Weak Kurepa trees and weak diamonds

Tadatoshi MIYAMOTO

南山大学, 数理情報学部, 宮元 忠敏 Mathematics, Nanzan University, 27 Seirei-cho, Seto-shi, 489-0863 Japan, miyamoto@nanzan-u.ac.jp

24th, December, 2004

Abstract

We consider combinatorial statements which fit between the Kurepa and the weak Kurepa hypotheses. We also formulate weak diamonds and consider their relations to these statements .

Introduction

Two weak forms of the diamond principle $\tilde{\Diamond}$ and $\tilde{\tilde{\Diamond}}$ are introduced in [W]. It is shown that (see p.110 of [W] for more information)

- \diamondsuit implies $\tilde{\diamondsuit}$.
- The Kurepa hypothesis (KH) also implies $\hat{\Diamond}$.
- $\tilde{\Diamond}$ in turn implies $\tilde{\tilde{\Diamond}}$.
- $\tilde{\Diamond}$ negates the saturation of the non-stationary ideal on ω_1 .
- $\tilde{\Diamond}$ implies the weak Kurepa hypothesis (wKH), too.
- \Diamond persists in the sense that if \Diamond holds in a transitive model of ZFC which correctly computes ω_2 , then $\tilde{\Diamond}$ holds in the universe.

The following are delt in this note.

- (1) We give an equivalent statements to $\tilde{\Diamond}$ and $\tilde{\tilde{\Diamond}}$.
- (2) Our equivalent to $\tilde{\Diamond}$ is seemingly more demanding than the original $\tilde{\Diamond}$. As a result, we get what we call stat-wKH which rather directly negates the saturation of the non-stationary ideal on ω_1 .
- (3) We formulate same types of weak Kurepa hypotheses as stat-wKH and consider weak diamonds to investigate the situation between KH and these wKH.
- (4) We provide more information on these weak diamonds. For example, we get a new fragment of \diamondsuit different from \clubsuit .
- (5) We describe as many forcing constructions as we know of to separate these new combinatorial statements.

Though claims we make are within the reaches of established facts and forcing techniques, so-far-possibly-implicit points of view on KH, wKH and \Diamond are examined.

§1. The KH, $\tilde{\Diamond}$, $\tilde{\tilde{\Diamond}}$ and the wKH

1.1 Definition. ([W]) $\tilde{\Diamond}$ holds, if there exist ω_2 -many subsets $\langle A_\beta \mid \beta < \omega_2 \rangle$ of ω_1 and $\langle T_\alpha \mid \alpha < \omega_1 \rangle$ with each T_α countable and the following is stationary in ω_2

$$\{\beta_Y \mid Y \subset \mathcal{P}(\omega_1) \text{ is countable, } \langle T_\alpha \mid \alpha < \omega_1 \rangle \text{ guesses } Y\}$$

where,

$$\beta_Y = \sup\{\beta + 1 \mid A_\beta \in Y\}$$

and

 $\langle T_{\alpha} \mid \alpha < \omega_1 \rangle$ guesses Y, if the following is cofinal in ω_1

$$\{\alpha < \omega_1 \mid E \cap \alpha \in T_\alpha \text{ for all } E \in Y\}$$

We record the following for the sake of clarity.

- **1.2 Proposition.** (1) For $S \subseteq \{\beta < \omega_2 \mid \operatorname{cf}(\beta) = \omega\}$, the following are equivalent
- S is stationary in ω_2 .
- $\{X \in [\omega_2]^{\omega} \mid \bigcup X \in S\}$ is stationary in $[\omega_2]^{\omega}$.
- (2) For $S^* \subseteq [\omega_2]^{\omega}$, if S^* is stationary in $[\omega_2]^{\omega}$, then $\{\bigcup X \mid X \in S^*\}$ is stationary in ω_2 . (The converse is false in some cases.)

In the manner we show the above on these two notions of stationary sets, we may show

- 1.3 Proposition. $\tilde{\Diamond}$ holds iff there exist $\langle b_{\beta} \mid \beta < \omega_2 \rangle$ and $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ such that
- Each b_{β} is a function from ω_1 into 2 and if $\beta_1 \neq \beta_2$, then $b_{\beta_1} \neq b_{\beta_2}$.
- Each S_{α} is countable and if $\sigma \in S_{\alpha}$, then $\sigma : \alpha \longrightarrow 2$.
- The following is stationary in $[\omega_2]^{\omega}$.

$$\{X \in [\omega_2]^{\omega} \mid \exists A \subseteq \omega_1 \ \exists B \subseteq X \text{ such that } \bigcup A = \omega_1, \bigcup B = \bigcup X,$$

$$\forall (\alpha, \beta) \in A \times B \ b_{\beta} \lceil \alpha \in S_{\alpha} \}$$

Proof. Let $\langle A_{\beta} \mid \beta < \omega_2 \rangle$ and $\langle T_{\alpha} \mid \alpha < \omega_1 \rangle$ satisfy $\tilde{\Diamond}$. For each $\beta < \omega_2$, let $b_{\beta} : \omega_1 \longrightarrow 2$ be the characteristic function of A_{β} . For each $\alpha < \omega_1$, let $S_{\alpha} = \{\chi_{\alpha} \mid \alpha \in T_{\alpha} \cap \mathcal{P}(\alpha)\}$, where $\chi_{\alpha} : \alpha \longrightarrow 2$ is the characteristic function of α . Given $\varphi : {}^{\langle \omega}\omega_2 \longrightarrow \omega_2$, find $Y \subset \mathcal{P}(\omega_1)$ such that β_Y is a limit ordinal, β_Y is φ -closed and $\langle T_{\alpha} \mid \alpha < \omega_1 \rangle$ guesses Y. Let

$$A = \{ \alpha < \omega_1 \mid \forall E \in Y \ E \cap \alpha \in T_\alpha \}$$

and

$$B = \{ \beta < \omega_2 \mid A_\beta \in Y \}.$$

Let $X \in [\omega_2]^{\omega}$ be the φ -closure of B. Then X is φ -closed, $\bigcup A = \omega_1$, $\bigcup B = \bigcup X$ and for all $(\alpha, \beta) \in A \times B$, we have $b_{\beta} \lceil \alpha \in S_{\alpha}$.

Conversely, for each $\beta < \omega_2$, let $A_{\beta} = \{i < \omega_1 \mid b_{\beta}(i) = 1\}$. For each $\alpha < \omega_1$, let $T_{\alpha} = \{\{i < \alpha \mid \sigma(i) = 1\} \mid \sigma \in S_{\alpha}\}$. Let $C \subseteq \omega_2$ be a club. Take $X \in [\omega_2]^{\omega}$, $A \subseteq \omega_1$ and $B \subseteq X$ such that $\bigcup X \in C$, $\bigcup A = \omega_1$, $\bigcup B = \bigcup X$ and for all $(\alpha, \beta) \in A \times B$, we have $b_{\beta} \lceil \alpha \in S_{\alpha}$. We may assume $\bigcup X$ is a limit ordinal. Let $Y = \{A_{\beta} \mid \beta \in B\}$. Then $\beta_Y = \bigcup X \in C$ and $\langle T_{\alpha} \mid \alpha < \omega_1 \rangle$ guesses this Y.

The following is almost verbatim from [W].

- **1.4 Definition.** ([W]) $\tilde{\Diamond}$ holds, if there exist $\langle b_{\beta} \mid \beta < \omega_2 \rangle$ and $\langle S_{\alpha} \mid \alpha < \omega \rangle$ such that
 - Each b_{β} is a function from ω_1 into 2 and if $\beta_1 \neq \beta_2$, then $b_{\beta_1} \neq b_{\beta_2}$.
 - Each S_{α} is countable and if $\sigma \in S_{\alpha}$, then $\sigma : \alpha \longrightarrow 2$.
 - The following is stationary in $[\omega_2]^{\omega}$.

$$\{X \in [\omega_2]^\omega \mid \exists \, \alpha \geq X \cap \omega_1 \,\, \exists B \subseteq X \,\, \text{such that} \,\, \bigcup B = \bigcup X, \,\, \forall \, \beta \in B \,\, b_\beta \lceil \alpha \in S_\alpha \}$$

Here is our equivalent statement to $\tilde{\hat{\Diamond}}$.

- **1.5 Proposition.** $\tilde{\Diamond}$ holds iff there exist $\langle b_{\beta} \mid \beta < \omega_2 \rangle$ and $\langle S_{\alpha} \mid \alpha < \omega \rangle$ such that
- Each b_{β} is a function from ω_1 into 2 and if $\beta_1 \neq \beta_2$, then $b_{\beta_1} \neq b_{\beta_2}$.
- Each S_{α} is countable and if $\sigma \in S_{\alpha}$, then $\sigma : \alpha \longrightarrow 2$.
- The following is stationary in $[\omega_2]^{\omega}$.

$$\{X \in [\omega_2]^\omega \mid \exists \, \underline{\alpha} = X \cap \underline{\omega_1} \, \exists \, \underline{B} \subseteq X \text{ such that } \bigcup \underline{B} = \bigcup X, \, \forall \, \underline{\beta} \in \underline{B} \, \, b_{\underline{\beta}} \lceil \underline{\alpha} \in S_{\underline{\alpha}} \}$$

We record a well-known lemma, say, from [B] and [W].

