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Abstract

We consider combinatorial statements which fit between the Kurepa and the weak
Kurepa hypotheses. We also formulate weak diamonds and consider their relations to
these statements .

Introduction

Two weak forms of the diamond principle & and <:> are introduced in [W]. It is shown
that (see p.110 of [W] for more information)

o { implies &,

o The Kurepa hypothesis (KH) also implies S,

. <~> in turn implies <:>

. <:) negates the saturation of the non-stationary ideal on wy.

. Z} implies the weak Kurepa hypothesis (wKH), too.

e { persists in the sense that if $ holds in a transitive model of ZFC which correctly
computes wa, then { holds in the universe.

The following are delt in this note.

(1) We give an equivalent statements to & and §.

(2) Our equivalent to O is seemingly more demanding than the original &. As a result,
we get what we call stat-wKH which rather directly negates the saturation of the
non-stationary ideal on wy. ’

(3) We formulate same types of weak Kurepa hypotheses as stat-wKH and consider weak
diamonds to investigate the situation between KH and these wKH.

(4) We provide more information on these weak diamonds. For example, we get a new
fragment of ¢ different from .

(5) We describe as many forcing constructions as we know of to separate these new com-
binatorial statements.

Though claims we make are within the reaches of established facts and forcing tech-
niques, so-far-possibly-implicit points of view on KH, wKH and { are examined.



§1. The KH, &, & and the wKH

1.1 Definition. ([W]) & holds, if there exist wo-many subsets (Ag | 8 < w2) of wi
and (T, | a < wi) with each T;, countable and the following is stationary in wp

{By | Y C P(w1) is countable, (T, | & < w1} guesses Y}

where,

By =sup{f+1]|AgeY}
and

(To | @ <wy) guesses Y, if the following is cofinal in w;

{a<w |ENaeT, foral E€Y}

We record the following for the sake of clarity.

1.2 Proposition. (1) For § C {8 < w; | ¢f(8) = w}, the following are equivalent
o S is stationary in wo.
o {X €[w]¥| UX € S} is stationary in [wa]*.

(2) For §* C [wa]¥, if S* is stationary in [ws]*, then {UJX | X € §*} is stationary in ws.
(The converse is false in some cases.)

In the manner we show the above on these two notions of stationary sets, we may
show

1.3 Proposition. & holds iff there exist (bg | 8 < w2) and (Sa | o <w1) such that

e Each bp is a function from w; into 2 and if 5 # B2, then bg, # bg,.
e Each S, is countable and if o € Sy, then o : @ — 2.

e The following is stationary in [wa]“.

{X € [w]” | A C w1 3B C X such that Ud=uw, Us=Ux
V{a,B) € Ax B bgla€ Sa}

Proof. Let (Ag | 8 < wa) and (T, | o < wy) satisfy &. Foreach B < wo, let bg 1wy —
2 be the characteristic function of Ag. For each a < wy, let So = {Xa | 0 € Ta N Pla)},
where Yq : & — 2 is the characteristic function of a. Given ¢ : <Yws — wo, find
Y C P(w) such that By is a limit ordinal, By is p-closed and (T, | & < wy) guesses Y.
Let
A={a<w |VE€Y ENna€Ta}
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and o
BI{ﬂ(WszﬁEY}.

Let X € [ws]®” be the p-closure of B. Then X is ¢-closed, [JA = w1, B =JX and
for all (o, B) € A x B, we have bg[a € S,.
Conversely, for each 8 < ws, let Ag = {i < w1 | bg(i) = 1}. For each o < wy, let
Ty = {{i < a|c@@) =1} | 0 € Sa}. Let C C wy be aclub. Take X € {wo]”, A C w1
and B C X such that JX € C, UA = w1, UB =X and for all (o,3) € A x B, we
have bg[o € So. We may assume |JX is a limit ordinal. Let Y = {Ag | 8 € B}. Then
By =|JX € C and (T, |o < wy) guesses this Y.
o

The following is almost verbatim from [W].

1.4 Definition. ([W]) 5 holds, if there exist (bg | 8 < wy) and (S, | @ < w) such
that

e Each bg is a function from wy into 2 and if §; # (o, then bg, # bg,.
e Each S, is countable and if o0 € §,, then o : @ — 2.

e The following is stationary in {we]®.
{X € w2 | 3a> X Nwi IBC X such that | JB=|JX, VB € B bglo € Sa}

Here is our equivalent statement to .

1.5 Proposition. <:> holds iff there exist {bg | B < w2) and (S, | @ < w) such that

o Each by is a function from wy into 2 and if 1 # Bs, then bg, # bg,.
e Each S, is countable and if o € S, then o : a — 2.
e The following is stationary in [wa]®.

{X €[we]” | Ja= X Nw; 3B C X such that UB=UX, VB € Bbglac Sy}

We record a well-known lemma, say, from [B] and [W].

1.6 Lemma. Let 8 be a regular cardinal with # > ws and N be a countable elementary
substructure of Hg. By this we mean (N, €) is an elementary substructure of (Hp, €) with
|N| = w and may simply denote N < Hp. Define

N* = {f(Nnwi) | f € N}.

Then
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e (N* €) is a countable elementary substructure of (Hy, €).
e NCN*,NNwi € N* andso NNw; < N* Nwy <wi.
s However, sup(N Nws) = sup(N* Nwa).

