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Finite support iteration of c.c.c forcing notions
and Parametrized {-principles

B # 8 (Hiroaki Minami)
K% B AREH IR
(Graduate School of Science and Technology, Kobe University)

#ue

We present several models which satisfy some {-like principles by using
the wy-stage finite support iteration of Suslin forcing notions.

1 Introduction

In [10] Jensen showed V' = L implies Suslin’s Hypothesis doesn’t hold. To prove
this he introduced the $-principle:

&  There exists a sequence (A, C a:a< wy) such that for all X C w; the set
{a <w;: X Na=A,} is stationary.

In [9] Hrusdk gave a partial solution to a question of J. Roitman who asked
whether = w; implies & = w; and answered a question of Brendle who asked
whether @ = w; in any model obtained by adding a single Laver real. To prove
those he introduced the {-like principle $y:

O, There exists a sequence (g, 1 w < & < wy) such that g, is a function from «
to w and for every f :w; — w there is an o > w with f{o <7 ga.

In [16] Moore, Hrusdk, and Dzamonja provided a broad framework of “parametrized
O-principles” and they presented the following methods to construct parametrized
{-principles:

Theorem 1.1. Let C{w,) and B(w:) be the Cohen and random algebras corre-
sponding to the product space 2°* with its usual topological and measure theoretic
structures. The orders Clw;) and B(w:) force $(non(M)) and O{non(N)) respec-
tively.
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Theorem 1.2. Suppose that (Q, : o < wy) is a sequence of Borel partial orders
such that for each o < wy Qy is equivalent to p(2)% X Q. as a forcing notion
and let P, be the countable support iteration of this sequence. If P,, is proper
and (A, B, E) is a Borel invariant then P, forces (A, B,E) < wi iff P, forees
O(A, B, E).

In [15] by using wi-stage finite support iteration of c.c.c forcing notions, several
models were presented which satisfy some parametrized {-principles while oth-
ers fail. The purpose of this paper is to provide several models satisfying some
parametrized {-principles by using wp-stage finite support iteration of Suslin forc-

ing notions.

2 Definition and properties of Parametrized Di-
amonds

In [20] Vojtds introduced a framework to describe many cardinal invariants.
Definition 2.1. [20]{16] The triple (A, B, E) is an invariant if

(1) (41,151 < R,

(2) EC Ax B,

(3) For each a € A there exists b € B such that (a,b) € E and

(4) For each b € B there exists a € A such that (a,b) € E.

We will write aFb instead of (a,b) € E. If A and B are Borel subsets of some
Polish spaces and E is a Borel subset of their product, we call the triple (A, B, E)
Borel invariant.

Borel invariants were introduced in [3]. In the present paper we are interested
only in Borel invariants.

Definition 2.2. Suppose (4, B, E) is an invariant. Then its evaluation is defined
by
{A,B,E) = min{|X|: X C B and Va € Adb € X (aEb)}.

If A= B, we will write (A, E) and (4, E) instead of (A, B, E) and (A, B, E).

Example 2.3. The following Borel invariants (N, ), (N, C), (R, M, €),
(M,R, F), (w¥, <*), (w*, #*) and (jw]*, is split by) have the evaluations add(N),
cof(N), cov(M), non(M), 9, b and s respectively.



[

Definition 2.4. Suppose A is a Borel subset in some Polish space. Then F :
9<wi 5 A ig Borel if for every a < wy F[2% is a Borel function.

In [7] the principle “weak diamond principle” was introduced by Devlin and
Shelah. This was the starting point for the parametrized diamond principles in-
troduced by Moore, Hrugdk and Dzamonja [16].

Definition 2.5. [16]{Parametrized diamond principle)
Suppose (A, B, E) is a Borel invariant. Then {(4, B, E) is the following statement:

O(A,B,E) For all Borel F : 2t — A there exists g : wy — B such that for
every f :w; — 2 the set {a € w; : F(f[a)Eg(a)} is stationary.

The witness g for a given F in this statement will be called $(A, B, E)-sequence
for F.

O(A, B, E) and ¢ are related as follows:
Proposition 2.6. [16] Let (A, B, E) be a Borel invariant. { implies ¢(4, B, E).
O(A, B, E) and (A, B, E) are related as follows:

Proposition 2.7. [16] Suppose (A, B,E) is a Borel invariant and $(A, B, E)
holds. Then (A, B, E) < w; holds.