1.6 Lemma. Let θ be a regular cardinal with $\theta \geq \omega_2$ and N be a countable elementary substructure of H_{θ} . By this we mean (N, \in) is an elementary substructure of (H_{θ}, \in) with $|N| = \omega$ and may simply denote $N \prec H_{\theta}$. Define

$$N^* = \{ f(N \cap \omega_1) \mid f \in N \}.$$

Then

- (N^*, \in) is a countable elementary substructure of (H_θ, \in) .
- $N \subset N^*$, $N \cap \omega_1 \in N^*$ and so $N \cap \omega_1 < N^* \cap \omega_1 < \omega_1$.
- However, $\sup(N \cap \omega_2) = \sup(N^* \cap \omega_2)$.
- 1.7 Corollary. Let θ be a regular cardinal with $\theta \geq \omega_2$. Then given any countable elementary substructure N of H_{θ} , we may automatically construct its canonical extensions $\langle N_i \mid i < \omega_1 \rangle$. By this we mean
 - $N_0 = N$.
 - Each N_i is a countable elementary substructure of H_{θ} .
 - $N_{i+1} = N_i^*$.
 - For limit i, we set $N_i = \bigcup \{N_k \mid k < i\}.$

Therefore,

- $\langle N_i \cap \omega_1 \mid i < \omega_1 \rangle$ forms a club in ω_1 .
- However, $\sup(N_i \cap \omega_2) = \sup(N \cap \omega_2)$ constantly for all $i < \omega_1$.

Isomorphic-types of the canonical extensions are considered via φ_{AC} in [W].

Proof to the equivalence of $\tilde{\hat{\Diamond}}$.

Fix $\langle b_{\beta} \mid \beta < \omega_2 \rangle$ and $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ so that $\tilde{\Diamond}$ is witnessed. We show

- **1.7.1 Claim.** The following $N \in [H_{\omega_2}]^{\omega}$ are stationary in $[H_{\omega_2}]^{\omega}$.
- $N \prec H_{\omega_2}$,
- $\exists f \in N \cap {}^{\omega_1} \omega_1 \text{ with } \forall \alpha < \omega_1 \ f(\alpha) \geq \alpha \text{ such that}$ $\exists B \subset N \cap \omega_2 \text{ with } \bigcup B = \bigcup (N \cap \omega_2), \ \forall \beta \in B \ b_{\beta} \lceil f(N \cap \omega_1) \in S_{f(N \cap \omega_1)}.$

Then by the Fodor's Lemma,

1.7.2 Claim. $\exists f_0 \in {}^{\omega_1}\omega_1 \ \forall \alpha < \omega_1 \ f_0(\alpha) \geq \alpha$ and the following is stationary in $[H_{\omega_2}]^{\omega}$.

$$\{N \in [H_{\omega_2}]^{\omega} \mid N \prec H_{\omega_2}, \ \exists B \subset N \cap \omega_2 \text{ with } \bigcup B = \bigcup (N \cap \omega_2),$$
$$\forall \beta \in B \ b_{\beta}[f_0(N \cap \omega_1) \in S_{f_0(N \cap \omega_1)}]\}$$

Therefore, for each $\alpha < \omega_1$, may define S_{α}^* by

$$S_{\alpha}^* = S_{f_0(\alpha)} [\alpha.$$

Then $S_{\alpha}^* \subset {}^{\alpha} 2$, S_{α}^* is countable and the following is stationary in $[H_{\omega_2}]^{\omega}$.

$$\{N \in [H_{\omega_2}]^{\omega} \mid \exists B \subset N \cap \omega_2 \text{ with } \bigcup B = \bigcup (N \cap \omega_2), \ \forall \beta \in B \ b_{\beta} \lceil (N \cap \omega_1) \in S_{N \cap \omega_1}^* \}$$

So we would be done, if we provide a proof to 1.7.1 Claim.

Proof of 1.7.1 Claim. (This part is based on [W])

Let $\varphi: {}^{<\omega} H_{\omega_2} \longrightarrow H_{\omega_2}$. Fix a sufficiently large regular cardinal θ and a countable elementary substructure M of H_{θ} with $\varphi \in M$. We may assume $X = M \cap \omega_2$ has a cofinal subset $B \subseteq X$ and there exists $\alpha \geq X \cap \omega_1$ such that

$$\forall \beta \in B \ b_{\beta} \lceil \alpha \in S_{\alpha}.$$

Construct the canonical extensions $\langle M_i \mid i < \omega_1 \rangle$ of M. Since $\langle M_i \cap \omega_1 \mid i < \omega_1 \rangle$ forms a club in ω_1 with $\alpha \geq M_0 \cap \omega_1$, there exists $i < \omega_1$ such that

$$M_i \cap \omega_1 \leq \alpha < M_{i+1} \cap \omega_1$$
.

By the definition of M_{i+1} from M_i , we have $f \in M_i$ such that

$$f(M_i \cap \omega_1) = \alpha \ge M_i \cap \omega_1.$$

We may assume that $f: \omega_1 \longrightarrow \omega_1$ and that for all $\overline{\alpha} < \omega_1$, $f(\overline{\alpha}) \geq \overline{\alpha}$. Let $N = M_i \cap H_{\omega_2}$. Since $H_{\omega_2} \in M_i \prec H_{\theta}$,

- N is a countable elementary substructure of H_{ω_2} .
- $f \in N$, as $\omega_1 \omega_1 \subset H_{\omega_2}$.
- $B \subseteq N \cap \omega_2$ and $\bigcup B = \bigcup (N \cap \omega_2)$.
- $\forall \beta \in B \ b_{\beta} [f(N \cap \omega_1) \in S_{f(N \cap \omega_1)}]$.

Since N is φ -closed, this completes the proof.

We go on to make

- **1.8 Definition.** Let us stat-weak Kurepa hypothesis (stat-wKH) denote the following: There exist $\langle b_{\beta} \mid \beta < \omega_2 \rangle$ and $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ such that
- Each b_{β} is a function from ω_1 into 2 and if $\beta_1 \neq \beta_2$, then $b_{\beta_1} \neq b_{\beta_2}$.
- Each S_{α} is countable and if $\sigma \in S_{\alpha}$, then $\sigma : \alpha \longrightarrow 2$.
- For all $\beta < \omega_2$, $\{\alpha < \omega_1 \mid b_\beta \mid \alpha \in S_\alpha\}$ are stationary in ω_1 .

We may view stat-wKH as a sort of \diamondsuit . Namely, stat-wKH guesses some ω_2 -many subsets of ω_1 , while \diamondsuit does all subsets of ω_1 . The weak diamond $\tilde{\diamondsuit}$ entails stat-wKH.

1.9 Proposition. $\tilde{\Diamond}$ implies stat-wKH.

 \Box

Proof. It is just thinning. By our equivalent form of $\tilde{\Diamond}$, we get $\langle b_{\beta} \mid \beta < \omega_2 \rangle$ and $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ such that the following is stationary in $[\omega_2]^{\omega}$.

$$\{X \in [\omega_2]^\omega \mid \exists \, \delta = X \cap \omega_1, \,\, \exists \, B \subseteq X \,\, \text{with} \,\, \bigcup B = \bigcup X, \,\, \forall \, \beta \in B \,\, b_\beta \lceil \delta \in S_\delta \}$$

1.9.1 Claim. $\{\beta < \omega_2 \mid \{\alpha < \omega_1 \mid b_\beta \lceil \alpha \in S_\alpha \} \text{ is stationary in } \omega_1 \}$ is cofinal in ω_2 .

Proof of Claim. Fix $\eta < \omega_2$. Take a sufficiently large regular cardinal θ and a countable elementary substructure M of H_θ such that $\langle b_\beta \mid \beta < \omega_2 \rangle, \langle S_\alpha \mid \alpha < \omega_1 \rangle, \eta \in M$. We may set $\delta = M \cap \omega_1$ and assume that there exists $B \subseteq M \cap \omega_2$ cofinal within $M \cap \omega_2$ such that

$$\forall \beta \in B \ b_{\beta} \lceil \delta \in S_{\delta}.$$

Therefore, we may fix some $\beta \in B$ such that $\eta < \beta$ and $b_{\beta} \lceil \delta \in S_{\delta}$.

1.9.1.1 Sub claim. $\{\alpha < \omega_1 \mid b_{\beta} \lceil \alpha \in S_{\alpha} \}$ is stationary in ω_1 .

Proof of sub claim. We make use of the elementarity of M. Fix a club $C \in M$. Then $\delta \in C$ and so

$$M \models \text{``} \forall C \subseteq \omega_1 \text{ club } \exists \alpha \in C \ b_{\beta} \lceil \alpha \in S_{\alpha}.$$
"

Therefore $\{\alpha < \omega_1 \mid b_{\beta} \lceil \alpha \in S_{\alpha} \}$ is really stationary in the universe.

1.10 Proposition. The stat-wKH implies that there exists a family \mathcal{F} of almost disjoint stationary subsets of ω_1 with $|\mathcal{F}| = \omega_2$. And so the non-stationary ideal on ω_1 is not saturated.

Proof. Let $\langle b_{\beta} \mid \beta < \omega_2 \rangle$ and $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ be as in stat-wKH.

Let $\langle \sigma_n^{\alpha} \mid n < \omega \rangle$ enumerate S_{α} . By thinning, say twice, we may assume that there exists $n < \omega$ such that for all $\beta < \omega_2$, the following T_{β} is stationary in ω_1 .

$$T_{\beta} = \{ \alpha < \omega_1 \mid b_{\beta} \lceil \alpha = \sigma_n^{\alpha} \}$$

Now consider $\mathcal{F} = \{T_{\beta} \mid \beta < \omega_2\}$. Then this \mathcal{F} works.

The following is shown in [W] by generic ultra-power constructions over set models of set theory.

- 1.11 Corollary. ([W]) $\tilde{\Diamond}$ implies the non-stationary ideal on ω_1 is not saturated.
- 1.12 Definition. Let us cof-weak Kurepa hypothesis (cof-wKH) denote the following:

There exist $\langle b_{\beta} \mid \beta < \omega_2 \rangle$ and $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ such that

- Each b_{β} is a function from ω_1 into 2 and if $\beta_1 \neq \beta_2$, then $b_{\beta_1} \neq b_{\beta_2}$.
- Each S_{α} is countable and if $\sigma \in S_{\alpha}$, then $\sigma : \alpha \longrightarrow 2$.
- For all $\beta < \omega_2$, $\{\alpha < \omega_1 \mid b_{\beta} [\alpha \in S_{\alpha}] \text{ are } \underline{\text{cofinal}} \text{ in } \omega_1$.