1.7 Corollary. Let § be a regular cardinal with 6 > w2. Then given any countable
elementary substructure N of Hg, we may automatically construct its canonical extensions
{N; | i <wi). By this we mean

e Ny=N.
e Each N, is a countable elementary substructure of Hp.
e N;yv1 =N}
e For limit 4, we set N; = [J{Ni, | k < i}.
Therefore,

o (N;Nw; | i <wi) forms a club in wi.
e However, sup(N; Nws) = sup(N Nws) constantly for all £ <ws.

Isomorphic-types of the canonical extensions are considered via @ 4¢ in [W].

Proof to the equivalence of <:>
Fix (bg | B < we) and (Sa | o < w1) so that <:> is witnessed. We show

1.7.1 Claim. The following N € [H,,]* are stationary in [H,,|*.

o N < Hy,,
o 3f e NN “w with Vo < wi f(@) > « such that
JBC NNwywith UB=UJ(NNuw2), VBEB bl f(N Nwi1) € S¢vawy)-

Then by the Fodor’s Lemma,

1.7.2 Claim. 3f; € “*w; Va < wy fole) > o and the following is stationary in
[Ho,

(N € [Hu,)® | N < Huy, 3B C N Nwy with | B = J(V Nw),

Y8 € B bg[fo(N Nwi) € Spynrwn) }

Therefore, for each o < wy, may define S, by

S5 = Stoe o

Then S C *2, S% is countable and the following is stationary in [H,,l“.

{N €[H,,]* | 3B C NNuwp with | JB={JVNws), VB € B bs[(N Nw1) € Sxpe, }
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So we would be done, if we provide a proof to 1.7.1 Claim.

Proof of 1.7.1 Claim. (This part is based on [W])

Let ¢ : <¥H,, — H,,. Fix a sufficiently large regular cardinal ¢ and a countable
elementary substructure M of Hy with ¢ € M. We may asssume X = M Nwy has a cofinal
subset B C X and there exists o > X Nw; such that

vVgeB bﬁ(a € S,.

Construct the canonical extensions (M; | 1 < w1) of M. Since (M;Nw; |4 < wi) forms
a club in w; with a > My Nwy, there exists ¢ < wy such that

M, Nw <a< M1 Nws.

By the definition of M; 1 from M;, we have f € M; such that
f(Mz ﬂw1) =a > M; Nwy.

We may assume that f : w; — w; and that for all @ < wi, f(@) > @.
Let N = M; N H,,. Since H,, € M; < Hyg,

e N is a countable elementary substructure of He,.

e fEN,as“tw; C H,,.

¢ BC NNuws and |JB =N Nwa).

VB € Bbg|[f(N Nuwi) € Sf(wal)‘

Since N is y-closed, this completes the proof.

We go on to make

1.8 Definition. Let us stat-weak Kurepa hypothesis (stat-wKH) denote the following:
There exist (bg | 8 < wz) and (Sq | @ < w1) such that

e Each bg is a function from w; into 2 and if 81 # B2, then bg, # bg,.
e Each S, is countable and if o € S,, then o : o —> 2.
o Forall § <ws, {a <wi | bsgla € S} are stationary in w.

We may view stat-wKH as a sort of {. Namely, stat-wKH guesses some wy-many
subsets of wy, while & does all subsets of wy. The weak diamond & entails stat-wKH.

1.9 Proposition. <:> implies stat-wKH.



Proof. It is just thinning. By our equivalent form of é, we get (bg | B < wq) and
(S | @ < w1) such that the following is stationary in [wa]®.

(X €lw]¥ | 36=XNwy, IBC X with | JB=JX, VB e B bs[s € S5}

1.9.1 Claim. {[3 <wy | {a<w | bgfa € 5.} is stationary in wl} is cofinal in ws.

Proof of Claim. Fix n < wa. Take a sufficiently large regular cardinal # and a countable
elementary substructure M of Hp such that (bg | 8 < wa),(Sa | @ <wi1),n € M. We may
set 6 = M Nw; and assume that there exists B C M Nwy cofinal within M Nws such that

VB € Bbs[d e Ss.

Therefore, we may fix some § € B such that n < § and bg[d € Ss.
1.9.1.1 Sub claim. {a < w1 | bg[a € S,} is stationary in w;.
Proof of sub claim. We make use of the elementarity of M. Fix aclub C € M. Then
6 € C and sc
ME“YC Cuw clubJae C bglae S,

Therefore {a < wy | bg[a € Sq} is really stationary in the universe.

1.10 Proposition. The stat-wKH implies that there exists a family F of almost
disjoint stationary subsets of wy with |F| = wz. And so the non-stationary ideal on wy is
not saturated.

Proof. Let (bs | B < we) and (S, | @ <wi) be as in stat-wKH.
Let (0% | n < w) enumerate S,. By thinning, say twice, we may assume that there
exists n < w such that for all 8 < ws, the following T is stationary in wy.

Tﬁ = {a < w1 l bﬁ(a= Jf:}
Now consider F = {Tj |8 < wg}. Then this F works.

The following is shown in [W] by generic ultra-power constructions over set models of
set theory.

1.11 Corollary. ([W]) <:> implies the non-stationary ideal on w; is not saturated.

1.12 Definition. Let us cof-weak Kurepa hypothesis (cof-wKH, '} denote the following:
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There exist (bg | 8 < wz) and (S | @ < wy) such that

e Each bg is a function from wi into 2 and if 1 # B, then bg, # bp,.
e Each S, is countable and if o € S,, then 0 : o0 — 2.

e For all # < ws, {a <w; | bgla € Sa} are cofinal in w;.