If two Borel invariants (A;, Bi, B1),(As, Ba, E,) are comparable in the Borel
Tukey order, then {(Ay, By, £1) and $(Az, Be, E;) are related as follows:

Definition 2.8. (Borel Tukey ordering (3]) Given a pair of Borel invariants (A, Bi, E)
and (Ag, Ba, E»), we say that (Ai, B1, F1) <B (As, By, E») if there exist Borel maps
¢: Ay — Ay and 1 : By — By such that (¢(a),b) € Ep implies (a,9(b)) € Ei.

Proposition 2.9. {16] Let (A1, By, Ey) and (As, By, Es) be Borel invariants. Sup-
pose (Al, B]_, El) S? (Az, Bz, Ez) and <>(A2, BQ,EQ) holds. Then <>(A1, Bl, El)
holds.

Concerning <%, we know the following diagram holds.
(Cichont’s diagram)

R,N,€) — (M,R, 3) ~— (M, C)

i |

(W, 27) = (", <)

l |

(N7Z)<__(M’z><——(R’M76)(—_—(N‘1R,%)

WV,Q)



(The direction of the arrow is from larger to smaller in the Borel Tukey order).

Hence the following holds:
O

~

Olcov(N)) = & mon(M) <— {(cof(M)) <— & (cof(N))

| |

&) ()

l |

O (add(NV) = G (add(M)) <— $(cov(M) <— O (non(N))

(The direction of the arrow is the direction of the implication.)

We call this diagram “Cichoft’s diagram for parametrized diamonds”.

Note When we deal with Borel invariants in Cichod’s diagram, we will use the
standard notation for their evaluations to denote the Borel invariants themselves

(e.g., we will use {(add(N)) to denote SN, 2) ).

3 Construction of Parametrized Diamonds

By using wsp-stage finite support iteration of Suslin forcing notions we present
several model which satisfies some parametrized {-principles.

3.1 Suslin forcing

Firstly we will introduce Suslin forcings and their properties.

Definition 3.1. /2, p.168] A forcing notion P = (P, <p) has a Suslin definition if
PCw?, <pCw* x w” and LpC w* x w* are ¥1.
P is Suslin if P is c.c.c and has o Suslin definition.

Definition 3.2. [2, p.168] Let M = ZFC*. A Suslin forcing P is in M if all the
parameters used in the definition of P, <p and Lp are in M.

For convenience we will interpret Suslin forcing notion in forcing extensions
using its code rather than taking the ground model forcing notion.

Definition 3.3. Let A and B be forcing notions. Then i : A — B is a complete
embedding if

(1) Ya,d' € Ala < o — i(a) < i(a))),
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(2) Yay,as € Alay L as < i(ay) L i(ag)),

(8) VA C A(A is a mazimal antichain inA — i|A] is @ mazimal antichain in B).
If there is complete embedding from A to B, then we write A <B.

Suslin forcing notion has the following good property:
Lemma 3.4. Assume A <B and P is a Suslin forcing notion. Then AxP <B*P.

Proof. Let i : A — B be a complete embedding. Then define AP - AxP
by +({a,p)) = (i(a), i.(p)) where i, is the class function from A-names to B-names
induced by i (see [12, p.222]). It is enough to show following claim.

Claim 3.4.1. If A C'A % P is a mazimal antichain, then i[A] is also a mazimal
antichain in B+ P.

Proof of Claim. Let A = {(aq,00) : @ < K} be a maximal antichain of A x P.
Assume there exists (b, ) € B+P such that (b, p) is compatible with all i((0a> Pa))-
Let G be B-generic over V such that b € G and let H = i~'[G]. Look at {po[H] :
i(aq) € G} = A" € V[H].

