \in \omega^{\omega}$. Let $\langle p, \dot{q} \rangle \in \mathbb{E}$

 $\mathbb{E}_{\omega_1} * \dot{\mathbb{E}}$. Without loss of generality we can assume $p \Vdash_{\mathbb{E}_{\omega_1}} \dot{q} \in E_{s,k}$. Then define $x_{s,k} \in \omega^{\omega} \cap V$ by

$$x_{s,k}(i) = \min\{j: \forall p \in E_{s,k} \neg (p \Vdash \dot{x} > j)\}.$$

For j < k let \dot{f}_j be a \mathbb{E}_{ω_1} -name such that $p \Vdash_{\mathbb{E}_{\omega_1}}$ " $\dot{q} = \langle s, \dot{F} \rangle$ and $\dot{F} = \{\dot{f}_j : j < k\}$ ". Let $r \leq p$ and $m \in \omega$. Then define $\langle r_n : n \in \omega \rangle$ and $\{f_i : i < k\} \in \omega^{\omega} \cap V$ so that

- (i) $r_0 \le r, r_{n+1} \le r_n$ and
- (ii) r_m decides $\dot{f}_j \upharpoonright m$ for j < k and $r_m \Vdash_{\mathbb{E}_{\omega_1}} f_j \upharpoonright m = \dot{f}_j \upharpoonright m$ for j < m.

Let $F = \{f_j; j < k\}$ and $q' \le \langle s, F \rangle$ such that $q' \Vdash_{\mathbb{E}} \dot{x}(m) < x_{s,k}(m)$. Then $q' \Vdash_{\mathbb{E}} \dot{x}(m) \in \bigcup_{i < x_{s,k}(m)} [\langle m, i \rangle] = U^m(x_{s,k})$.

Claim 3.9.2. $(r, \dot{q}) || (1, q')$.

Proof of Claim. Let $q' = \langle t, G \rangle$. Since $r_{|t|} \Vdash_{\mathbb{E}_{\omega_1}} \dot{f}_j \upharpoonright |t| = f_j \upharpoonright |t|$ for j < k. $r_{|t|} \Vdash_{\mathbb{E}_{\omega_1}} q' \| \dot{q}$. So $(1, q') \| (r, \dot{q})$.

Claim**■** (3) □

(4) By [11] we can assume $\mathbb{A} := (\mathbb{B}*\dot{\mathbb{D}})_I$ is Boolean Algebra with strictly positive finitely additive measure μ . Let $\dot{\phi}$ is \mathbb{A} -name such that $\Vdash_{\mathbb{A}} \dot{\phi} \in \mathbb{LOC}$. For each $n \in \omega$ define $k_n \in \omega$ so that $\mu([k_n \in \dot{\phi}(n)]) < \frac{1}{n}$. Then define $\phi \in \mathbb{LOC} \cap V$ by $\phi(n) = \{k_n\}$. Let $\langle p, \dot{q} \rangle \in (\mathbb{B}*\dot{\mathbb{D}})_{\omega_1}$. Without loss of generality we can assume $p \Vdash_{(\mathbb{B}*\dot{\mathbb{D}})_{\omega_1}} \mu(\dot{q}) > \frac{1}{k}$. Let $r \leq q$. Since $\mu([k_n \not\in \dot{\phi}(n)]) \geq 1 - \frac{1}{k}$ for $n \geq k$, $r \Vdash_{(\mathbb{B}*\dot{\mathbb{D}})_{\omega_1}} \mu(\dot{q} \cap [k_n \not\in \dot{\phi}]) \geq 0$ " for $n \geq k$. Since $[\dot{\phi} \in U^n(\phi)] = [k_n \not\in \dot{\phi}(n)]$, $r \Vdash_{(\mathbb{B}*\dot{\mathbb{D}})_{\omega_1}} \mu(\dot{q} \cap [\dot{\phi} \in U^n(\phi)]) > 0$. Hence $(r, \dot{q}) \parallel (1, [\dot{\phi} \in U^n(\phi)])$.