Therefore, stat-wKH implies cof-wKH. We return to this in the next section.

1.13 Proposition. The cof-wKH implies wKH. Le, there exists a sub tree T of <@ 2
such that |T] = w; and there are af least wy-many cofinal branches through 7.

Proof. We argue as in the previous proposition. Let (bs | 8 < wz) and (S, | & <w1)

be as in cof-wKH.

Let (0% | n < w) enumerate S,. By thinning, say twice, we may assume that there

exists n < w such that for all 8 < ws, the following Fjg is cofinal in ws.

Eg={a<w |bsla=o;}

Let T = {o2[@ | @ < o < wi}. Then this T works. The bs provide cofinal branches
through T.
0

1.14 Corollary. ([W}) $ implies wKH.

Since KH implies & by [W], we conclude
1.15 Corollary. The following are all equiconsistent.
(1) There exists a strongly inaccessible cardinal.

(2) Either wKH, cof-wKH, stat-wKH, <:}, & or KH gets negated.

§2. Weak Kurepa Trees

We recap stat-wKH and cof-wKH in this section and generalize them.

2.1 Definition. Let 0 be either cof, stat, club, or coint. Let us D-weak Kurepa
hypothesis [@-wKH) denote the following:

There exist (b | f < wa) and (S, | @ < wy) such that

e Each bs is a function from wy into 2 and if 51 # B2, then bg, # bg,.
e Fach S, is countable and if & € S,, then ¢ : ¢ — 2.

e For each [ < waq, either {& < w; | bg[a € Sy} is cofinal, stationary, contains a club,
or is coinitial in wi, respectively.



We view KH, &, &, stat-wKH, cof-wKH and wKH along this generalization and record
the following.

2.2 Proposition. (1) KH iff coint-wKH.
(2)

o The coint-wKH implies club-wKH.

¢ The club-wKH implies stat-wKH.

o The stat-wKH implies cof-wKH.

o The cof-wKH implies wKH.

e The club-wKH implies &.
o ([W]) & implies .
) <~> implies stat-wKH.

Proof. For (1): Suppose T is a Kurepa tree. We may assume T C <¥12. Let
{bs | B < wa} C “*2 be one-to-one such that bg[aw € T, for all § < wy and o < wi.
Let S, = T, for all @ < w;. Then S, is countable and bglo € Sy for every possible
combination. Hence we certainly have coint-wKH.

Conversely, let (bg | 8 < w2) and (So | @ < wi) be witnesses to coint-wKH. By
thinning, we may assume that there exists ap < wi such that for all 8 < ws and all
a > ag, we have
: bg [Ot €S,

Let T = {bgfa | 8 < wy,a <wi}. lf a2 oo, then T, C S, which is countable. If
o < ag, then Ty C Sa, [ which is also countable. Each bg provide different cofinal branch
{bg[a | @ < w;}. Hence T is a Kurepa tree.

For (2): First three are trivial by definition and we have seen the fourth.

For {3): Since we have seen the last two items, we consider the first item. Let (bg | 6 <
wo) and (S, | & < w1) be witnesses to club-wKH. Let Eg = {a < wi | bglo € Sa}. Then
for all X € [wy]®, we set A = {Es |6 € X} C w1 and B = X so that U4 = w,
\UB =X and for all (&, 8) € A x B, we have bg [ € S,. Hence we certainly have 5.

]

2.3 Proposition. The club-wKH implies the transversal hypothesis (TH). Namely,
there exists a family F of almost disjoint functions from w; into w with |F| = wa.

Proof. We must observe that there exist wo-many functions gg : wi — W such that
if By # (a, then there exists ag, g, < w1 such that for all « with ag,g, < a <wi, we have
9p, (@) # 95, (a).

To this end, let {02 | n < w} enumerate So. Then let fs(c) = the least n such that
bslaw = o2, if applicable. Then if By # B2, then {a < w | fa(a) # fs,(a)} contains a
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club. Now we may resort to a trick due to Jensen to produce gs. See the proof of Lemma
1 on p. 72 of [D].
O

When I gave a talk on this at the Set Theory Seminar, Nagoya university, 17th, Dec.
2004, T. Sakai provided an idea for a direct proof on the spot. Accordingly, I record the
following based on his idea. ‘

Proof. Let us fix {eq | @ < w1) s0 that e : w — a+ 1 onto. Let (bg | B < wa)
and (S, | @ < wi) be as in club-wKH. Let Cp C {& < w1 | bg[a € So} be a club and

(a¢ | n < w) enumerate S,.
For each @, let us define gg : wy — w X w so that for any o > minCy, if § =

max (Cg N (a+ 1)), then gg(a) = (n,m), where
n = the least n s.t. eq{(n) =0,

m = the least m s.t. b, = bg[é.

Let 81,82 < wo with §1 # Ba. Pick o* < w so that [ag,g,,a*] N (Cs, NCs,) # 0,
where if &' > g, g,, then bg, [o/ # bg,[c/.

2.3.1 Claim. If a > o*, then gs, () # g, ().
Proof. Let gg, (a) = (n1,m1), ga, (@) = (ng,ma), 1 = ex(n1) and & = eq(n2).
Case 1. ny # ng: Then gg, (@) # gp,(c).

Case 2. n; = ny: Then let § = 6; = 8, € Cp, N Cp,. We have bg, [§ = al_,
bg,[6 = af,, and & > ag,p,. Then my # mg and so gg, (@) # gp. ().
=

We interpolated the following well-known.