Subclaim 3.4.1. V[H] E A’ is mazimal antichain of P = PH].

antichain: Suppose a # 8 and i(a,),i(ag) € G. Since (aa, Pa) L (ap, Ps), Pa[H] L
pelH|.

maximality: Assume to the contrary, there exists p € P such that p L po [H] for
any pa(H] € A’. Then there exists a € H such that

a ik Ya < n(aaef'f%[i_l_p'a ).
Hence (a,9) L (Ga,Po)- This is a contradiction to the maximality of A.
Subclaim W

Since V[H] & “A’ is maximal antichain in P” and “A’ is maximal antichain
of P is a [IH (A, P, <p, Lp)-formula, V[G] = “A’ = {i.(po)[G] : i(aa) € G} is
maximal antichain of P” by IIl-absoluteness. But this is a contradiction to the
fact V[G] k= p[G] L is(pa)[G] for i(as) € G.

Claim R

Hence A P < B x P.
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Corollary 3.5. Let {Q, : a < k) be a sequence of Suslin forcing notions. Let Py
be the finite support iteration of (Pq, Qo < k) where lFp, Qo = QVP“ IfA «<B,
then AP, <B«P,.

Proof. We shall show that if A is a maximal antichain of A x B, then i[A] is also
a maximal antichain of B*P, where i : A« P, — B*P, is induced by the complete
embedding i : A — B. It is enough to prove the following claim.

Claim 3.5.1. Let A C A «P,. If for eachp € A * P, there exists g € A such that
gllp, then for each r € B % P, there exists g € A such that W)l

Proof of Claim. We shall show this by induction on x.

The successor Step is as in Lemma 3.4.

Limit step. Let x be a limit ordinal and for & < & the induction hypothesis holds.

Let A C A x P, such that for each p € A * P, there exists ¢ € A such that

pllg. Assume to the contrary there exists p € B * P, such that p L 1(g) for any

g € A Let o = sup{f < s : IFp, p(B) # 1} < . Since for each r € AxP,

there exists ¢ € A such that rl|g, for each r’ € A% P, there exists ¢ € A such that
oz||r By induction hypothesis there exists ¢ € A such that p al[za( «) where

: AP, —» B+P, is induced by i. By ia{gla) =i(g) [ a, plalli(g) [a. So
pH 1(q). It is a contradiction.

Claim 1

O

Let (R, : @ < k) be a sequence of Suslin forcing notions where all parameters
appear in the ground model. Let P, be the finite support iteration of (P, Qo :
@ < k) where lFp, Q= Rgm. Let I C . Recursively define P¥ by

(i) P is given. Then P¢+! = P¢ x ), where

pe Q) = RXF? acl
Lo {1}  otherwise.

(i) Suppose a is & limit ordinal and P is given for § < o. Define P§ as the
finite support iteration of (P%, Q,’@ 1B < a)
Put P; — P?

Lemma 3.6. P; < P,..
Proof. We shall show for o < k¥ P¢ <P, by the induction on o < &.
Successor step. Suppose P¢ < P,. If o & I, it is clear that P¢! < Pyyq. If ¢ € I,



then P3Py, is proved as in Lemma 3.4.

Limit step. Let a be a limit ordinal and for 8 < a the induction hypothesis holds.
Define i : P¢ <P, by i(p) = ig(p) if p € P# for some 3 < a where ig : PP - Py is
the complete embedding. It is enough to prove the following claim.

Claim 3.6.1. Let A C P$. If for each p € P} there ezists ¢ € A such that allp,
then for each 1 € Py there exists g € A such that i(q)|r.

Proof of Claim. Let .4 C P¥ such that for each p € P§ there exists ¢ € A such
that g||p. Let r € Py. Since P, is the finite support iteration of (Pg,Qp : B < ),
there is 8 < a such that r € Pg. Since for each p € P§ there exists ¢ € A such
that gljp, for each p’ € JP’? there exists ¢ € A such that ¢ [ Gllp. By induciton
hypothesis there exists ¢ € A such that ipe1a(q [ 8) = i(q) [ Bl|r. So i(q)llr. Hence
for each 7 € P, there exists g € A such that i(q)||r.

Claim H
Lemma O

For P.-name ¢ for a real, there is following property.

Lemma 3.7. Let P, is the s-stage finite support iteration of Suslin forcing notions.
If ¢ is P.-name for a real. Then there exists countable I C k such that & is IP;-
name.

