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Deformation of the Schrodinger equation and exact asymptotic
analysis.

Eric Delabaere * Jean-Marc Rasoamanana |

Abstract
Together with their associated Stokes multipliers, we analyze the dependence in the

d2
parameter a of the resurgent solutions at infinity of the Schrédinger equation ﬁ@(a’:) =

Lﬂ;’gjiv(:c), where P, is a monic polynomial function of order m with coefficients
T
a = (a1, ,0m). This provides a number of functional relations which can be used to

compute the Stokes multipliers for a class of polynomials Py,.

1 Introduction

In his book [17], Sibuya provided an impressive description of the asymptotic properties when
: 2

dc®
|z] — oo of the solutions of the ordinary differential equation ~53 + Pp(z,a)® = 0, where

Pnl(z,a) =2 +a1s™ ' 4+ +am, a= (a1, ,am) €C™

1s a complex monic polynomial function of order m. Avoiding almost systematically the use
of known special functions, one of his main goal was to derive from the symmetries of the
equation only informations about the Stokes multipliers, which are in essence transcendental
functions of the parameter a of the equation.

This idea of Sibuya has been renewed by a number of recent works, some of them, in relation
with spectral problems, having been presented during the conference (A. Voros, R. Tateo, J.
Suzuki).

"The present paper belongs to this trend of research. Our purpose is to analyze the ordinary
differential equation

d? P,
(€n) 0() = 0 8a) menw,
from the (exact) asymptotic viewpoint, thus generalizing (part of) the work of Sibuya. We

shall see what kind of information we can extract from the symmetries of equation (&),
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focusing in particular on the Stokes multipliers and related connection matrices. Of course,
when compared with the work of Sibuya [17], the main novelty comes from the existence of
a regular singular point at the origin, so that a non trivial monodromy has to be taken into
account.

We have to mention that our motivation for considering equation (&,,) relies on problems
also discussed during the conference (C. Bender, M. Znojil, R. Tateo), namely the surprising
properties of the so-called PT-symmetric operators, see, e.g., [2, 6, 7, 16, 18]. A particular

. d? .
example of such an operator is given by —— — (iz)*™ —afiz)™ 1 + ?ﬁ_iz_ll Despite its non-
z
Hermiticity, this operator has a (bounded below) real spectral set, as shown by Dorey et al [9]
by ideas and tools usually used in the context of integrable models in quantum field theory.
What we have in mind is to generalize this result to equation (&) with PT-symmetry, and

the present work is a first step in that direction.

The paper is organized as follows. In section 2 we localize at infinity, introducing a
well-behaved, resurgent, fundamental solution. This solution can be calculated by Borel-
resummation, and we present a (gentle) generalization of the known method by factorial
series. We then introduce a family of fundamental solutions, and their associated Stokes-
Sibuya coefficients. In section 3, we localize at the origin, introducing a convenient system
of fundamental solutions (Fuchs theory). We compare in section 4 these different families
of fundamental solutions and deduce, in section 5, a set of functional relations. Section 6 is
devoted to functional relations in case of higher symmetries. We describe some applications
‘in section 7.

Apart from the new results in subsections 2.2 and 6.2, most of the proofs have been omitted
here, and will be published in [8]

2 Solutions of (&,) in the neighbourhood of infinity

2.1 Asymptotics and resurgence
We start with the question of the existence of solutions at infinity for equation (€,). In what

R Y N
follows, VEn(z,a) =gz 14 Zb%_k(g)m%_k'l + O{z% ") stands for the asymptotic
z
k=1

P.{z,a
expansion at infinity in z of -————”—;(—’-:l

Theorem 2.1. The differential equation (&) admits a unique solution ®o(z,a) satisfying
condition 1. :

o 1. O is an analytic function in z in the sector Lo = {|z| > 0, | arg(z) |< MY such
that, in any strict sub-sector of Lo, B¢ admits an asymptotic expansion at infinity of
the following form !

Tdo(z,0) = 2" We 5D gy (2, a),

uniformly with respect to a in any compact set of C™, where:

IThroughout this theorem, z* = exp (aIn(z)) with In(z) real for arg(z) = 0.
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r 2 p  Ebpsla)
m g8 m 1
S(z,a) = =2% + 3 25" p %k ¢ Cla][z3]
m o Tk
— ). for odd m, J 1 m
r(a) = 277
¢o € C[g][[m—%]] with constant term 1.