If \mathcal{Q} is (A, B, E)-nice for \mathbb{P} , then elements of $A \cap V^{\mathbb{Q}}$ have a following property.

Theorem 3.10. [Minami] Let (A, B, E) be a Borel invariant with $\langle E_n : n \in \omega \rangle$ and $\langle U^n : n \in \omega \rangle$ which satisfy (0)-(5). Let \mathbb{P} be a forcing notion such that there exists \mathbb{P} -name \dot{r} for an element of B such that $\Vdash_{\mathbb{P}}$ " $xE\dot{r}$ " for $x \in A \cap V$ and let Q be a Suslin forcing notion or the finite support iteration of Suslin forcing notions. If Q is (A, B, E)-nice for \mathbb{P} and \dot{x} is a Q-name for an element of $A \cap V^{\mathbb{P}}$, then $\Vdash_{\mathbb{P}^*\dot{Q}} \dot{x}E\dot{r}$.

Proof. Suppose \mathcal{Q} is (A, B, E)-nice for \mathbb{P} . Let \dot{r} be a \mathbb{P} -name for an element of $B \cap V^{\mathbb{P}}$ such that $\Vdash xE\dot{r}$ for $x \in A \cap V$. Let \dot{x} be a \mathcal{Q} -name for an element of $A \cap V^{\mathcal{Q}}$. It suffices to show for each $(p, \dot{q}) \in \mathbb{P} * \dot{\mathcal{Q}}$ there exists $(r, \dot{s}) \leq (p, \dot{q})$ such that

$$(r, \dot{s}) \Vdash \dot{x} E \dot{r}.$$

Let $(p,\dot{q})\in\mathbb{P}*\dot{\mathcal{Q}}$. Since \mathbb{P} is (A,B,E)-nice for \mathcal{Q} , there exists $x\in A\cap V$ such that

 $\forall r \leq_{\mathbb{P}} p \forall^{\infty} n \exists q' \in \mathcal{Q}((1, q') | (r, \dot{q}) \text{ and } q' \Vdash_{\mathcal{Q}} \dot{x} \in U^n(x)).$

Let $r \leq p$ and $n \in \omega$ such that $r \Vdash_{\mathbb{P}} "xE_n\dot{r}"$ and if $m \geq n$, there exists $q' \in \mathcal{Q}((1,q')||(r,\dot{q}))$ and $q' \Vdash_{\mathcal{Q}} \dot{x} \in U^m(x)$. Since $r \Vdash xE_n\dot{r}$, there exists $m \geq n$ such that

$$r \Vdash U^m(x) \subset \{z \in A : zE_n\dot{r}\}.$$

Pick $q' \in \mathcal{Q}$ such that $(1, q') \| (r, \dot{q})$ and $q' \Vdash_{\mathcal{Q}} \dot{x} \in U^m(x)$. Let $(p', \dot{q}^*) \leq (1, q'), (r, \dot{q})$.

$$(p', \dot{q}^*) \Vdash \dot{x} \in U^m(x) \subset \{z \in A : zE_n\dot{r}\}.$$

Hence $(p', \dot{q}^*) \Vdash \dot{x} E_n \dot{r}$. Therefore $\Vdash \dot{x} E \dot{r}$.

Theorem 3.11. Let (A, B, E) be a Borel invariant with $\langle E_n, n \in \omega \rangle$ and $\langle U^n : n \in \omega \rangle$ satisfying (0)-(5). Let \mathbb{P}_{ω_2} be a ω_2 -stage finite support iteration of Suslin forcing notion and

- (1) for all $\beta < \omega_2$ there exists a $\mathbb{P}_{\beta+\omega_1}$ -name \dot{r} for an element of A such that $\mathbb{P}_{\beta+\omega_1}$ " $x \to \dot{r}$ " for $x \in A \cap V^{\mathbb{P}_{\beta}}$.
- (2) for all $\beta < \omega_2$ for all I countable subset of $\omega_2 \setminus (\beta + \omega_1)$ $V^{\mathbb{P}_{\beta}} \models \text{``P}_I \text{ is } (A, B, E) - nice for \mathbb{P}_{[\beta, \beta + \omega_1)}\text{''}.$

Then $\mathbb{P}_{\omega_2} \models \Diamond(A, B, E)$.