2.4 Corollary. KH implies TH.

We provide a characterization of weak Kurepa trees along the line of o-wKH, where
0 is either coint, club, stat, or cof.

2.5 Proposition. The following are equivalent.

(1) The wKH holds.

(2) There exist (bg | § < wg) and (S, | @ < wy) such that
e Each bg is a function from wy into 2 and if 31 # (o, then bg, # bg,.
¢ Bach S, is countable and if o € §,, then ¢ : oo — 2.

e For all B < ws, there exist fg: w; — w; such that for all & < wy, we have o < fz(a)
and bg [-04 € Sfﬁ(a) foz.



Proof. (1) implies (2): Let T be a weak Kurepa tree. Let (bg | 8 < w2) be a one-to-one
enumeration of functions from w; to 2 such that bg[a € T, for all possible combinations
of (o, B). Let {0y | 4 < w1) enumerate {bgfer | f <wz,a <wi} CT. For each o <wy, let
Sor C o9 be countable so that for any i < ¢, if o; satisfies |0;] < ¢, then there exists
r € S, with o; € 7. We claim these (bg | § < wq) and (Sor | @' < w;) work. To see
this, let § < we and o < wi. Let oy = bg[ce. Then take o' < wi so large that 7, < o'.
Since i < o and |o;] = o < o/, we have T € Sy with o; C 7 and so bgla € Sor[a. Let
fola) =o'

(2) implies (1): Let T = {bg[x | B < wa,a < w1}. Then for each 8 < wo, {bs [ala<
w1} is a cofinal branch through T. For each a < wy, we have T, C [ {Sw[a [ < o/,o/ <
w1} which is at most of size wi. Hence T is a weak Kurepa tree.

O

The following is also from the Set Theory Seminar, Nagoya university, and due to S.
Fuchino and T. Sakai.

2.6 Note. The following are equivalent.

(1) The CH holds.
(2) There exists (S | @ < w1) such that S © *2, |Ss| < w and forallbe 2 2 and
o < wi, there exist o/ < w; such that a < o' and bla € Sy o

(3) Same as above with |So| = 1.

Along the lines of guessing all subsets of wi, we have the three principles ¢, ¢* and
&+, Now we are tempted to consider the following {(coint).

2.7 Note. However, {(coint) is false, where {(coint) denotes that there exists
(Se | & < wy) such that So € *2, |Sa| < w and for all b € ** 2, {a<w | bla € 8.} are

coinitial in wi.

§3. Weak Diamonds

We formulate weak diamonds and investigate their impacts on the situation between
wKH and KH.

3.1 Definition. Let 0 denote either cof, stat, club or coint. We denote ®(), if for
any F: <“12 —» w; and any (b | B < we) (no need to be one-to-one) such that each bg
is & member of ¥ 2, there exists g : w1 — wi such that for each 8 < ws, we have either
{o < w1 | F(bgla) < gle)} is cofinal, stationary, contains a club, or is coinitial in wi,
respectively.

So for example, ®(stat) claims that given any coloring of the nodes of the tree <+t 2
by countable ordinals, if we fix at most wo-many cofinal branches and concentrate on the
nodes in {bga | B < wa, < w1}, then there exists a uniform coloring g : w1 — w1 such
that g correctly bounds each (o F(bg[a) | & <wy) stationary often.
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We also formulate a stronger diamond along the line of ®(0).

3.2 Definition. Let 0 denote either cof, stat, club or coint. We denote ®(0), if for
any F: <#12 — wy, there exists g : w3 — w; such that for any b:wy — 2, we have
either {a < w; | F(bg[a) < g(@)} is cofinal, stationary, contains a club, or is coinitial in
w1, respectively.

Therefore, given any coloring of <“* 2 with countable ordinals, the principle D(stat)
provides a uniform coloring g which correctly bounds every possible cofinal branch’s col-
oring as often as a stationary subset of w;.

3.3 Definition. We denote (<*), if for any (fg | 8 < wa) such that for each §, fg is
a function from wi into wi, there exists f : w1 — w; such that for every 8 < w2, we have
fs <* f. By this we mean that {& <wi | fg(a) < f(@)} is coinitial in w;.

3.4 Proposition. Let 0 denote either cof, stat, club or coint.

(1) The wKH combined with ®(0) implies o-wKH.
(2) (<*) implies ®().

Proof. For (1): Let T be a weak Kurepa tree. Then T has at least wo-many cofinal
branches. So let {bg | B < ws) be a one-to-one enumeration such that for all (a, 8) € w1 xws,
bsa € T,. Now let us fix F: <“* 2 — wy so that F[T is one-to-one. Then by (1), get
g : w1 — wy such that for all B < wq, we have {& < w; | Fbgla) < g(a)} are 0 in w;.
Define (S, | @ <wi) by

Se={c€*2nT | F(o) < g{a}}.

Since F[T is one-to-one, S, is countable. If F{(bg[a) < g(a), then bgla € S, holds.

Hence these bg and S, work.

For (2): Let F: <“12 — w1 and (bg | B < wa) be given. Define (fg | f < w2) by

fola) = F(bgla).
Then get f: w; — w; such that for all 8 < w2,

{a<wi| fala) < fla)}

are coinitial. Hence {a < w1 | F(bg[a) < fa)} isOin ws.

The following is a rendition from [We].