— it). for even m, {

Moreover:

o 2. &g extends analytically in x to the universal covering of C*, and is an entire function
in a.

e 3. The derivative ®) of Pg with respect to z admits an asymptotic expansion at infinity
of the form:

T (i@o@:,g)) = L (To(a,a)) = 7@+ 167500 (1 4 1)
dz dz

when x tends to infinity in any strict sub-sector of X, uniformly with respect to g.

This theorem can be shown with the methods developed in Sibuya’s book [17], see [14, 1].
However, using the resurgent viewpoint, one can get a stronger result:

Theorem 2.2. We use the notations of theorem 2.1. There ezists a unigue formal power
series expansion vy € Cla[[S™V/™)] for m odd , v € Clal[[S~%/™]] for m even, with constant
term equal to 1, resurgent in S with regular dependence? on g in any given compact K, and
Borel resummable, uniformly in g € K, such that ®q can be described by

m

Zr(a) _
®o(z,0) = (35) e 8a10(S,8) |s=5(z.0) (1)

(uniformaly in @ for a in any given compact set), where So denotes the Borel sum with respect
to S, while the direction of Borel resummation o runs through |—x, +x[. Moreover, the minor
of Yo can be analytically continued to the universal covering of C\{0,—2}.

The proof of this theorem is detailed in [8]3. Apart from the dependence in g, this result
is essentially a known theorem [10, 3, 11].

*in the sense of [5].

®In [8], for technical reasons, we used different variables of resurgence, z for m odd and Z for m even. Since
the resurgence variable z (resp. Z) reads z = S.A(S,a) (resp. 7 = 5.A(8,a)), with A(S,a) (resp. A(S, a))
an analytic function which tends to 1 when S tends to infinity (uniformaly in g, for a in a given compact

*set) then, from general nonsense in resurgence theory S may be chosen as a new resurgence variable and,

moreover, the resurgence properties of the formal power series expansions are preserved: same singularities
for their minors, same resurgence equations.
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2.2 Asymptotics and summation

In theorem 2.2, the Borel sum S,90(S5,a) can be calculated with various methods, e.g., by
means of the hyperasymptotic theory. It can also be computed exactly by the resummation
method by factorial series, a method which goes back to Watson, Nérlund and Nevanlinna.
We describe briefly this method, computing Sgvs(S,a) only to simplify.

By theorem 2.2, v reads

(S, a) —1+2Ak(a)

€ Clal[[S~+]],
2 ok la]{[S™™]]

m—1
which we write as ¥4 (S, a) Z S’% (S,a) with % (8,a) € Cla]([S7Y]]. We remark that,
=0 9™
fork=0,1,--- ,m—1,

m

o (e2z'1rks a Z

with w = e“?% This reads also :
[ S )
(11 1 ) [ (S 9)
) (S,a) ‘
1 wl .. w—m=1) ""——"‘S% ,Q(;)G(eQmS’ Q&)
\ 1 w‘(m'l) e w_(m—l)(m'—l) ) lz/)gm—l)(s} Q) \ ¢0(e2i7r(m_1)87 .@_) )
§5 )

Since the left-hand side m x m matrix is a Vandermonde invertible matrix, each 'c,bg) (S,a)
can be written as a linear combination of the 1 (e?"55,a)’s times S #. By theorem 2.2,

the formal series 1y(e?**S,a) are Borel-resummable in S, so that each 1/)&”(5, a) is also
S-Borel-resummable. Following [13, 12], we can conclude that:

o
A
Proposition 2.3. We consider the formal ezpansion 1o(S,a) = 1+Z —-;% € C[Q][[S";IE]]
k:l n
of theorem 2.2. Then, there exist b (a) € Cla] and T > 0 such that the series expansion

ol O > 0 I(n+1)

=0 S n=0

converges absolutely for RS > 7, and its sum represents Soifo(S, a).

The coefficients bg)(g) € Cla] can be derived from the Ai(a)’s by the Stirling’s algorithm,
see [13].