Therefore, stat-wKH implies cof-wKH. We return to this in the next section.

1.13 Proposition. The cof-wKH implies wKH. I.e, there exists a sub tree T of $^{<\omega_1}$ 2 such that $|T| = \omega_1$ and there are at least ω_2 -many cofinal branches through T.

Proof. We argue as in the previous proposition. Let $\langle b_\beta \mid \beta < \omega_2 \rangle$ and $\langle S_\alpha \mid \alpha < \omega_1 \rangle$ be as in cof-wKH.

Let $\langle \sigma_n^{\alpha} \mid n < \omega \rangle$ enumerate S_{α} . By thinning, say twice, we may assume that there exists $n < \omega$ such that for all $\beta < \omega_2$, the following E_{β} is cofinal in ω_1 .

$$E_{\beta} = \{ \alpha < \omega_1 \mid b_{\beta} \lceil \alpha = \sigma_n^{\alpha} \}$$

Let $T = {\sigma_n^{\alpha} | \overline{\alpha} | \overline{\alpha} \leq \alpha < \omega_1}$. Then this T works. The b_{β} provide cofinal branches through T.

1.14 Corollary. ([W]) $\tilde{\Diamond}$ implies wKH.

Since KH implies $\tilde{\Diamond}$ by [W], we conclude

- 1.15 Corollary. The following are all equiconsistent.
- (1) There exists a strongly inaccessible cardinal.
- (2) Either wKH, cof-wKH, stat-wKH, $\tilde{\Diamond}$, $\tilde{\Diamond}$ or KH gets negated.

§2. Weak Kurepa Trees

We recap stat-wKH and cof-wKH in this section and generalize them.

2.1 Definition. Let \Box be either *cof, stat, club,* or *coint.* Let us \Box -weak Kurepa hypothesis $(\Box$ -wKH) denote the following:

There exist $\langle b_{\beta} \mid \beta < \omega_2 \rangle$ and $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ such that

- Each b_{β} is a function from ω_1 into 2 and if $\beta_1 \neq \beta_2$, then $b_{\beta_1} \neq b_{\beta_2}$.
- Each S_{α} is countable and if $\sigma \in S_{\alpha}$, then $\sigma : \alpha \longrightarrow 2$.
- For each $\beta < \omega_2$, either $\{\alpha < \omega_1 \mid b_\beta \lceil \alpha \in S_\alpha \}$ is cofinal, stationary, contains a club, or is coinitial in ω_1 , respectively.

We view KH, $\tilde{\Diamond}$, $\tilde{\tilde{\Diamond}}$, stat-wKH, cof-wKH and wKH along this generalization and record the following.

2.2 Proposition. (1) KH iff coint-wKH.

(2)

- The coint-wKH implies club-wKH.
- The club-wKH implies stat-wKH.
- The stat-wKH implies cof-wKH.
- The cof-wKH implies wKH.

(3)

- The club-wKH implies $\tilde{\Diamond}$.
- ([W]) $\tilde{\Diamond}$ implies $\tilde{\tilde{\Diamond}}$.
- $\tilde{\Diamond}$ implies stat-wKH.

Proof. For (1): Suppose T is a Kurepa tree. We may assume $T \subset {}^{<\omega_1} 2$. Let $\{b_\beta \mid \beta < \omega_2\} \subset {}^{\omega_1} 2$ be one-to-one such that $b_\beta \lceil \alpha \in T_\alpha$ for all $\beta < \omega_2$ and $\alpha < \omega_1$. Let $S_\alpha = T_\alpha$ for all $\alpha < \omega_1$. Then S_α is countable and $b_\beta \lceil \alpha \in S_\alpha$ for every possible combination. Hence we certainly have coint-wKH.

Conversely, let $\langle b_{\beta} \mid \beta < \omega_2 \rangle$ and $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ be witnesses to coint-wKH. By thinning, we may assume that there exists $\alpha_0 < \omega_1$ such that for all $\beta < \omega_2$ and all $\alpha \geq \alpha_0$, we have

$$b_{\beta} \lceil \alpha \in S_{\alpha}$$
.

Let $T = \{b_{\beta} \lceil \alpha \mid \beta < \omega_2, \alpha < \omega_1\}$. If $\alpha \geq \alpha_0$, then $T_{\alpha} \subseteq S_{\alpha}$ which is countable. If $\alpha < \alpha_0$, then $T_{\alpha} \subset S_{\alpha_0} \lceil \alpha$ which is also countable. Each b_{β} provide different cofinal branch $\{b_{\beta} \lceil \alpha \mid \alpha < \omega_1\}$. Hence T is a Kurepa tree.

For (2): First three are trivial by definition and we have seen the fourth.

For (3): Since we have seen the last two items, we consider the first item. Let $\langle b_{\beta} \mid \beta < \omega_2 \rangle$ and $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ be witnesses to club-wKH. Let $E_{\beta} = \{\alpha < \omega_1 \mid b_{\beta} \lceil \alpha \in S_{\alpha} \}$. Then for all $X \in [\omega_2]^{\omega}$, we set $A = \bigcap \{E_{\beta} \mid \beta \in X\} \subset \omega_1$ and B = X so that $\bigcup A = \omega_1$, $\bigcup B = \bigcup X$ and for all $(\alpha, \beta) \in A \times B$, we have $b_{\beta} \lceil \alpha \in S_{\alpha}$. Hence we certainly have $\tilde{\Diamond}$.

2.3 Proposition. The club-wKH implies the transversal hypothesis (TH). Namely, there exists a family \mathcal{F} of almost disjoint functions from ω_1 into ω with $|\mathcal{F}| = \omega_2$.

Proof. We must observe that there exist ω_2 -many functions $g_{\beta}: \omega_1 \longrightarrow \omega$ such that if $\beta_1 \neq \beta_2$, then there exists $\alpha_{\beta_1\beta_2} < \omega_1$ such that for all α with $\alpha_{\beta_1\beta_2} \leq \alpha < \omega_1$, we have $g_{\beta_1}(\alpha) \neq g_{\beta_2}(\alpha)$.

To this end, let $\{\sigma_n^{\alpha} \mid n < \omega\}$ enumerate S_{α} . Then let $f_{\beta}(\alpha)$ = the least n such that $b_{\beta}[\alpha = \sigma_n^{\alpha}]$, if applicable. Then if $\beta_1 \neq \beta_2$, then $\{\alpha < \omega_1 \mid f_{\beta_1}(\alpha) \neq f_{\beta_2}(\alpha)\}$ contains a

club. Now we may resort to a trick due to Jensen to produce g_{β} . See the proof of Lemma 1 on p. 72 of [D].

When I gave a talk on this at the Set Theory Seminar, Nagoya university, 17th, Dec. 2004, T. Sakai provided an idea for a direct proof on the spot. Accordingly, I record the following based on his idea.

Proof. Let us fix $\langle e_{\alpha} \mid \alpha < \omega_1 \rangle$ so that $e_{\alpha} : \omega \longrightarrow \alpha + 1$ onto. Let $\langle b_{\beta} \mid \beta < \omega_2 \rangle$ and $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ be as in club-wKH. Let $C_{\beta} \subset \{\alpha < \omega_1 \mid b_{\beta} \mid \alpha \in S_{\alpha}\}$ be a club and $\langle a_n^{\alpha} \mid n < \omega \rangle$ enumerate S_{α} .

For each β , let us define $g_{\beta}: \omega_1 \longrightarrow \omega \times \omega$ so that for any $\alpha \geq \min C_{\beta}$, if $\delta = \max (C_{\beta} \cap (\alpha + 1))$, then $g_{\beta}(\alpha) = (n, m)$, where

$$n =$$
the least n s.t. $e_{\alpha}(n) = \delta$,

$$m =$$
the least m s.t. $a_m^{\delta} = b_{\beta} [\delta$.

Let $\beta_1, \beta_2 < \omega_2$ with $\beta_1 \neq \beta_2$. Pick $\alpha^* < \omega_1$ so that $[\alpha_{\beta_1\beta_2}, \alpha^*] \cap (C_{\beta_1} \cap C_{\beta_2}) \neq \emptyset$, where if $\alpha' \geq \alpha_{\beta_1\beta_2}$, then $b_{\beta_1} \lceil \alpha' \neq b_{\beta_2} \lceil \alpha'$.

2.3.1 Claim. If $\alpha \geq \alpha^*$, then $g_{\beta_1}(\alpha) \neq g_{\beta_2}(\alpha)$.

Proof. Let $g_{\beta_1}(\alpha) = (n_1, m_1), g_{\beta_2}(\alpha) = (n_2, m_2), \delta_1 = e_{\alpha}(n_1)$ and $\delta_2 = e_{\alpha}(n_2)$.

Case 1. $n_1 \neq n_2$: Then $g_{\beta_1}(\alpha) \neq g_{\beta_2}(\alpha)$.

Case 2. $n_1 = n_2$: Then let $\delta = \delta_1 = \delta_2 \in C_{\beta_1} \cap C_{\beta_2}$. We have $b_{\beta_1} \lceil \delta = a_{m_1}^{\delta}$, $b_{\beta_2} \lceil \delta = a_{m_2}^{\delta}$ and $\delta \geq \alpha_{\beta_1 \beta_2}$. Then $m_1 \neq m_2$ and so $g_{\beta_1}(\alpha) \neq g_{\beta_2}(\alpha)$.

We interpolated the following well-known.

2.4 Corollary. KH implies TH.

We provide a characterization of weak Kurepa trees along the line of \square -wKH, where \square is either coint, club, stat, or cof.