3.5 Corollary. If CH, 2¢ = w3 and GMA(o-closed, R;-linked, well-met) hold, then
KH holds.



Proof. Suppose CH, 2 = w3 and GMA (o-closed, R;-linked, well-met). Then we get
(<*). But CH implies wKH. Hence wHK and ®(coint) hold. So coint-wKH holds. Namely,
KH holds.

]

3.6 Proposition. Let O denote either cof, stat, club or coint.
(1) ®(0) implies @(n).
(2) ®(cof) implies 2v < 2¢1.
(3) CH + ®(stat) iff {.
(4) CH + @(club) iff &~
Proof. For (1): Fix F: <12 — w;. Then ®(0) provides a uniform coloring

g : w; — w; which works for all b : wy — 2. Hence g works for any prefixed (bg | # < wa)
with each bg 1wy — 2.

For (2): We follow [MHD]. Suppose not and let H : “2 — “1 ., be a bijection.
Define F: <*12 — w; by

F(o) = H(o[w)(lo]), if |o| 2 w.

Then get g : wi —> wy such that for all b: w1 — 2, {a < w1 | F(b[a) < g(a)} are
cofinal in wi.
Take b € “ 2 with H(b[w) = g. Then for each o > w, we have

F(b[a) = H(b[w)(a) = g(a).
Hence {& < w; | F(b]a) = g{a)} is cointial in wy. This is a contradiction.

For (3) and (4): We show (3), since (4) has a similar proof. Suppose CH and P(stat).
Let F : <%12 — oy be a bijection via CH. Apply, ®(stat). We have g : w1 — w1 such
that for all b € 12, {a < w; | F(b[e) < g(e)} are stationary in wy.
For each o < wi, let
Se={c€ *2| F(o) < gla)}.

Then S, is countable and for any b € ¢ 2, it holds that {a < w1 | b[a € Sa} is
stationary in wi. Hence < holds.

Conversely, suppose . We know CH holds. To show ®(stat), let (Sq | @ < wy) be
a diamond sequence such that for any b € “*2, it holds that {& < wi | bfe € Sa} is
stationary in wi.

Given F : <% 2 — wy, let g : w; — wy be such that for all & < wy and all ¢ € S,,
F(o) < g(c). This is possible, as |S,| < w. Then for any g : w; — 2, it certainly holds
that {a < w; | F(bfa) < g(a)} is stationary in w;. Hence ®(stat) holds.

a
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It is known that  negates the following CB.

3.7 Definition. The complete bounding (CB) holds, if for each f € “* w; there exists
v € (w1,w2) and (X, | & < wy) such that X, are continuously increasing countable subsets
of v with { J{Xs | @ < w1} =7y and for all o < wy, we have f(a) < 0.t.(Xa).

3.8 Proposition. ®(stat) negates CB.

Proof. Define F : <¥»2 — w; so that F(o) = «, if 0 codes a countable ordinal
a. And consider (b, | w1 < 7 < wa) such that by : wy — 2 codes v. We show the
contrapositive.

Suppose CB. Fix any possible g : wi — wi. Then we have v and X, with g(a) <
04.(Xs). Let b = by. Take a sufficiently large regular cardinal f and any countable
elementary substructure N of Hy with b € N. Let § = N Nw;. Now we transitive collapse

N. Then
b[§ codes 0.t.{(N N7).

Since X5 = N Ny, we have
F(b[8) = o.t.(N Nv) = o.t.(X5) > g(6).

Hence {a < wy | F(bla) < g(a)} is non-stationary.

3.9 Corollary. ¢ negates CB.
Proof. ¢ implies ®(stat). And ®(stat) implies ®(stat).

We know that © iff CH + &.

3.10 Question. (1) It is known, say by [W] and [F], that & negates the saturation
of the non-stationary ideal on w;. Is it ever holds that Con(d + CB) ?

(2) We know {(coint) iff CH + ®(coint) but {(coint) is always false. Is it simply that
®(coint) is false ?

§4. Not Club-wKH + Stat-wKH

We look at the standard model of set theory in which KH gets negated ([Si] and [K]}).

4.1 Theorem. Let x be a strongly inaccessible cardinal and Lv{k,w:) denote the
Levy collapse which turns x into ws. Then —club-wKH holds in the generic extensions
VILv{s,wi)].

Since ¢ holds in V[Lv(k,w;)], we have

4.2 Corollary. The following are all equiconsistent.
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(1) Con(There exists a strongly inaccessible cardinal).
(2) Con(—club-wKH + ).

(3) Con(=club-wKH + ).

(4) Con(~club-wKH + stat-wKH).

(5) Con(—KH).

Proof of theorem. We repeat the standard proof, due to Silver, for showing —KH.
Then we notice that it actually shows —club-wKH.

Here are some details. We first provide

4.2.1 Claim. Let S, C *2 be countable for_all a < wy. Let b and C be Lv(k,w1)-
names. Then |-re(euw) “if C is a club in wy and b : w; — 2 such that bla € S, for all
o€ C, then b € V” holds.

Proof. By contradiction. Suppose p [ 1v(s,w:) “C'is a club in wy and b : w1 — 2 such
that b[a € S, forall a € C” and p I Lovgew) “h & V. We derive a contradiction.

To this end, let N be a countable elementary substructure of H.+ with p, &, b,C € N.
Denote § = N Nw;.
Construct ((ps,bs) | s € <9 2) by recursion on |s| such that for each s € <~ 2,

e pg=pand by =0. ’

ps € Lv{x,w1) NN and bs € S, U {0}

Ps [Frviews) “ bsl € C U {0} and b, C b”.