3.2 Niceness

Tn this paper we will force &(A, B, E) for Borel invariants (4, B, E) which satisfy
the following properties:
There exist (E, : n € w) and (U™ : n € w) such that

(0) E, is a Borel set for n € w,

(1) E = mEm

new

(2) En+l C Em
(3) U™ : A — p(A) such that U™(z) is a Borel set
(4) zE,y implies that there exists m > n such that Un™(z) C {z € A: zEy}.

(5) U™xz) C {z € A: 2Epy} is absolute with parameters z, ¥, U™ and E,.

15
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Example

(i) For (2¢,2¢,3°n (x [ I, = ¥ [ ) ) let 2By if 3m 2 nfz [ In =y [ Im) and
Uz) = [z [ L) = {y € 2¥ 1 y [ I, = ¢ | I,}. Then (E; : n € w) and
(U™ : n € w) satisfy (0)-(5).

(ii) For (w¥, #*) let 2B,y if Im > n(z(m) < y(n)) and U™(z) = U [{n,m)].
m<z(n)
Then (E, :n € w) and (U™ : n € w) satisfy (0)-(5).

(iii) Let LOC = {¢ : ¢ : w — [w]<“ where |¢p(n)| < (n+1)*forn € w}. If
¢ € LOC, we call ¢ slalom. Then for f € w” and ¢ € LOC ¢ 71 f if
voon (f(n) € ¢(n)). For (LOC,w¥,Z) let ¢E,f if Im > n(f(m) ¢ d{m))
and U"(¢) = U [(n,s)]. Then (E, : n € w) and (U" : n € w) satisfy

sCo(n)
(0)-(5).

For a Borel invariant (A, B, E) with (U™ : n € w) and (E, : n € w) which safisfies
(0)-(5), we will define the notion (A, B, E)-nice and show that the wy-stage finite
support iteration of some Suslin forcing notions forces parametrized {-principles.

Definition 3.8. Let (A, B, E) be a Borel invariant with (E, : n € w) and (U™ :
n € w) satisfying (0)-(5). Let P be a forcing notion and Q be a Sushn forcing
notion or finite support iteration of Suslin forcing notions.

Then Q is (A, B, E)-nice for P if for all Q-names & for an element of A for
each (p,q) € Px Q there exists x € ANV such that for all v <p p for all but finitely
many n there exzists ¢/ € Q such that (1,g/)|[(r,q) and ¢/ kg & € U™(z).

There are following examples of niceness.
Proposition 3.9. Suppose I is countable subset of some ordinal k. Then
(1) Dy s (2%, N, €)-nice for D,
(2) By is (w¥, 2*)-nice for B, .
(3) By is (2%, N, €)-nice for B, and (w*, 2*)-nice for E,,.
(4) (B «D); is (LOC,w?, Z)-nice for (B *D),,.

Proof.
We shall show only |/| = 1. The General case is similar but more complicated.



(1). Let {I, : n € w) be a partition of w such that I, = {0}, I; = {1,2},...,
Iy, = {max(L,) +1,...,max(l,) + n+ 1}. For z € 2¢ let

A, ={ye€2 :Inecw(zll,=ylL)}

Then A, is null. So If $(29,2¢4,3%n(x | I, = ' | I,)) holds, then $(cov(N))
holds. So instead of showing that D is (2¥, NV, €)-nice for D, we shall show D is
(2¢,2¢,3%°n(x [ I, = «' [ I,})-nice for D,,,.

Let & be a D-name such that iy & € 2%, Let {p, ) € D, *D. For s € w< define
D, C D by p € D, if there exists f € w* such that p = (s, f). Then D = U D,.

sEw<w

Without loss of generality we can assume p lp, ¢ = (&, f) for some s € w<.
Then define z, € 2 NV so that Ym € wVp € Ds—p ik x5 [ Iy # & [ L. Let 7 < p
and m € w. Define {r, :n € w), f € w NV so that

(i) 7o <7, g1 < Ty and

(i) 7, decides f(n) and r, I f(n) = F(n).
Let ¢’ < (s, f) such that ¢ rp & € [z [ [ms] = U™ (zs)-
Claim 3.9.1. (1,¢")||(r, (s, )).
Proof of Claim. Let ¢’ = (t,g). Then ryy IF FHE = FTIH So (ry, (8, £)) <
(r, (s, 3. Hence (1L, )ir. s, ).