- 2.5 Proposition. The following are equivalent.
- (1) The wKH holds.
- (2) There exist $\langle b_{\beta} \mid \beta < \omega_2 \rangle$ and $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ such that
 - Each b_{β} is a function from ω_1 into 2 and if $\beta_1 \neq \beta_2$, then $b_{\beta_1} \neq b_{\beta_2}$.
 - Each S_{α} is countable and if $\sigma \in S_{\alpha}$, then $\sigma : \alpha \longrightarrow 2$.
 - For all $\beta < \omega_2$, there exist $f_{\beta} : \omega_1 \longrightarrow \omega_1$ such that for all $\alpha < \omega_1$, we have $\alpha \leq f_{\beta}(\alpha)$ and $b_{\beta} \lceil \alpha \in S_{f_{\beta}(\alpha)} \rceil \alpha$.

- Proof. (1) implies (2): Let T be a weak Kurepa tree. Let $\langle b_{\beta} \mid \beta < \omega_2 \rangle$ be a one-to-one enumeration of functions from ω_1 to 2 such that $b_{\beta} \lceil \alpha \in T_{\alpha}$ for all possible combinations of (α, β) . Let $\langle \sigma_i \mid i < \omega_1 \rangle$ enumerate $\{b_{\beta} \lceil \alpha \mid \beta < \omega_2, \alpha < \omega_1\} \subseteq T$. For each $\alpha' < \omega_1$, let $S_{\alpha'} \subset {}^{\alpha'} 2$ be countable so that for any $i \leq \alpha'$, if σ_i satisfies $|\sigma_i| \leq \alpha'$, then there exists $\tau \in S_{\alpha'}$ with $\sigma_i \subseteq \tau$. We claim these $\langle b_{\beta} \mid \beta < \omega_2 \rangle$ and $\langle S_{\alpha'} \mid \alpha' < \omega_1 \rangle$ work. To see this, let $\beta < \omega_2$ and $\alpha < \omega_1$. Let $\sigma_i = b_{\beta} \lceil \alpha$. Then take $\alpha' < \omega_1$ so large that $i, \alpha \leq \alpha'$. Since $i \leq \alpha'$ and $|\sigma_i| = \alpha \leq \alpha'$, we have $\tau \in S_{\alpha'}$ with $\sigma_i \subseteq \tau$ and so $b_{\beta} \lceil \alpha \in S_{\alpha'} \lceil \alpha$. Let $f_{\beta}(\alpha) = \alpha'$.
- (2) implies (1): Let $T = \{b_{\beta} \lceil \alpha \mid \beta < \omega_2, \alpha < \omega_1\}$. Then for each $\beta < \omega_2$, $\{b_{\beta} \lceil \alpha \mid \alpha < \omega_1\}$ is a cofinal branch through T. For each $\alpha < \omega_1$, we have $T_{\alpha} \subseteq \bigcup \{S_{\alpha'} \lceil \alpha \mid \alpha \leq \alpha', \alpha' < \omega_1\}$ which is at most of size ω_1 . Hence T is a weak Kurepa tree.

The following is also from the Set Theory Seminar, Nagoya university, and due to S. Fuchino and T. Sakai.

2.6 Note. The following are equivalent.

- (1) The CH holds.
- (2) There exists $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ such that $S_{\alpha} \subseteq {}^{\alpha} 2$, $|S_{\alpha}| \leq \omega$ and for all $b \in {}^{\omega_1} 2$ and $\alpha < \omega_1$, there exist $\alpha' < \omega_1$ such that $\alpha \leq \alpha'$ and $b \lceil \alpha \in S_{\alpha'} \lceil \alpha$.
- (3) Same as above with $|S_{\alpha}| = 1$.

Along the lines of guessing all subsets of ω_1 , we have the three principles \diamondsuit , \diamondsuit^* and \diamondsuit^+ . Now we are tempted to consider the following \diamondsuit (coint).

2.7 Note. However, \diamondsuit (coint) is false, where \diamondsuit (coint) denotes that there exists $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ such that $S_{\alpha} \subseteq {}^{\alpha} 2$, $|S_{\alpha}| \leq \omega$ and for all $b \in {}^{\omega_1} 2$, $\{\alpha < \omega_1 \mid b \lceil \alpha \in S_{\alpha}\}$ are coinitial in ω_1 .

§3. Weak Diamonds

We formulate weak diamonds and investigate their impacts on the situation between wKH and KH.

3.1 Definition. Let \square denote either cof, stat, club or coint. We denote $\overline{\Phi}(\square)$, if for any $F: {}^{<\omega_1} \ 2 \longrightarrow \omega_1$ and any $\langle b_\beta \mid \beta < \omega_2 \rangle$ (no need to be one-to-one) such that each b_β is a member of ${}^{\omega_1} \ 2$, there exists $g: \omega_1 \longrightarrow \omega_1$ such that for each $\beta < \omega_2$, we have either $\{\alpha < \omega_1 \mid F(b_\beta \lceil \alpha) < g(\alpha)\}$ is cofinal, stationary, contains a club, or is coinitial in ω_1 , respectively.

So for example, $\overline{\Phi}(\operatorname{stat})$ claims that given any coloring of the nodes of the tree $^{<\omega_1}$ 2 by countable ordinals, if we fix at most ω_2 -many cofinal branches and concentrate on the nodes in $\{b_{\beta} \mid \alpha \mid \beta < \omega_2, \alpha < \omega_1\}$, then there exists a uniform coloring $g : \omega_1 \longrightarrow \omega_1$ such that g correctly bounds each $\langle \alpha \mapsto F(b_{\beta} \mid \alpha) \mid \alpha < \omega_1 \rangle$ stationary often.

We also formulate a stronger diamond along the line of $\overline{\Phi}(\Box)$.

3.2 Definition. Let \square denote either cof, stat, club or coint. We denote $\Phi(\square)$, if for any $F: {}^{<\omega_1} 2 \longrightarrow \omega_1$, there exists $g: \omega_1 \longrightarrow \omega_1$ such that for any $b: \omega_1 \longrightarrow 2$, we have either $\{\alpha < \omega_1 \mid F(b_\beta \lceil \alpha) < g(\alpha)\}$ is cofinal, stationary, contains a club, or is coinitial in ω_1 , respectively.

Therefore, given any coloring of $^{<\omega_1}$ 2 with countable ordinals, the principle $\Phi(\text{stat})$ provides a uniform coloring g which correctly bounds every possible cofinal branch's coloring as often as a stationary subset of ω_1 .

- **3.3 Definition.** We denote (<*), if for any $\langle f_{\beta} \mid \beta < \omega_2 \rangle$ such that for each β , f_{β} is a function from ω_1 into ω_1 , there exists $f : \omega_1 \longrightarrow \omega_1$ such that for every $\beta < \omega_2$, we have $f_{\beta} < f$. By this we mean that $\{\alpha < \omega_1 \mid f_{\beta}(\alpha) < f(\alpha)\}$ is coinitial in ω_1 .
 - **3.4 Proposition.** Let □ denote either cof, stat, club or coint.
- (1) The wKH combined with $\overline{\Phi}(\Box)$ implies \Box -wKH.
- (2) ($<^*$) implies $\overline{\Phi}(\square)$.

Proof. For (1): Let T be a weak Kurepa tree. Then T has at least ω_2 -many cofinal branches. So let $\langle b_\beta \mid \beta < \omega_2 \rangle$ be a one-to-one enumeration such that for all $(\alpha, \beta) \in \omega_1 \times \omega_2$, $b_\beta \lceil \alpha \in T_\alpha$. Now let us fix $F : {}^{<\omega_1} 2 \longrightarrow \omega_1$ so that $F \lceil T$ is one-to-one. Then by $\overline{\Phi}(\square)$, get $g : \omega_1 \longrightarrow \omega_1$ such that for all $\beta < \omega_2$, we have $\{\alpha < \omega_1 \mid F(b_\beta \lceil \alpha) < g(\alpha)\}$ are \square in ω_1 . Define $\langle S_\alpha \mid \alpha < \omega_1 \rangle$ by

$$S_{\alpha} = \{ \sigma \in {}^{\alpha} 2 \cap T \mid F(\sigma) < g(\alpha) \}.$$

Since $F \lceil T$ is one-to-one, S_{α} is countable. If $F(b_{\beta} \lceil \alpha) < g(\alpha)$, then $b_{\beta} \lceil \alpha \in S_{\alpha}$ holds. Hence these b_{β} and S_{α} work.

For (2): Let $F: \langle \omega_1 | 2 \longrightarrow \omega_1$ and $\langle b_\beta | \beta < \omega_2 \rangle$ be given. Define $\langle f_\beta | \beta < \omega_2 \rangle$ by

$$f_{\beta}(\alpha) = F(b_{\beta} \lceil \alpha).$$

Then get $f: \omega_1 \longrightarrow \omega_1$ such that for all $\beta < \omega_2$,

$$\{\alpha < \omega_1 \mid f_{\beta}(\alpha) < f(\alpha)\}$$

are coinitial. Hence $\{\alpha < \omega_1 \mid F(b_{\beta} \lceil \alpha) < f(\alpha)\}\$ is \square in ω_1 .

The following is a rendition from [We].

3.5 Corollary. If CH, $2^{\omega_1} = \omega_3$ and GMA(σ -closed, \aleph_1 -linked, well-met) hold, then KH holds.

Proof. Suppose CH, $2^{\omega_1} = \omega_3$ and GMA(σ -closed, \aleph_1 -linked, well-met). Then we get ($<^*$). But CH implies wKH. Hence wHK and $\overline{\Phi}$ (coint) hold. So coint-wKH holds. Namely, KH holds.

3.6 Proposition. Let \(\pi \) denote either cof, stat, club or coint.

- (1) $\Phi(\Box)$ implies $\overline{\Phi}(\Box)$.
- (2) $\Phi(\text{cof})$ implies $2^{\omega} < 2^{\omega_1}$.
- (3) CH + $\Phi(\text{stat})$ iff \diamondsuit .
- (4) CH + Φ (club) iff \diamondsuit^* .