Ds~(3) < Psy bs~(a) 2 bs for i = 0,1 and b,~ (), bs—~(1) &re incomparable. 1.e, b~y €
bs~(1y and bs~ (1) € bs~(0)-

(Dsn | n < w) is a (Lv(k,wr), N)-generic sequence for all feva.

Let py = U{psm | n < w} and by = U{bsn | 7 < w} for each f € ¥2. Then

Ps IFrview) 0 = N[G’] Nwi € C and b[§ = by : § — 2" for all f € ¥ 2, where G denotes
the canonical Lv{,w:)-name of the generic filters. Hence py Lo, “Df0 € Ss” and so
{bs| f € @2} C Ss. Since [{bs | f € “2}| =2 and S5 is countable, this is a contradiction.

(]

Now back to the proof of theorem, we proceed by contradiction. Suppose (bg | B < K)
and (S, o < wy) satisfy club-wKH in V[Lv(x,w)]. Since Lv{x,w;) has the s-c.c, we may
assume (S, |@ < wi) € V. Then by claim, we know that bg € V for all 8 < x. Hence
21 > k. But x is a strongly inacceccible cardinal. This is a contradiction.

O

The following is a later half of the exercise (J6) on p.300 in [K] .
4.3 Corollary. = holds in V[Lv{x,w1)].

Proof. &* iff CH + ®(club). It in turn implies wKH + ®(club). And so ¢* implies
club-wKH.
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§5. Not KH + Club-wKH

5.1 Theorem. Con(There exists a strongly inaccessible cardinal) implies Con( ~KH
+ club-wKH).

Proof. We first out-line. Then provide some details.

(Out-line) Let % be a strongly inaccessible cardinal in the ground model V. We first
Levy collapse x over V so that k becomes new wy, while wi remains the same. In this
generic extension V[Lv(k,w:)], we have =KH due to Silver. We prepare some (bg | 8 < &)
and (Sa | @ < wi) in V[Lv(k,w1)] such that

s bg e “r2 forall B <&,
e 5, C ®“2and 8, are countable for all o < ws,
e If we denote Eg = {o < w1 | bgfa € So}and E={X € [s]* |V € X XNw: € Ep},

then the Ej are stationary in wy and so is E in [s]“.

We next side-by-side force over V[Lv(k,w )] so that clubs Cp are added with Cs C Eg
for all 8 < k. Let us denote this notion of forcing'by R € V[Lv(k,w1)]. We show that
R has the k-c.c. and is F-complete in the sense of [S] whose meaning explained later. In
particular, R is o-Baire and so preserves both w; and ws. Hence club-wKH holds in the
final extension V[Lv(k,w1)][R].

We claim —KH is preserved into V[Lv(k,w1)][R]. To this end, fix any possible Kurepa
tree T in V[Lv(k,w;)][R]. We clarify the following among others.

o We factor V[Lv{x,w1)][R] into

VILv(k, w)][RBR(E", #))]

so that T € V[Lv{k,w;)|[R(5*)] for some §* < k.
According to [J-S],

o —~KH gets preserved over V{Lv(k,w1)] by any notion of forcing which is o-Baire and
of size at most ws.

Hence T has at most wi-many cofinal branches in the intermidiate V{Lv(x,w1)][R(8*)].
® We show no new cofinal branches are added through T' over V{Lv(k,w:)][R(8*)].

To this, we observe the quotient R([3*, k)) is E-complete in V[Lv(x,w1)][R(8*)]. We
then modify Silver’s construction for o-closed notion of forcing to obverve the last item.
Therefore T fails to be a Kurepa tree in V[Lv(k,w;)][R].

Some details follow.



(Step 1) Let » be a strongly inaccessible cardinal. We force with the Levy collapse
Lv{k,w;) over the ground model V. To save symbols, let us write V{Lv(k,w;)] for the
generic extensions.

Argue in V[Lv(,w;)]. For each (1 <) 8 < &, Let us write gg : w1 — [ for the S-th
generic function added via Lv(x,ws).

We prepare {bg | 8 < 5) and (S, | @ < w1). To define bg : w1 — 2, we make use of
G, +5- To define Sy, say, for limit o, we make use of g; [w (e < i < a+a). More precisely,

ba(a) =1 iff gu,4+p(a) is odd.
So={0 | n<w} of a0 — 2.

o%(i) = 1 iff ga4i(n) is odd.

We know how to construct conditions via generic sequences with respect Lv(k,w:)
upon fixing countable elementary substructures. In such constructions, we know which
parts of what gg are decided and what gg are left open. Hence it is not hard to show that
E={Xec[k“|V8 € X XNuw € Ep} is stationary in [x]*. It then follows that each
Eg={a<uw | bgla € Sy} must be stationary in w;.

For an explicit proof, we show E is stationary in [«]“. Suppose plFrLy(sw:) P :
Wi — k7. We want to find ¢¢ < p and X € [«]* such that ¢" |Frv(ew) X € E
and X is ¢-closed”, where E denotes the canonical name of E. To this end let & be a
sufficiently large regular cardinal and N be a countable elementary substructure of Hy
with p, € N. Let § = N tw; and X = N N«. Take a (Lv(k,w1), N)-generic sequence
(pn, |7 < w) with pg = p. Let ¢ = U{pn | n < w}. Then q € Lv(k,w1) is (Lv{k,w1),N)-
generic and dom(g) = N N (k x w1) = X x §. Hence g decides gu, +p [6 for all € X and
gl rv(ew) X = N[G] Nk is p-closed”.