Claim B (1)O

(2). Let £ be a B-name such that lkg & € w”. Define z € w” NV so that
p(jE(n) < 2(n)]) > 1— 5. Let (p,§) € By, xB. Without loss of generality we can

assume p kg, p(d) > +. Then forany r < pandm 2 n (r, )|, [2(m) < z(m)])
and [g(m) < z(m)] gz € | [m, )] =Um(2).

i<z{m)

(3). (2¥, N, €)-niceness is shown as (1).

(w¥, #*)-niceness: For s € w<¥ and k € w let By ={peE:p={(s,F)and [F|=

k}. Then E = U Es k. Let ¢ be E-name such that Fg & € w”. Let {p,g) €
s€ww kew

E., * E. Without loss of generality we can assume p g, ¢ € Esp. Then define

Tep EW NV by
Ts (i) = min{j : Vp € B x-(pik > 4)}

Forj < klet fj be a B, -name such that p lbg, “¢ = (s,F‘) and F = {fj i< k).
Let r < p and m € w. Then define {r, :n € w) and {f; 1 i <k} €NV s0
that

17
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(1) To S T T+l S Tn and
(ii) 7., decides fj m for j < k and 7, kg, film = fj [m for j < m.

Let F = {f;;5 < k} and ¢ < (s, F) such that ¢ kg £(m) < z,k(m). Then
¢ kg &(m) € U [(m,5)] = U™(Zsx)-

i<zs k(M)
Claim 3.9.2. (r,¢)||(1,¢).
Proof of Claim. Let ¢’ = (t,G). Since 7y IFg,, £ Tt = 5 T ]E] for 5 < k.
g e, @'llg. So (1,d)1(r, g)-

ClaimMll (3) O

(4) By [11] we can assume A = (B +ID); is Boolean Algebra with strictly positive
finitely additive measure u. Let ¢ is A-name such that Iy é € LOC. For each
n € w define k, € w so that (k. € ¢(n)]) < L. Then define ¢ € LOCNV by
¢(n) = {kn}. Let (p,d) € (B *D),,. Without loss of generality we can assume
P Fmay, H4 > z. Let r < ¢. Since p(lkn & o)) > 1 - : for n > K,
P sy, 4@ 0 [ & @) 2 0" for n > k. Since [ € UM@)] = [kn & $(n)),
r gy, #4406 € UM(@)]) > 0. Hence (r,9)l|(1, {6 € U(4)]).

g
If Q is (A, B, E)-nice for P, then elements of AN V¥ have a following property.

Theorem 3.10. [Minami] Let (A, B, E) be a Borel invariant with (E, : n € w)
and (U™ : n € w) which satisfy (0)-(5). Let P be a forcing notion such that there
exists P-name 1 for an element of B such thatlFp “cEr” forx € ANV and let Q
be a Suslin forcing notion or the finite support iteration of Suslin forcing notions.
If Q is (A, B, E)-nice for P and & is a Q-name for an element of AN VT, then
Fpeg SEF-

Proof. Suppose Q is (4, B, E)-nice for P. Let 7 be a P-name for an element of
BN VP such that - zE7 for x € ANV. Let £ be a Q-name for an element of
ANV, It suffices to show for each (p,§) € P * Q there exists (r,3) < (p,q) such
that
(r,8) Ik ZET.
Let (p,q) € Px Q. Since P is {A, B, E)-nice for Q, there exists z € ANV such
that
Vr <p pV®ndgr € O( (1,gN(r,§) and ¢/ kg & € U™(x)).



Let 7 < p and n € w such that r IFp “zE,” and if m > n, there exists ¢’ €
Q( (1,gN|(r,¢) and g7 g & € U™(x)). Since r |- zE,7, there exists m > n such
that
rl-U™(x) C {z € A: 2E.7}.

Pick ¢ € Qsuchthat (1,¢')||(r,¢) and ¢ kg £ € U™(z). Let (v,d*) < (1,4, (r,q).
Then

(p,q") -2 € U™z) C{z€ A: zE,7}.
Hence (', ¢") I £E,7. Therefore - 2E7.

i

Theorem 3.11. Let (A, B, E) be a Borel invariant with (En,n € w) and (U™ :
n € w) satisfying (0)-(5). Let P,, be a wa-stage finite support iteration of Suslin
forcing notion and

(1) for all B < wy there exists a Ppy,, -name 1 for an element of A such that
ey, CEF” forze AN Ve,

(2) for all B < wy for all I countable subset of wz \ (B +w1)
VB = “P; is (A, B, E) — nice for Piggru)”

Then B,, = $(A, B, E).