Proof. For (1): Fix $F: \stackrel{\langle \omega_1 | 2}{\longrightarrow} \omega_1$. Then $\Phi(\Box)$ provides a uniform coloring $g: \omega_1 \longrightarrow \omega_1$ which works for all $b: \omega_1 \longrightarrow 2$. Hence g works for any prefixed $\langle b_\beta \mid \beta < \omega_2 \rangle$ with each $b_\beta: \omega_1 \longrightarrow 2$.

For (2): We follow [MHD]. Suppose not and let $H: {}^{\omega}2 \longrightarrow {}^{\omega_1}\omega_1$ be a bijection. Define $F: {}^{<\omega_1}2 \longrightarrow \omega_1$ by

$$F(\sigma) = H(\sigma[\omega)(|\sigma|), \text{ if } |\sigma| \ge \omega.$$

Then get $g: \omega_1 \longrightarrow \omega_1$ such that for all $b: \omega_1 \longrightarrow 2$, $\{\alpha < \omega_1 \mid F(b\lceil \alpha) < g(\alpha)\}$ are cofinal in ω_1 .

Take $b \in {}^{\omega_1} 2$ with $H(b[\omega) = g$. Then for each $\alpha \ge \omega$, we have

$$F(b[\alpha) = H(b[\omega)(\alpha) = g(\alpha).$$

Hence $\{\alpha < \omega_1 \mid F(b \mid \alpha) = g(\alpha)\}$ is cointial in ω_1 . This is a contradiction.

For (3) and (4): We show (3), since (4) has a similar proof. Suppose CH and $\Phi(\text{stat})$. Let $F: \stackrel{<\omega_1}{2} \longrightarrow \omega_1$ be a bijection via CH. Apply, $\Phi(\text{stat})$. We have $g: \omega_1 \longrightarrow \omega_1$ such that for all $b \in \stackrel{\omega_1}{2}$, $\{\alpha < \omega_1 \mid F(b \lceil \alpha) < g(\alpha)\}$ are stationary in ω_1 .

For each $\alpha < \omega_1$, let

$$S_{\alpha} = \{ \sigma \in {}^{\alpha} 2 \mid F(\sigma) < g(\alpha) \}.$$

Then S_{α} is countable and for any $b \in {}^{\omega_1} 2$, it holds that $\{\alpha < \omega_1 \mid b \lceil \alpha \in S_{\alpha} \}$ is stationary in ω_1 . Hence \diamondsuit holds.

Conversely, suppose \diamondsuit . We know CH holds. To show $\Phi(\text{stat})$, let $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ be a diamond sequence such that for any $b \in {}^{\omega_1} 2$, it holds that $\{\alpha < \omega_1 \mid b \mid \alpha \in S_{\alpha}\}$ is stationary in ω_1 .

Given $F: {}^{<\omega_1} \ 2 \longrightarrow \omega_1$, let $g: \omega_1 \longrightarrow \omega_1$ be such that for all $\alpha < \omega_1$ and all $\sigma \in S_{\alpha}$, $F(\sigma) < g(\alpha)$. This is possible, as $|S_{\alpha}| \le \omega$. Then for any $g: \omega_1 \longrightarrow 2$, it certainly holds that $\{\alpha < \omega_1 \mid F(b[\alpha) < g(\alpha)\}$ is stationary in ω_1 . Hence $\Phi(\text{stat})$ holds.

It is known that \Diamond negates the following CB.

- **3.7 Definition.** The complete bounding (CB) holds, if for each $f \in {}^{\omega_1} \omega_1$ there exists $\gamma \in (\omega_1, \omega_2)$ and $\langle X_\alpha \mid \alpha < \omega_1 \rangle$ such that X_α are continuously increasing countable subsets of γ with $\bigcup \{X_\alpha \mid \alpha < \omega_1\} = \gamma$ and for all $\alpha < \omega_1$, we have $f(\alpha) < \text{o.t.}(X_\alpha)$.
 - **3.8 Proposition.** $\overline{\Phi}(\text{stat})$ negates CB.

Proof. Define $F: {}^{<\omega_1} 2 \longrightarrow \omega_1$ so that $F(\sigma) = \alpha$, if σ codes a countable ordinal α . And consider $\langle b_{\gamma} \mid \omega_1 < \gamma < \omega_2 \rangle$ such that $b_{\gamma}: \omega_1 \longrightarrow 2$ codes γ . We show the contrapositive.

Suppose CB. Fix any possible $g: \omega_1 \longrightarrow \omega_1$. Then we have γ and X_{α} with $g(\alpha) < \text{o.t.}(X_{\alpha})$. Let $b = b_{\gamma}$. Take a sufficiently large regular cardinal θ and any countable elementary substructure N of H_{θ} with $b \in N$. Let $\delta = N \cap \omega_1$. Now we transitive collapse N. Then

$$b \lceil \delta \text{ codes o.t.}(N \cap \gamma).$$

Since $X_{\delta} = N \cap \gamma$, we have

$$F(b\lceil \delta) = \text{o.t.}(N \cap \gamma) = \text{o.t.}(X_{\delta}) > g(\delta).$$

Hence $\{\alpha < \omega_1 \mid F(b \mid \alpha) \leq g(\alpha)\}\$ is non-stationary.

3.9 Corollary. \Diamond negates CB.

Proof. \Diamond implies $\Phi(\text{stat})$. And $\Phi(\text{stat})$ implies $\overline{\Phi}(\text{stat})$.

We know that \diamondsuit iff $CH + \clubsuit$.

- **3.10 Question.** (1) It is known, say by [W] and [F], that \clubsuit negates the saturation of the non-stationary ideal on ω_1 . Is it ever holds that $Con(\clubsuit + CB)$?
- (2) We know \Diamond (coint) iff CH + Φ (coint) but \Diamond (coint) is always false. Is it simply that Φ (coint) is false?

§4. Not Club-wKH + Stat-wKH

We look at the standard model of set theory in which KH gets negated ([Si] and [K]).

4.1 Theorem. Let κ be a strongly inaccessible cardinal and $Lv(\kappa, \omega_1)$ denote the Levy collapse which turns κ into ω_2 . Then ¬club-wKH holds in the generic extensions $V[Lv(\kappa, \omega_1)]$.

Since \diamondsuit holds in $V[Lv(\kappa, \omega_1)]$, we have

4.2 Corollary. The following are all equiconsistent.

- (1) Con(There exists a strongly inaccessible cardinal).
- (2) $Con(\neg club-wKH + \diamondsuit)$.
- (3) $\operatorname{Con}(\neg \operatorname{club-wKH} + \tilde{\Diamond}).$
- (4) $Con(\neg club-wKH + stat-wKH)$.
- (5) $Con(\neg KH)$.

Proof of theorem. We repeat the standard proof, due to Silver, for showing $\neg KH$. Then we notice that it actually shows $\neg \text{club-w}KH$.

Here are some details. We first provide

4.2.1 Claim. Let $S_{\alpha} \subset {}^{\alpha} 2$ be countable for all $\alpha < \omega_1$. Let \dot{b} and \dot{C} be $Lv(\kappa, \omega_1)$ -names. Then $\|-_{Lv(\kappa,\omega_1)}$ "if \dot{C} is a club in ω_1 and $\dot{b}:\omega_1\longrightarrow 2$ such that $\dot{b}\lceil\alpha\in S_{\alpha}$ for all $\alpha\in\dot{C}$, then $\dot{b}\in V$ " holds.

Proof. By contradiction. Suppose $p \Vdash_{\text{Lv}(\kappa,\omega_1)}$ " \dot{C} is a club in ω_1 and $\dot{b} : \omega_1 \longrightarrow 2$ such that $\dot{b} \upharpoonright \alpha \in S_{\alpha}$ for all $\alpha \in \dot{C}$ " and $p \Vdash_{\text{Lv}(\kappa,\omega_1)}$ " $\dot{b} \notin V$ ". We derive a contradiction.

To this end, let N be a countable elementary substructure of H_{κ^+} with $p, \kappa, b, C \in N$. Denote $\delta = N \cap \omega_1$.

Construct $\langle (p_s, b_s) \mid s \in {}^{<\omega} 2 \rangle$ by recursion on |s| such that for each $s \in {}^{<\omega} 2$,

- $p_{\emptyset} = p$ and $b_{\emptyset} = \emptyset$.
- $p_s \in \operatorname{Lv}(\kappa, \omega_1) \cap N$ and $b_s \in S_{|b_s|} \cup \{\emptyset\}.$
- $p_s \Vdash_{\mathrm{Lv}(\kappa,\omega_1)}$ " $|b_s| \in \dot{C} \cup \{0\}$ and $b_s \subset \dot{b}$ ".
- $p_{s^{\frown}\langle i\rangle} \leq p_s$, $b_{s^{\frown}\langle i\rangle} \supset b_s$ for i = 0, 1 and $b_{s^{\frown}\langle 0\rangle}$, $b_{s^{\frown}\langle 1\rangle}$ are incomparable. I.e, $b_{s^{\frown}\langle 0\rangle} \not\subseteq b_{s^{\frown}\langle 1\rangle}$ and $b_{s^{\frown}\langle 1\rangle} \not\subseteq b_{s^{\frown}\langle 0\rangle}$.
- $\langle p_{f \lceil n} \mid n < \omega \rangle$ is a $(\text{Lv}(\kappa, \omega_1), N)$ -generic sequence for all $f \in {}^{\omega} 2$.