Proof. Let \dot{F} be a \mathbb{P}_{ω_2} -name for a Borel function. Since \mathbb{P}_{ω_2} has c.c.c and \mathbb{P}_{ω_2} is the finite support iteration of $\langle \mathbb{P}_{\alpha}, \dot{\mathcal{Q}}_{\alpha} : \alpha < \omega_2 \rangle$ without loss of generality we can assume F is in ground model. By (1) let \dot{r}_{α} be a \mathbb{P}_{ω_1} -name such that $\Vdash_{\mathbb{P}_{\omega_1}} xE\dot{r_{\alpha}}$ for $x \in A \cap V^{\mathbb{P}_{\alpha}}$ for $\alpha < \omega_1$. We shall show $\Vdash_{\mathbb{P}_{\omega_2}}$ " $\langle r_{\alpha} : \alpha < \omega_1 \rangle$ is a $\Diamond (A, B, E)$ -sequence for F".

Claim 3.11.1. Let \dot{f} be a \mathbb{P}_{ω_2} -name such that $\Vdash_{\mathbb{P}_{\omega_2}} \dot{f}: \omega_1 \to 2$. Then $\{\alpha \in \omega_1 : \dot{f} \mid \alpha \text{ is } \mathbb{P}_I\text{-name where } I \cap \omega_1 \subset \alpha \text{ and } I \text{ is countable}\}$

contains a club.

Let $\dot{x}=F(\dot{f}\upharpoonright\alpha)$ such that \dot{x} is a \mathbb{P}_I -name, I is countable and $I\cap\omega_1\subset\alpha$. In $V^{\mathbb{P}_{\alpha}}$ we can assume \dot{r}_{α} is $\mathbb{P}_{[\alpha,\omega_1)}$ -name and \dot{x} is $\mathbb{P}_{I\cap[\omega_1,\omega_2)}$ -name. Hence to show $\Vdash_{\mathbb{P}_{\omega_2}}$ " $\langle r_{\alpha}:\alpha<\omega_1\rangle$ is $\diamondsuit(A,B,E)$ -sequence for F", it suffices to show that $\Vdash_{\mathbb{P}_{\omega_1}*\mathbb{P}_I}$ " $\dot{x}E\dot{r}_{\alpha}$ " where \dot{x} is \mathbb{P}_I -name for an element of $A\cap V^{\mathbb{P}_I}$.

By (2) \mathbb{P}_I is (A, B, E)-nice for \mathbb{P}_{ω_1} . By Theorem 3.10 $\Vdash \dot{x}E\dot{r}_{\alpha}$. Hence $\langle \dot{r}_{\alpha} : \alpha < \omega_1 \rangle$ is a $\Diamond (A, B, E)$ -sequence for F.

Remark 3.11.2. Same argument holds for \mathbb{P}_{κ} if $cf(\kappa) \geq \omega_2$.

Corollary 3.12. Each of the following are relatively consistent with ZFC:

- (i) $c = add(\mathcal{M}) = \omega_2 + \Diamond(cov(\mathcal{N}))$ (see Diagram 1).
- (ii) $\mathbf{c} = cov(\mathcal{N}) = cov(\mathcal{M}) = \omega_2 + \Diamond(\mathfrak{b})$ (see Diagram 2).
- (iii) $\mathfrak{c} = non(\mathcal{M}) = cov(\mathcal{M}) = \omega_2 + \Diamond(\mathfrak{b}) + \Diamond(cov(\mathcal{N}))$ (see Diagram 3).
- (iv) $\mathfrak{c} = cov(\mathcal{N}) = add(\mathcal{M}) = \omega_2 + \Diamond(add(\mathcal{N}))$ (see Diagram 4).