Proof. Let F be a P,,-name for a Borel function. Since P, has c.c.c and
P,, is the finite support iteration of Py, Q, @ & < wy) without loss of gener-
ality we can assume F is in ground model. By (1) let 7, be a P,,-name such
that IFp,, zBEr, for z € AN VP for o < w;. We shall show lFp,, “(ro 1 & <
wy) is a O(A, B, E)-sequence for F”.

Claim 3.11.1. Let f be a P,,-name such that IFp,, fiw — 2. Then

{a€wr: f o is Pr-name where I Nw; C o and I is countable}

contains a club.

Let & = F(f [ ) such that & is a Py-name, [ is countable and 7 Nw; C a.
In VPe we can assume 7, i Plawy)-name and £ 18 Prnjw; wp)-N2IME. Hence to show
g, “Ure :a <wy) is O(A, B, E)-sequence for F”, it suffices to show that kg, .,
“;EB7,” where z is P-name for an element of AN VTr,

By (2) Py is (A, B, E)-nice for P,,,. By Theorem 3.10 I+ £E7,. Hence (s 1 o <

wy) is a $(A, B, E)-sequence for F.
0

18
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Remark 3.11.2. Same argument holds for Py if cf(k) 2 ws.
Corollary 3.12. Each of the following are relatively consistent with ZFC:
(i) ¢ = add(M) = wo + O(cov(N)) (see Diagram 1).
(ii) ¢ = cov(N') = cov(M) = wa + {(b) (see Diagram 2).
(ii) ¢ = non(M) = covM) = ws + H{b) + O(cov(N)) (see Diagram 3).
(iv) ¢ = cov(N) = add(M) = wy + O(add(N)) (see Diagram 4).

Proof. (i) Suppose V = CH. By Theorem 3.11 and Proposition 3.9 (1) VP |=
O(cov(N)). Since D, adds wy-many dominating reals and Cohen reals, VP« =
¢ = b = cov(M) = wy. Since add(M) = min{b, cov(M)} (see [19], [14]},

VP = O(cov(N)) + ¢ = add(M) = wa.

Cichotis’s diagram for parametrized diamond looks as follows where a w; means
the corresponding evaluation of Borel invariant is wy while parametrized diamonds
principle for the others hold.

<> (COV(N) ) 0% Wn %)

]

Wa Wy

I
Oladd(NV) Jz LL Wa

Diagram 1.

(i) Suppose V = CH. By Theorem 3.11 and Proposition 3.9 (2) VB2 = {(b).
Since B,,, adds wy many Cohen and random reals, VB2 = ¢ = cov(N) = cov(M) =
wy. Hence

VBa = O(b) + ¢ = cov(N) = cov(M) = ws.

W2 W2 W )

|

¢(b)

|

$(add(N)) — $(add(M)

Wy

Wa o

Diagram 2.



(ili) Suppose V k= CH. By Theorem 3.11 and Proposition 3.9 (3) VE2 k=
Oleov(N)) + &(b). Since E,, adds wp many Cohen and almost different reals,
¢ = non(M) = cov(M) = wo. Hence :

VB2 = Ocov(N)) + & (cov(M)) + ¢ = non(M) + cov(M).

O (cov(N)) wa ws wy

!

O(b)

|

O(add(N)) —— ¢(add(M))

)

W

Wo

Diagram 3.

(iv) Suppose V F= CH. By Theorem 3.11 and Proposition 3.9 (4) VB, L
&(add(N)). Since (B * D)., adds w; many random, Cohen and dominating reals,
¢ = cov(N) = add(M) = min{b, cov(N)} = wp. Hence

Y @Dl L O(add(N)) + ¢ = cov(N) = add(M) = w,.

Wz Wo Wa Wy

o

W9 e (9

|

$(add(WV)) Wy Wy w2

Diagram 4
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