Let $p_f = \bigcup \{p_{f \mid n} \mid n < \omega\}$ and $b_f = \bigcup \{b_{f \mid n} \mid n < \omega\}$ for each $f \in {}^{\omega} 2$. Then $p_f \Vdash_{\mathrm{Lv}(\kappa,\omega_1)} {}^{\omega} \delta = N[\dot{G}] \cap \omega_1 \in \dot{C}$ and $\dot{b} \mid \delta = b_f : \delta \longrightarrow 2$ " for all $f \in {}^{\omega} 2$, where \dot{G} denotes the canonical $\mathrm{Lv}(\kappa,\omega_1)$ -name of the generic filters. Hence $p_f \Vdash_{\mathrm{Lv}(\kappa,\omega_1)} {}^{\omega} \dot{b} \mid \delta \in S_{\delta}$ " and so $\{b_f \mid f \in {}^{\omega} 2\} \subset S_{\delta}$. Since $|\{b_f \mid f \in {}^{\omega} 2\}| = 2^{\omega}$ and S_{δ} is countable, this is a contradiction.

Now back to the proof of theorem, we proceed by contradiction. Suppose $\langle b_{\beta} \mid \beta < \kappa \rangle$ and $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ satisfy club-wKH in $V[Lv(\kappa, \omega_1)]$. Since $Lv(\kappa, \omega_1)$ has the κ -c.c, we may assume $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle \in V$. Then by claim, we know that $b_{\beta} \in V$ for all $\beta < \kappa$. Hence $2^{\omega_1} \geq \kappa$. But κ is a strongly inacceccible cardinal. This is a contradiction.

The following is a later half of the exercise (J6) on p.300 in [K] .

4.3 Corollary. $\neg \diamondsuit^*$ holds in $V[Lv(\kappa, \omega_1)]$.

Proof. \diamondsuit^* iff CH + Φ (club). It in turn implies wKH + $\overline{\Phi}$ (club). And so \diamondsuit^* implies club-wKH.

§5. Not KH + Club-wKH

5.1 Theorem. Con(There exists a strongly inaccessible cardinal) implies Con(¬KH + club-wKH).

Proof. We first out-line. Then provide some details.

(Out-line) Let κ be a strongly inaccessible cardinal in the ground model V. We first Levy collapse κ over V so that κ becomes new ω_2 , while ω_1 remains the same. In this generic extension $V[Lv(\kappa,\omega_1)]$, we have $\neg KH$ due to Silver. We prepare some $\langle b_\beta \mid \beta < \kappa \rangle$ and $\langle S_\alpha \mid \alpha < \omega_1 \rangle$ in $V[Lv(\kappa,\omega_1)]$ such that

- $b_{\beta} \in {}^{\omega_1} 2$ for all $\beta < \kappa$,
- $S_{\alpha} \subset {}^{\alpha} 2$ and S_{α} are countable for all $\alpha < \omega_1$,
- If we denote $E_{\beta} = \{ \alpha < \omega_1 \mid b_{\beta} [\alpha \in S_{\alpha} \} \text{ and } E = \{ X \in [\kappa]^{\omega} \mid \forall \beta \in X \ X \cap \omega_1 \in E_{\beta} \},$ then the E_{β} are stationary in ω_1 and so is E in $[\kappa]^{\omega}$.

We next side-by-side force over $V[Lv(\kappa,\omega_1)]$ so that clubs C_{β} are added with $C_{\beta} \subset E_{\beta}$ for all $\beta < \kappa$. Let us denote this notion of forcing by $R \in V[Lv(\kappa,\omega_1)]$. We show that R has the κ -c.c. and is E-complete in the sense of [S] whose meaning explained later. In particular, R is σ -Baire and so preserves both ω_1 and ω_2 . Hence club-wKH holds in the final extension $V[Lv(\kappa,\omega_1)][R]$.

We claim $\neg KH$ is preserved into $V[Lv(\kappa, \omega_1)][R]$. To this end, fix any possible Kurepa tree T in $V[Lv(\kappa, \omega_1)][R]$. We clarify the following among others.

• We factor $V[Lv(\kappa, \omega_1)][R]$ into

$$V[Lv(\kappa,\omega_1)][R(\beta^*)][R([\beta^*,\kappa))]$$

so that $T \in V[Lv(\kappa, \omega_1)][R(\beta^*)]$ for some $\beta^* < \kappa$.

According to [J-S],

• \neg KH gets preserved over $V[Lv(\kappa, \omega_1)]$ by any notion of forcing which is σ -Baire and of size at most ω_1 .

Hence T has at most ω_1 -many cofinal branches in the intermidiate $V[Lv(\kappa,\omega_1)][R(\beta^*)]$.

• We show no new cofinal branches are added through T over $V[Lv(\kappa,\omega_1)][R(\beta^*)]$.

To this, we observe the quotient $R([\beta^*, \kappa))$ is E-complete in $V[Lv(\kappa, \omega_1)][R(\beta^*)]$. We then modify Silver's construction for σ -closed notion of forcing to obverve the last item. Therefore T fails to be a Kurepa tree in $V[Lv(\kappa, \omega_1)][R]$.

Some details follow.

(Step 1) Let κ be a strongly inaccessible cardinal. We force with the Levy collapse $Lv(\kappa,\omega_1)$ over the ground model V. To save symbols, let us write $V[Lv(\kappa,\omega_1)]$ for the generic extensions.

Argue in $V[Lv(\kappa, \omega_1)]$. For each $(1 <) \beta < \kappa$, Let us write $g_{\beta} : \omega_1 \longrightarrow \beta$ for the β -th generic function added via $Lv(\kappa, \omega_1)$.

We prepare $\langle b_{\beta} \mid \beta < \kappa \rangle$ and $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$. To define $b_{\beta} : \omega_1 \longrightarrow 2$, we make use of $g_{\omega_1+\beta}$. To define S_{α} , say, for limit α , we make use of $g_i \lceil \omega \ (\alpha \le i < \alpha + \alpha)$. More precisely,

$$b_{\beta}(\alpha) = 1 \text{ iff } g_{\omega_1 + \beta}(\alpha) \text{ is odd.}$$

 $S_{\alpha} = \{ \sigma_n^{\alpha} \mid n < \omega \}, \ \sigma_n^{\alpha} : \alpha \longrightarrow 2.$
 $\sigma_n^{\alpha}(i) = 1 \text{ iff } g_{\alpha + i}(n) \text{ is odd.}$

We know how to construct conditions via generic sequences with respect $Lv(\kappa, \omega_1)$ upon fixing countable elementary substructures. In such constructions, we know which parts of what g_{β} are decided and what g_{β} are left open. Hence it is not hard to show that $E = \{X \in [\kappa]^{\omega} \mid \forall \beta \in X \ X \cap \omega_1 \in E_{\beta}\}$ is stationary in $[\kappa]^{\omega}$. It then follows that each $E_{\beta} = \{\alpha < \omega_1 \mid b_{\beta} \lceil \alpha \in S_{\alpha} \}$ must be stationary in ω_1 .

For an explicit proof, we show E is stationary in $[\kappa]^{\omega}$. Suppose $p \Vdash_{\operatorname{Lv}(\kappa,\omega_1)}$ " $\dot{\varphi}$: $<^{\omega}_{\kappa} \longrightarrow \kappa$ ". We want to find $q^* \leq p$ and $X \in [\kappa]^{\omega}$ such that $q^* \Vdash_{\operatorname{Lv}(\kappa,\omega_1)}$ " $X \in \dot{E}$ and X is $\dot{\varphi}$ -closed", where \dot{E} denotes the canonical name of E. To this end let θ be a sufficiently large regular cardinal and N be a countable elementary substructure of H_{θ} with $p, \dot{\varphi} \in N$. Let $\delta = N \cap \omega_1$ and $X = N \cap \kappa$. Take a $(\operatorname{Lv}(\kappa,\omega_1),N)$ -generic sequence $\langle p_n \mid n < \omega \rangle$ with $p_0 = p$. Let $q = \bigcup \{p_n \mid n < \omega\}$. Then $q \in \operatorname{Lv}(\kappa,\omega_1)$ is $(\operatorname{Lv}(\kappa,\omega_1),N)$ -generic and $\operatorname{dom}(q) = N \cap (\kappa \times \omega_1) = X \times \delta$. Hence q decides $g_{\omega_1+\beta}[\delta]$ for all $\beta \in X$ and $q \Vdash_{\operatorname{Lv}(\kappa,\omega_1)}$ " $X = N[\dot{G}] \cap \kappa$ is $\dot{\varphi}$ -closed".

We may place the countable set $\{g_{\omega_1+\beta}[\delta \mid \beta \in X\} \text{ on } [\delta, \delta+\delta) \times \omega$. Namely, we may extend q to q^* so that $q^* \models_{\mathrm{Lv}(\kappa,\omega_1)}$ " $\dot{b}_{\beta}[\delta \in \dot{S}_{\delta} \text{ for all } \beta \in X$ ". Hence $q^* \models_{\mathrm{Lv}(\kappa,\omega_1)}$ " $X \in \dot{E}$ ".

(Step 2) We side-by-side force clubs for all E_{β} over $V[Lv(\kappa,\omega_1)]$. Let $X\subseteq \kappa$. Define $p\in R(X)$, if $p=\langle C^p_{\beta}\mid \beta\in X^p\rangle$ such that

- $X^p \in [X]^{\leq \omega}$,
- C^p_{β} is a countable closed subset of E_{β} for all $\beta \in X^p$.

For $p, q \in R(X)$, set $q \leq_{R(X)} p$, if

- $X^q \supset X^p$,
- C^q_{β} end-extends C^p_{β} at each $\beta \in X^p$.

Notice that we do not require $\max C_{\beta_1}^p = \max C_{\beta_2}^p$ for $\beta_1, \beta_2 \in X^p$.