We may place the countable set {gu,+s[d | B € X} on [6,6+6) x w. Namely, we may
extend ¢ to ¢* so that ¢* [FLv(sw:) “Deld € Ss for all B € X”. Hence ¢* |FLy(nw:) “X € E7.

(Step 2) We side-by-side force clubs for all Eg over ViLv(k,w1)]. Let X C &. Define
p€ R(X),ifp=(Ch | B € XP) such that

o XPc [X]5¥,
e (7 is a countable closed subset of Eg for all § € XP.
For p,q € R(X), set ¢ <p(x) p, i
e X720 XP,
o (] end-extends C§ at each 8 € XP.
Notice that we do not require max Cgl = max ng for 81,52 € X®.

5.1.1 Lemma. (1) R(X) has the ws-c.c.

89
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(2) R(X) is E-complete. Le, for all sufficiently large regular cardinals § and all countable
elementary substructures N of Hp such that R(X) € N and NN« € E, if (r, | n <w)
is a (R(X), N)-generic sequence, then there exists 7 € R(X) such that for all n <w,

7 <R(X) Tn-

Proof. For (1): In V[Lv(k,w1)], we have { and so CH holds. By a standard A-system
lemma, we may conclude R(X) has the ws-c.c.

For (2): Let us fix any regular cardinal § with § > . Let N be any countable
elementary substructure of Hp such that R(X) € N and NNk € E. Hence we have

Ve NNk NNw: € Eg.

Let (rp | n < w) be any (R(X), N)-generic sequence. Then by genericity, we have
NNX =J{X™|n<w}) Foreach f € NNX, let Cg = U{Cyq | B € X™, n<
w}U{NNw}andr=(Cs| B € NNX). Then Cp C Ep are clubs. Hence r € R(X) such
that for all n < w, we have r < 7,.

o

Let R = R(k). Since R adds clubs Cg with Cg C Eg for all § < &, we have club-wKH
in the extensions V[Lv({k, w1 )][R)].

(Step 3) We want to show V|Lv(k,w1)}[R] = “— KH”. To this end let 7" be a possible
Kurepa tree in V[Lv(s,w1)][R]. Then by the s-cc. of R, we have §* < & such that
T € V[Lv{k,w1)][R(B*)]. Let V1 = V[Lv(x,w1)] for short. Then

e Rand R(B*) x R([8",k)) are isomorphic in V1.
o Vi |= “R(f5*) is E-complete and so o-Baire”.

Hence,
e Vi[R(5*)] = “E remains stationary in []“”.
Since R(f*) is o-Baire and so by absoluteness,

o VI[R(B*)] = “R([f*,)) is E-complete”.

Since R(3*) is of size wy in Vi, we have § < & such that
o R(6") € VILv(F,w1)].

Since R(8*) is o-Baire in V[Lv(R,w1)] C V[Lv(x,w1)], the p.o. set Lv([§, &),w1))
has the same meaning in both V][Lv(%,w;)] and V[Lv(g,w1)|[R(8*)]. Now we apply the
Product Lemma in V[Lv(R,wy)] so that

o We have
VA[R(6*)] = VILv(&, w)][R(B*)LV([R, &), w1)]

and so Vi[R(5)] = “~KH” holds.
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Therefore T has at most wi-many cofinal branches in Vi[R(6*)]. We know
Vi[R] = VA [R(B[R([6", )]

and R([8*,k)) is E-complete in V1[R((*)]. Hence it suffices to show the following.

5.1.2 Lemma. Let P be a p.o. set which is E-complete for some stationary F C (]
and T be a tree of height wy whose levels are all of size countable. Then 7' gets now new
cofinal branches in the generic extensions V{P}.

Proof. Suppose pl-p“b is a cofinal branch through T with b ¢ V”. We derive
a contradiction. To this end, let # be a sufficiently large regular cardinal and N be a
countable elementary substructure of Hg with p, P, T.b € Nand NNk € E. This is
possible, as E is stationary. Denote § = N Nw;.

Construct ((ps,bs) | s € <% 2) by recursion on |s| such that for each s € <~ 2,
e pyp = p and we may assume {bp} = Top.
ps € PNN and by € TNN.
Ds H_P“bs c b».
Ps~(iy < Dsy bs <7 bs(iy for i = 0,1 and by~ (gy, bs~(1) are incomparable. le,
bs—~(0y £ bs~(1y and bs~(1) £T bs—(0)-
Dfin | » < w) is a (P, N)-generic sequence forall f€ “2.

Since P is E-complete, we may fix ps € P such that py <p psp, for all n < w. We

may assume, by extending py further, there exists by € Ts such that py |-p“bs € b”. Since
|{bs | f € 2} =2 and T is countable, this is a contradiction.

0
§6. & and ®(stat) are different
We separate $(stat) and .
6.1 Theorem. Con(MA,, (Fn(w1,2)) + ®(stat)).
6.2 Corollary. Con{(—& + ®(stat)).
Proof. MA,, (Fn(u1,2)) implies — .
a

Proof of theorem. We first out-line. Then provide some details.