Proof. (i) Suppose $V \models \text{CH}$. By Theorem 3.11 and Proposition 3.9 (1) $V^{\mathbb{D}_{\omega_2}} \models \diamondsuit(\text{cov}(\mathcal{N}))$. Since \mathbb{D}_{ω_2} adds ω_2 -many dominating reals and Cohen reals, $V^{\mathbb{D}_{\omega_2}} \models \mathfrak{c} = \mathfrak{b} = \text{cov}(\mathcal{M}) = \omega_2$. Since $\text{add}(\mathcal{M}) = \min\{\mathfrak{b}, \text{cov}(\mathcal{M})\}$ (see [19], [14]),

$$V^{\mathbb{D}_{\omega_2}} \models \Diamond(\operatorname{cov}(\mathcal{N})) + \mathfrak{c} = \operatorname{add}(\mathcal{M}) = \omega_2.$$

Cichońs's diagram for parametrized diamond looks as follows where a ω_2 means the corresponding evaluation of Borel invariant is ω_2 while parametrized diamonds principle for the others hold.

Diagram 1.

(ii) Suppose $V \models \text{CH}$. By Theorem 3.11 and Proposition 3.9 (2) $V^{\mathbb{B}_{\omega_2}} \models \Diamond(\mathfrak{b})$. Since \mathbb{B}_{ω_2} adds ω_2 many Cohen and random reals, $V^{\mathbb{B}_{\omega_2}} \models \mathfrak{c} = \text{cov}(\mathcal{N}) = \text{cov}(\mathcal{M}) = \omega_2$. Hence

Diagram 2.

(iii) Suppose $V \models \text{CH}$. By Theorem 3.11 and Proposition 3.9 (3) $V^{\mathbb{E}_{\omega_2}} \models \diamondsuit(\text{cov}(\mathcal{N})) + \diamondsuit(\mathfrak{b})$. Since \mathbb{E}_{ω_2} adds ω_2 many Cohen and almost different reals, $\mathfrak{c} = \text{non}(\mathcal{M}) = \text{cov}(\mathcal{M}) = \omega_2$. Hence

$$V^{\mathbb{E}_{\omega_{2}}} \models \Diamond(\operatorname{cov}(\mathcal{N})) + \Diamond(\operatorname{cov}(\mathcal{M})) + \mathfrak{c} = \operatorname{non}(\mathcal{M}) + \operatorname{cov}(\mathcal{M}).$$

$$\Diamond(\operatorname{cov}(\mathcal{N})) - \omega_{2} - \omega_{2} - \omega_{2}$$

$$\Diamond(\mathfrak{b}) - \omega_{2} - \omega_{2}$$

$$\Diamond(\operatorname{add}(\mathcal{N})) - \Diamond(\operatorname{add}(\mathcal{M})) - \omega_{2} - \omega_{2}$$
Diagram 3.

(iv) Suppose $V \models \text{CH}$. By Theorem 3.11 and Proposition 3.9 (4) $V^{(\mathbb{B}*\dot{\mathbb{D}})_{\omega_2}} \models \Diamond(\text{add}(\mathcal{N}))$. Since $(\mathbb{B}*\dot{\mathbb{D}})_{\omega_2}$ adds ω_2 many random, Cohen and dominating reals, $\mathfrak{c} = \text{cov}(\mathcal{N}) = \text{add}(\mathcal{M}) = \min\{\mathfrak{b}, \text{cov}(\mathcal{N})\} = \omega_2$. Hence