5.1.1 Lemma. (1) R(X) has the ω_2 -c.c.

(2) R(X) is E-complete. I.e, for all sufficiently large regular cardinals θ and all countable elementary substructures N of H_{θ} such that $R(X) \in N$ and $N \cap \kappa \in E$, if $\langle r_n \mid n < \omega \rangle$ is a (R(X), N)-generic sequence, then there exists $r \in R(X)$ such that for all $n < \omega$, $r \leq_{R(X)} r_n$.

Proof. For (1): In $V[Lv(\kappa, \omega_1)]$, we have \diamondsuit and so CH holds. By a standard Δ -system lemma, we may conclude R(X) has the ω_2 -c.c.

For (2): Let us fix any regular cardinal θ with $\theta > \kappa$. Let N be any countable elementary substructure of H_{θ} such that $R(X) \in N$ and $N \cap \kappa \in E$. Hence we have

$$\forall \beta \in N \cap \kappa \ N \cap \omega_1 \in E_{\beta}.$$

Let $\langle r_n \mid n < \omega \rangle$ be any (R(X), N)-generic sequence. Then by genericity, we have $N \cap X = \bigcup \{X^{r_n} \mid n < \omega\}$. For each $\beta \in N \cap X$, let $C_\beta = \bigcup \{C_\beta^{r_n} \mid \beta \in X^{r_n}, n < \omega\} \cup \{N \cap \omega_1\}$ and $r = \langle C_\beta \mid \beta \in N \cap X \rangle$. Then $C_\beta \subset E_\beta$ are clubs. Hence $r \in R(X)$ such that for all $n < \omega$, we have $r \leq r_n$.

Let $R = R(\kappa)$. Since R adds clubs C_{β} with $C_{\beta} \subset E_{\beta}$ for all $\beta < \kappa$, we have club-wKH in the extensions $V[Lv(\kappa, \omega_1)][R]$.

(Step 3) We want to show $V[\operatorname{Lv}(\kappa,\omega_1)][R] \models$ " \neg KH". To this end let T be a possible Kurepa tree in $V[\operatorname{Lv}(\kappa,\omega_1)][R]$. Then by the κ -c.c. of R, we have $\beta^* < \kappa$ such that $T \in V[\operatorname{Lv}(\kappa,\omega_1)][R(\beta^*)]$. Let $V_1 = V[\operatorname{Lv}(\kappa,\omega_1)]$ for short. Then

- R and $R(\beta^*) \times R([\beta^*, \kappa))$ are isomorphic in V_1 .
- $V_1 \models \text{``}R(\beta^*)$ is *E*-complete and so σ -Baire''. Hence,
- $V_1[R(\beta^*)] \models$ "E remains stationary in $[\kappa]^{\omega}$ ". Since $R(\beta^*)$ is σ -Baire and so by absoluteness,
- $V_1[R(\beta^*)] \models "R([\beta^*, \kappa))$ is E-complete".

Since $R(\beta^*)$ is of size ω_1 in V_1 , we have $\overline{\kappa} < \kappa$ such that

• $R(\beta^*) \in V[Lv(\overline{\kappa}, \omega_1)].$

Since $R(\beta^*)$ is σ -Baire in $V[Lv(\overline{\kappa}, \omega_1)] \subset V[Lv(\kappa, \omega_1)]$, the p.o. set $Lv([\overline{\kappa}, \kappa), \omega_1))$ has the same meaning in both $V[Lv(\overline{\kappa}, \omega_1)]$ and $V[Lv(\overline{\kappa}, \omega_1)][R(\beta^*)]$. Now we apply the Product Lemma in $V[Lv(\overline{\kappa}, \omega_1)]$ so that

• We have

$$V_1[R(\beta^*)] = V[Lv(\overline{\kappa}, \omega_1)][R(\beta^*)][Lv(\overline{\kappa}, \kappa), \omega_1)]$$

and so $V_1[R(\beta^*)] \models \text{``}\neg KH\text{''}$ holds.

Therefore T has at most ω_1 -many cofinal branches in $V_1[R(\beta^*)]$. We know

$$V_1[R] = V_1[R(\beta^*)][R([\beta^*, \kappa))]$$

and $R([\beta^*, \kappa))$ is E-complete in $V_1[R(\beta^*)]$. Hence it suffices to show the following.

5.1.2 Lemma. Let P be a p.o. set which is E-complete for some stationary $E \subset [\kappa]^{\omega}$ and T be a tree of height ω_1 whose levels are all of size countable. Then T gets now new cofinal branches in the generic extensions V[P].

Proof. Suppose $p \Vdash_P$ " \dot{b} is a cofinal branch through T with $\dot{b} \notin V$ ". We derive a contradiction. To this end, let θ be a sufficiently large regular cardinal and N be a countable elementary substructure of H_θ with $p, P, T, \dot{b} \in N$ and $N \cap \kappa \in E$. This is possible, as E is stationary. Denote $\delta = N \cap \omega_1$.

Construct $\langle (p_s, b_s) \mid s \in {}^{<\omega} 2 \rangle$ by recursion on |s| such that for each $s \in {}^{<\omega} 2$,

- $p_{\emptyset} = p$ and we may assume $\{b_{\emptyset}\} = T_0$.
- $p_s \in P \cap N$ and $b_s \in T \cap N$.
- $p_s \Vdash_P$ " $b_s \in \dot{b}$ ".
- $p_{s^{\frown}\langle i\rangle} \leq p_s$, $b_s <_T b_{s^{\frown}\langle i\rangle}$ for i = 0, 1 and $b_{s^{\frown}\langle 0\rangle}$, $b_{s^{\frown}\langle 1\rangle}$ are incomparable. I.e, $b_{s^{\frown}\langle 0\rangle} \not<_T b_{s^{\frown}\langle 1\rangle}$ and $b_{s^{\frown}\langle 1\rangle} \not<_T b_{s^{\frown}\langle 0\rangle}$.
- $\langle p_{f \lceil n} \mid n < \omega \rangle$ is a (P, N)-generic sequence for all $f \in {}^{\omega} 2$.

Since P is E-complete, we may fix $p_f \in P$ such that $p_f \leq_P p_{f \upharpoonright n}$ for all $n < \omega$. We may assume, by extending p_f further, there exists $b_f \in T_\delta$ such that $p_f \Vdash_P \text{``} b_f \in \dot{b}$ ''. Since $|\{b_f \mid f \in \omega 2\}| = 2^\omega$ and T_δ is countable, this is a contradiction.

§6. ♣ and Φ(stat) are different

We separate $\Phi(\text{stat})$ and \clubsuit .

6.1 Theorem. Con(MA_{ω_1}(Fn($\omega_1, 2$)) + Φ (stat)).

6.2 Corollary. $Con(\neg \clubsuit + \Phi(stat)).$

Proof. $MA_{\omega_1}(Fn(\omega_1,2))$ implies $\neg \clubsuit$.

Proof of theorem. We first out-line. Then provide some details.

(Out-line) Since $\Phi(\text{stat})$ entails $\Phi(\text{cof})$, we must have $2^{\omega} < 2^{\omega_1}$. Suppose CH and $2^{\omega_1} = \omega_2$. Add ω_3 -many functions from ω_1 into ω_1 . Then we have

• CH + $2^{\omega_1} = \omega_3$.

• $\forall F: \frac{\langle \omega_1 \omega_2}{\langle \omega_1 \omega_2 \rangle} \longrightarrow \omega_1 \ \exists g: \omega_1 \longrightarrow \omega_1 \ \forall b \in \underline{\omega_1 \omega_2} \ \{\alpha < \omega_1 \mid \underline{F(b\lceil \alpha) = g(\alpha)}\} \ \text{is stationary.}$

Next, we add ω_2 -many subsets of ω . Since we can capture relevant names, we have

- $2^{\omega} = \omega_2 + MA_{\omega_1}(Fn(\omega_1, 2)) + 2^{\omega_1} = \omega_3$.
- $\forall F : \stackrel{\langle \omega_1 \ 2 \longrightarrow \omega_1}{\exists \ g : \omega_1 \longrightarrow \omega_1} \ \forall \ b \in \stackrel{\omega_1}{\underbrace{}} \ 2 \ \{\alpha < \omega_1 \mid F(b \mid \alpha) < g(\alpha)\}$ is stationary.

Here are some details.

(Step 1) Let $P = \operatorname{Fn}(\omega_3 \times \omega_1, \omega_1, \omega_1)$. Then P is σ -closed. By CH, P has the ω_2 -c.c. Let $\langle g_{\xi} \mid \xi < \omega_3 \rangle$ denote the canonical objects added by P. In particular, $g_{\xi} : \omega_1 \longrightarrow \omega_1$. By counting the number of P-names, we have

$$V[\langle g_{\xi} \mid \xi < \omega_3 \rangle] \models \text{``CH} + 2^{\omega_1} = \omega_3\text{''}.$$

Let $F: {}^{<\omega_1}\omega_2 \longrightarrow \omega_1$ in $V[\langle g_{\xi} \mid \xi < \omega_3 \rangle]$. Since P has the ω_2 -c.c, we have $\xi^* < \omega_3$ such that $F \in V[\langle g_{\xi} \mid \xi < \xi^* \rangle]$. Notice

$$V[\langle g_{\xi} \mid \xi < \omega_3 \rangle] = V[\langle g_{\xi} \mid \xi < \xi^* \rangle][g_{\xi^*}][\langle g_{\xi} \mid \xi^* < \xi < \omega_3 \rangle].$$

Let $V_1 = V[\langle g_{\xi} \mid \xi < \xi^* \rangle]$ and $Q = \operatorname{Fn}([\xi^*, \omega_3) \times \omega_1, \omega_1, \omega_1)$. Then the following suffices.

6.2.1 Claim.
$$\Vdash_Q^{V_1} \ "\forall \dot{b} : \omega_1 \longrightarrow \omega_2 \ \{\alpha < \omega_1 \mid F(\dot{b} \lceil \alpha) = \dot{g}_{\xi^*}(\alpha)\}$$
 is stationary."