We now sketch a method which can be seen as an (apparently not known) extension of the
previous resumnmation method by factorial series.
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Considering g, its minor ’(Zg is given by

EC"lC[ {¢m)

%o(C,a) = ZAk(a

where the right-hand side series expansion converges on the universal covering of D(0,2)\{0}
(D(0,2) is the open disc centered at the origin, with radius 2). We now set s = e¢. This
defines a biholomorphic map s > ((s) such { = (1 —38)f(1 —s) where f is holomorphic near 0
and f(0) = 1 (by Lagrange’s theorem), from a neighbourhood of s = 1 onto a neighbourhood
of ¢ = 0. Introducing go{s,a) = %¥o(¢,a), go may be identified with its Taylor-Puiseux
expansion at s = 1, which reads

k
% 1 - k1
go(s,a) = ZBk(Q)L"*ﬂ“-
Formally, one has
+o0 3 - o0 B (a) +0C B ok
50¢0(5>Q)=1+f ‘ <Swo<c,@>dc:1+ér—’g§fo eSS (1 - eyl

14 Z Bk(a / _ s)E-18-14g

so that Sptp(S,a) = 1+ Z BI(C(,C&)) (;%, S) where f is the Euler beta function. We eventually
k=1 " \m
get: "
= I'(S)
S S,a)=1+ Bi(g)——r—"t—.
0%0(S,a) g k(a)I‘(S+ 3

Up to this point, these transformations were formal. We have in fact the following proposition
whose proof is similar to that of theorem 1.5.2.1 in Malgrange [13]:

Ag(a)

Proposition 2.4. We consider the ezpansion ¥y(S,a) = 1 + Z € C[g_][[S"%H of

k.
k=1 O™
theorem 2.2. Then, there exists a 7 > 0 such that the series ezpansion

o0
I(s)
1+ Bpla) = ——tes
k=1 P(S + ﬁ)
converge absolutely for S > 7, and its sum represents So1o(S, a).
To derive the coeflicients Bi(a) from the Ag(a), all we have to do is to compute the

i . . 1
decomposition given by proposition 2.4 for i > 0. For RS > 0, we have

_1_ = __1_ /oo e—uSur—ldu
st T(r) Jo
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, 1 1 '
so that, with u = ~In(s), = = -———/ s571 (~1n(s))""'ds. For s €]0,1[, one can write
St Tr) Je
In(s i jg (1 =s)y Th
1~s LS
In(s)\"™' = (1-s)
( 1- s) N ; ér.d J!
it}
with . L Z I'{(r) B (1! 2! ! ), > 1
7,0 = 4 Ty = Py aun =4 B 1 G Rl A R R R i
1SijI‘(r p) 2°3 I+1

where the B;,’s are the exponential partial Bell polynomial functions ([4]). By exchanging
S~ and [ (this can be justified, cf. [15]), one deduces that

1 S Cr,j ! 5-1 r4j—-1 = Cr.j .
ST _ZI‘(T)JI./(; 8 (1_5) dswgr(r>j!ﬂ(r+]vs)

4=0

Z cw T{r + 5)T(S)
! Tir+3+8)

We eventually get:

L_ IS N~y TS
St T(r+5) +}4§d’"'?r(r+j+8)

with

12 I
d .= Z Bip(5: 5 g ) F(T+J)
" I‘(r- p) 7!
1<p<y

Lemma 2.5. In proposition 2.4, we have

Bi(a) = Axla) + j§1 dy ;- Aa)

I+ jm=k

To end this subsection, we note that it would be interesting to compare the method of
summation based on propositions 2.4 and 2.3 with the hyperasymptotics, which is based on
the knowledge of the resurgent structure. In particular, we believe that this could provide
explicit error bound (which seems to be not known) when truncating the factorial series
expansions, for concrete computations. We are presently engaged in this study.

2.3 Fundamental systems and Stokes-Sibuya coefficients

In this subsection, using the quasi-homogeneity property of equation (€,,), we derive from @
(given by theorem 2.1) a family of fundamental systems of solutions of (€m), and introduce
the Stokes-Sibuya coefficients which govern the Stokes phenomena. For that purpose, it is
useful to introduce the followmg notations:

Notation 2.6. We set w = et . ForallA € C and all @ = (a1, '+ ,am) € C™, we note
Aa = (Aag, -, A" am).
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Using the fact that equation (&) is invariant under the transformation (z,a) — (wz,w.a),
one easily gets the following result:

Lemma 2.7. For all k € Z, we define ®y(z,0) = ®o(wz,wF.a). Then, Oy is a solution
of (&), and is entire in a. [ts asymptotic expansion when z tends to infinity in the sector
S = {|z] > 0, | arg(z) + k.arg(w) |< 32}, uniformly in a in any compact set of C™, is given
by :

T@k(.’ﬂ,g) = T@O(wkx’wk,g)

where T'®q is the asymptotic expansion of $g in Lo described in theorem 2.1.