(Out-line) Since ®(stat) entails ®(cof), we must have 2 < 2. Suppose CH and
21 = p. Add ws-many functions from wi into ws. Then we have

e CH + 2%t =ws.
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e VF @ Wiy — w g wp — w1 Vb € “ws {o < wi | F(b[a) =g{a)} is
stationary.

Next, we add we-many subsets of w . Since we can capture relevant names, we have

® 2¥=wy + MA,, (Fn(w1,2)) + 2% = s,
e VF: <%12 5w dg:w; — w1 Vbe 12 {a<w | F(b[a) < g(a)} is stationary.

Here are some details.

(Step 1) Let P = Fn{ws X wi,wi,w1). Then P is o-closed. By CH, P has the ws-c.c.
Let (ge | € < ws) denote the canonical objects added by P. In particular, g¢ 1 w; —
w1. By counting the number of P-names, we have

Vi{ge | € <ws)] = “CH+ 24 =ws”.

Let F: <“1wy — wy in V[{ge | £ < ws)]. Since P has the ws-c.c, we have £* < ws
such that F' € V[{ge | £ < £*)]. Notice

Viige | € <ws)] =VI{ge | & < &)]lge-1l{ge | € <& <wa)l-

Let Vi = V[(ge | € < €*)] and @ = Fn([¢*,w3) x wi,w1,w1). Then the following
suffices.

6.2.1 Claim. [{—gl “Vh:w; — wy {a < w1 | F(b[a) = g+ (@)} is stationary.”

Proof. Argue in Vi. Suppose r |F51 “b:w; — wo and € C wi is & club”. Let #
be a sufficiently large regular cardinal and N be a countable elementary substructure of
Hy with 7,@,b,C € N. Let (r, | n < w) be a (Q, N)-generic sequence with rg = r. Let
v = |Hrn | n <w} and § = N Nw;. Then there is o € % w» such that r’/ [}—-5‘ “b8 = o”.

Let r* =" U {((¢*,6),F(0))}. Then r* <’ and ||—gL “F(b[8) = ge=(6) and § € O,
O

(Step 2) For notational simplicity, suppose the following in V.

o CH + 2% = w;.
s VF : Wiy — w 39 w1 — wy YVb € Ytwy {a < wi | Fb[a) = g(a)} is
stationary.

We force with @ = Fn(w; x w,2) over V. Then in V[Q)],

6.2.2 Claim. VF: <12 — w; 3g:w; — w1 Vb€ “12 {a <w | F(bla) < g(a)}
is stationary.

Proof. Let |-q“F : <“*2 — w;”. Let A= {A C Q | A is an antichain of Q}. Then
|A] = wa. Define Fy : <¥* 4 — w; so that for any ¢ € * A, we have [[-g9“F(s(c)) <



Folo)”, where s(0) is a member of *2 naturally defined from o in V[()]. This is possible,
as () has the c.c.c.
Now by assumption, we have go : wi — w1 such that

vbe “ A {a <w | Fo(blo) = go{e)} is stationary.

6.2.2.1 Sub claim. |FoVbe “12 {a < w | EF(b[a) < go(c)} is stationary”.
Proof. By the Maximal Principle of the Q-names, we may take b : w; — A such that
for all o < w1, | “b[a = s(b[a)”. By the choice of go, we have
{a <wi | Fo(b[a) = go(a)} is stationary.

Notice Fo(bfor) = go(e) implies g “F(bJa) = F(s(b[a)) < Fo(b[er) = go(ex)”. Since
the stationary subsets of w; remain stationary in V[Q], we conclude

{o < w | F(b[a) < go(e)} is stationary.

6.2.3 Claim. MA,, (Fn(wi,2)) holds in VI[Q)].

Proof. Given D = (D; | i < wy) dense subsets of Fn(wy,2), there exists B < wq such
that D € V[Q[A]. Hence the next wi-many coordinates provide a D-generic filter.
o

We may separate & and ®(stat) the other way round, too.
6.3 Theorem. Con( & + —®(stat)).

Proof. Since 2% = 2¢7 negates ®(stat), we look for this property. We consider a model

in [8], where Con(d + —~CH) is shown.
Let 29 = wy, 24 = wy, 2*2 = w3 and O(SF) in V. First add ws-many new subsets of
wi. Then collpase w1 to countable. Let

V* = V[Fn(ws, 2, w)|[Fn(w,w1)].
Then we have 2¢ = 2%t = wy and & in V™,

We record:
o V[Fnws,2,w)] = “2% =w; + 29 =22 = w3 + &(5F)".
o V* i: “ow — Qw1 =g+ 7.
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§7. A summary of implications, the chart

(A)
O & ¢ CH
4 ¥ 4 . 4
coint-wKH=>club-wKH= 0= {=stat-wKH=> cof-wKH=>wKH
(¥ 4 §
KH TH —SAT
(B)
®(club) = O(stat) = &(cof)
i _ 4
®(club) D(stat) 29 < 29 4 O(cof)
(©€)
(<*) = B(coint) = B(club) = (stat) = P(cof)
Y
-CB
(D)
False o ¢
) T g
CH + ®(coint) = CH + &(club) = CH + ®(stat) < CH + &(F o > w)
4 4 \ 4
wKIH + &(coint)=>wKH + &(club)=>wKH + $(stat)= wKH + ®(cof)
) 4 4
coint-wKH club-wKH stat-wKH cof-wKH

(E)
CH + 2% = w3 + GMA,,, = CH + (<*) = wKH + &(coint)

7.1 Note. ([W]) Con(NS,, is wi-dense and wKH).
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