Proof. Argue in V_1 . Suppose $r \Vdash_Q^{V_1}"\dot{b}: \omega_1 \longrightarrow \omega_2$ and $\dot{C} \subseteq \omega_1$ is a club". Let θ be a sufficiently large regular cardinal and N be a countable elementary substructure of H_θ with $r,Q,\dot{b},\dot{C} \in N$. Let $\langle r_n \mid n < \omega \rangle$ be a (Q,N)-generic sequence with $r_0 = r$. Let $r' = \bigcup \{r_n \mid n < \omega\}$ and $\delta = N \cap \omega_1$. Then there is $\sigma \in {}^\delta \omega_2$ such that $r' \models_Q^{V_1}"\dot{b}\lceil \delta = \sigma$ ". Let $r^* = r' \cup \{((\xi^*,\delta),F(\sigma))\}$. Then $r^* \leq r'$ and $r^* \models_Q^{V_1}"F(\dot{b}\lceil \delta) = \dot{g}_{\xi^*}(\delta)$ and $\delta \in \dot{C}$ ".

(Step 2) For notational simplicity, suppose the following in V.

- CH + $2^{\omega_1} = \omega_3$.
- $\forall F: \stackrel{<\omega_1}{\omega_2} \longrightarrow \omega_1 \ \exists g: \omega_1 \longrightarrow \omega_1 \ \forall b \in \stackrel{\omega_1}{\omega_2} \{\alpha < \omega_1 \mid F(b \lceil \alpha) = g(\alpha)\}$ is stationary.

We force with $Q = \operatorname{Fn}(\omega_2 \times \omega, 2)$ over V. Then in V[Q],

6.2.2 Claim. $\forall F: {}^{<\omega_1} \ 2 \longrightarrow \omega_1 \ \exists \ g: \omega_1 \longrightarrow \omega_1 \ \forall \ b \in {}^{\omega_1} \ 2 \ \{\alpha < \omega_1 \ | \ F(b \lceil \alpha) < g(\alpha)\}$ is stationary.

Proof. Let \Vdash_Q " \dot{F} : $\stackrel{\langle \omega_1}{\cdot} 2 \longrightarrow \omega_1$ ". Let $\mathcal{A} = \{A \subset Q \mid A \text{ is an antichain of } Q\}$. Then $|\mathcal{A}| = \omega_2$. Define F_0 : $\stackrel{\langle \omega_1}{\cdot} \mathcal{A} \longrightarrow \omega_1$ so that for any $\sigma \in {}^{\alpha} \mathcal{A}$, we have \Vdash_Q " $\dot{F}(s(\sigma)) < 0$ ".

 $F_0(\sigma)$ ", where $s(\sigma)$ is a member of α 2 naturally defined from σ in V[Q]. This is possible, as Q has the c.c.c.

Now by assumption, we have $g_0: \omega_1 \longrightarrow \omega_1$ such that

$$\forall b \in {}^{\omega_1} \mathcal{A} \{ \alpha < \omega_1 \mid F_0(b \mid \alpha) = g_0(\alpha) \} \text{ is stationary.}$$

6.2.2.1 Sub claim.
$$\models_Q$$
 " $\forall \dot{b} \in {}^{\omega_1} 2 \{ \alpha < \omega_1 \mid \dot{F}(\dot{b}\lceil \alpha) < g_0(\alpha) \}$ is stationary".

Proof. By the Maximal Principle of the Q-names, we may take $b: \omega_1 \longrightarrow \mathcal{A}$ such that for all $\alpha < \omega_1$, \models_Q " $\dot{b} \lceil \alpha = s(b \lceil \alpha)$ ". By the choice of g_0 , we have

$$\{\alpha < \omega_1 \mid F_0(b\lceil \alpha) = g_0(\alpha)\}\$$
 is stationary.

Notice $F_0(b\lceil \alpha) = g_0(\alpha)$ implies $\lVert -Q^{"}\dot{F}(\dot{b}\lceil \alpha) = \dot{F}(s(b\lceil \alpha)) < F_0(b\lceil \alpha) = g_0(\alpha)$ ". Since the stationary subsets of ω_1 remain stationary in V[Q], we conclude

$$\{\alpha < \omega_1 \mid \dot{F}(\dot{b} \lceil \alpha) < g_0(\alpha)\}\$$
is stationary.

6.2.3 Claim. $MA_{\omega_1}(\operatorname{Fn}(\omega_1,2))$ holds in V[Q].

Proof. Given $\mathcal{D} = \langle D_i \mid i < \omega_1 \rangle$ dense subsets of $\operatorname{Fn}(\omega_1, 2)$, there exists $\beta < \omega_2$ such that $\mathcal{D} \in V[Q\lceil \beta]$. Hence the next ω_1 -many coordinates provide a \mathcal{D} -generic filter.

We may separate \clubsuit and $\Phi(\text{stat})$ the other way round, too.

6.3 Theorem. Con($\clubsuit + \neg \Phi(\text{stat})$).

Proof. Since $2^{\omega} = 2^{\omega_1}$ negates $\Phi(\text{stat})$, we look for this property. We consider a model in [S], where $\text{Con}(\clubsuit + \neg \text{CH})$ is shown.

Let $2^{\omega} = \omega_1$, $2^{\omega_1} = \omega_2$, $\underline{2^{\omega_2} = \omega_3}$ and $\diamondsuit(S_0^2)$ in V. First add ω_3 -many new subsets of ω_1 . Then collpase ω_1 to countable. Let

$$V^* = V[\operatorname{Fn}(\omega_3, 2, \omega_1)][\operatorname{Fn}(\omega, \omega_1)].$$

Then we have $2^{\omega} = 2^{\omega_1} = \omega_2$ and \clubsuit in V^* .

We record:

- $V[\operatorname{Fn}(\omega_3, 2, \omega_1)] \models "2^{\omega} = \omega_1 + 2^{\omega_1} = 2^{\omega_2} = \omega_3 + \clubsuit(S_0^2)"$.
- $V^* \models \text{``} 2^{\omega} = 2^{\dot{\omega}_1} = \dot{\omega}_2 + \clubsuit$ ".

§7. A summary of implications, the chart

$$(\mathbf{A}) \\ \diamondsuit^{+} & \diamondsuit^{*} & \diamondsuit & \mathrm{CH} \\ \Downarrow & \Downarrow & \Downarrow & \Downarrow \\ \mathrm{coint\text{-}wKH} \Rightarrow \mathrm{club\text{-}wKH} \Rightarrow \tilde{\diamondsuit} \Rightarrow \tilde{\diamondsuit} \Rightarrow \mathrm{stat\text{-}wKH} \Rightarrow \mathrm{cof\text{-}wKH} \Rightarrow \mathrm{wKH} \\ \updownarrow & & \Downarrow & \Downarrow \\ \mathrm{KH} & \mathrm{TH} & \neg \mathrm{SAT} \\ \end{aligned}$$

$$\begin{array}{cccc} \Phi(\mathrm{club}) & \Rightarrow & \Phi(\mathrm{stat}) & \Rightarrow & \Phi(\mathrm{cof}) \\ & & & \Downarrow & & \Downarrow \\ & \overline{\Phi}(\mathrm{club}) & & \overline{\Phi}(\mathrm{stat}) & & 2^{\omega} < 2^{\omega_1} + \overline{\Phi}(\mathrm{cof}) \end{array}$$

$$\begin{aligned} (\mathbf{C}) \\ (<^*) \Rightarrow \overline{\Phi}(\mathrm{coint}) \Rightarrow \overline{\Phi}(\mathrm{club}) \Rightarrow & \overline{\Phi}(\mathrm{stat}) & \Rightarrow \overline{\Phi}(\mathrm{cof}) \\ & \downarrow \\ & \neg \, \mathrm{CB} \end{aligned}$$

 (\mathbf{D})

 (\mathbf{E})

$$CH + 2^{\omega_1} = \omega_3 + GMA_{\omega_2} \Rightarrow CH + (<^*) \Rightarrow wKH + \overline{\Phi}(coint)$$

7.1 Note. ([W]) $Con(NS_{\omega_1} \text{ is } \omega_1\text{-dense and wKH}).$

References

- [B] M. Bekkali, *Topics in Set Theory*, Lecture Notes in Mathematics Vol. 1476, Springer-Verlag, 1991.
- [D] H. Donder, Families of almost disjoint functions, in Axiomatic Set Theory, Contemporary Mathematics, Vol. 31, pp.71-78, American Mathematical Society, 1984.
- [F] S. Fuchino, Notes, 2004.
- [J-S] R. Jin, S. Shelah, Can a small forcing create Kurepa trees, *Annals of Pure and Applied Logic*, Vol. 85, pp. 47-68, N.H, Elsevier, 1997.
- [K] Kunen, Set Theory, An Introduction to Independence Proofs, Studies in Logic and the foundations of mathematics, Vol 102, North-Holland, 1980.
- [MHD] J. Moore, M. Hrusak, M. Dzamonja, Parametrized ♦ principles, Transactions of the American Mathematical Society, Vol. 356, No. 6, pp. 2281-2306, 2003.
- [S] S. Shelah, *Proper and Improper Forcing*, Perspectives in Mathematical Logic, Springer, 1998.
- [Si] J. Silver, The independence of Kurepa's conjecture and two-cardinal conjectures in model theory, in *Axiomatic Set Theory*, Proc. Symp. Pure Math. 13, I (D. Scott, ed.), pp.383-390, American Mathematical Society, Providence Rhode Island, 1971.
- [We] W. Weiss, Versions of Martin's Axiom, in *Handbook of Set Theoretic Topology*, pp. 827-886, K. Kunen and J.E. Vaughan, eds., Noth-Holland, 1984.
- [W] H. Woodin, The Axiom of Determinacy, Forcing Axioms, and Nonstationary Ideal, de Gruyter Series in Logic and its Applications 1, 1999.