$$V^{(\mathbb{B}*\dot{\mathbb{D}})\omega_{2}} \models \Diamond(\operatorname{add}(\mathcal{N})) + \mathfrak{c} = \operatorname{cov}(\mathcal{N}) = \operatorname{add}(\mathcal{M}) = \omega_{2}.$$

$$\omega_{2} - \omega_{2} - \omega_{2} - \omega_{2} - \omega_{2}$$

$$\omega_{2} - \omega_{2} - \omega_{2} - \omega_{2}$$

$$\Diamond(\operatorname{add}(\mathcal{N})) - \omega_{2} - \omega_{2} - \omega_{2}$$
Diagram 4

Acknowledgement

While carrying out the research for this paper, I discussed my work with Jörg Brendle. He gave me helpful advice and proved Proposition 3.9(1) and (2). I greatly appreciate his help. And I thank Tetuyuki Yorioka who gave me helpful comments to the research for this paper.

参考文献

- [1] Joan Bagaria "Fragments of Martin's Axiom and Δ_3^1 Sets of Reals", Ann. Pure Appl. Logic 69 (1994), no. 1, 1–25.
- [2] Tomek Bartoszyński, Haim Judah "Set theory", A K Peters, Ltd., Wellesley, MA, 1995.
- [3] Andreas Blass, "Reductions Between Cardinal Characteristics of the Continuum", Contemp. Math., 192, (1996)31-49.
- [4] Jörg Brendle, "Cardinal invariants of the continuum and combinatorics on uncountable cardinals", preprint.
- [5] Jörg Brendle, "How to force it?", lecture notes.
- [6] Keith J. Devlin, "Constructibility". Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1984.
- [7] Keith J. Devlin, Saharon Shelah, "A weak version of \diamondsuit which follows from $2^{\aleph_0} < 2^{\aleph_1}$ ". Israel J. Math. 29 (1978), no. 2-3, 239–247.
- [8] A. Dow, "More set-theory for topologists", Topology Appl.,64(3):243-300,1995.
- [9] Michael Hrušák, "Another- \diamondsuit -like principle", Fund. Math. 167 (2001), no. 3, 277–289.
- [10] R. B. Jensen, "Souslin's hypothesis is incompatible with V=L(Abstract)", Notices American Mathematical Society, 15, (1968), 935.
- [11] Kamburelis, Anastasis "Iterations of Boolean algebras with measureW. Arch. Math. Logic 29 (1989), no. 1, 21–28.
- [12] Kenneth Kunen, "Set Theory", Studies in Logic and the Foundations of Mathematics, 102. North-Holland Publishing Co., Amsterdam, 1983.
- [13] Kenneth Kunen, "Random and Cohen reals", Handbook of set-theoretic topology, 887–911, North-Holland, Amsterdam, 1984.
- [14] Miller, Arnold W. "Some properties of measure and category", Trans. Amer. Math. Soc. 266 (1981), no. 1, 93–114.
- [15] Hiroaki Minami, "Diamonds in Cichoń's diagram", To appear.

- [16] Justin Tatch Moore, Michael Hrušák and Mirna Džamonja, "Parametrized \diamondsuit principles", Trans. Amer. Math. Soc 356 (2004) 2281-2306 .
- [17] Saharon Shelah, "Proper and Improper Forcing", Second edition. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1998.
- [18] John Truss, "Sets having calibre ℵ₁". Logic Colloquium 76 (Oxford, 1976), pp. 595-612. Studies in Logic and Found. Math., Vol. 87, North-Holland, Amsterdam, 1977.
- [19] John Truss, "Connections between different amoeba algebras". Fund. Math. 130 (1988), no. 2, 137–155.
- [20] Peter Vojtaš, "Generalized Galois-Tukey-connections between explicit relations on classical objects of real analysis". Set theory of the reals (Ramat Gan, 1991), 619–643, Israel Math. Conf. Proc., 6, Bar-Ilan Univ., Ramat Gan, 1993.