We remark that for all k£ € Z, the solution @ is a “subdominant function” (in the sense
of [17], p. 19) in the sector Ay = {| arg(z) + k.arg(w) |< Z}. Since the sectors Ay_i, Ay
and Ag.; are included in X, the previous lemma 2.7 allows to calculate the Wronskian of
(@i, py1) (cf [8]):

W(@k, (Dk—i—l) - 2(_l)kwk(1—%)+r(wk+1‘a)
where 7 is given by theorem 2.1. This means that for all k£ € Z, {®y, Pr41} constitutes a

fundamental system of solutions of (€). Since (&) is a second order linear differential
equation, we deduce the existence of functions Cy(a), Cx(a) such that :

Vk € Z, @51 = C(a)®;, + Cra)®p . (2)

Definition 2.8. The functions Cg(a) and 5’k(g) are called the Stokes-Sibuya coefficients of

®;_; associated respectively with ®; and ®;,1. The matrices Sg(a) = ( Ckl(g) Oko(g) )

are called the Stokes-Sibuya connection matrices.

The analytic propefties of the Stokes-Sibuya coefficients are described by the following
theorem, proved in [8]: ’

Theorem 2.9. For all k € Z we note 4z, a) = ®o(wz,w”.a), where g is the solution of
(&) defined by theorem 2.1. Then, for all k € Z, ®y(z,a) is analytic in = on the universal
covering of C* and entire in g; moreover, the system {®y, Ori1} constitutes a fundamental
system of solutions of (€, ).

o
tion matriz Gy(a) is invertible, and entire in a. Also, for allk € Z,

o We have ( Pr-1 ) (z,a) = Ggla) ( @ik ) (z,a), where the Stokes-Sibuya connec-
41

Gkla) = Gp-1(w.g), Gila) = Go(wF.a). (3)

e The Stokes-Sibuya coefficients Cy(a) and ék(g_) associated respectively with ®; and
D11 are entire functions in g and,

Cila) = Co(wP.a), Ckr=Ck moam
(4)

Ci(a) = Co(wF.g) = w™ 22 W ) G = C, 1oa m.

Besides the Stokes structure at infinity, described by the previous theorem, equation (€m)
develops a none trivial monodromy at infinity:
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Definition 2.10. The 2 x 2 matrices 9°(a), k € Z, defined by:

(%) erno=m@ (%) o) o)

are called the co-monodromy matrices.

These co-monodromy matrices enjoy the following properties (cf. [8]):

Theorem 2.11. For all k € Z, the co-monodromy matriz MM (a) is invertible, entire in g,
and
M (a) = M (w.0). (6)

Furthermore, the Stokes-Sibuya connection matrices satisfy the funciional relation:
Gola) + Gm—1(a) = (M§°(2)) ™" (7)

Relation (7) generalized a functional relation due to Sibuya [17].

3 Solutions of (&) in the neighbourhood of the origin

To get more information about the Stokes-Sibuya coefficients Cy, we now localize near the
origin. Since this point is a regular singular point of (&), we use the classical Fuchs theory
to describe new “canonical” systems of solutions of (&) near the origin. The characteristic

P are the characteristic values, with p = (1+4ap) 2.

equation is 8(s —1) —am = 0 so that

1
Notation 3.1. In what follows, p = (1 + 4am)% and s(p) = -%
We note @' := (a1, - ,am-1), and for all 7 € C,
rd = (ra1, , 7" tap_1).

One has the following results, see [8].

Theorem 3.2. There ezist two unique linearly independent solutions fi, fo of (€n) such
that

o0
fl(a:aﬁ’»p) = Is(p)gl(:l:}glyp) = ws(p) (1 + z Ak(g_lvp)mk)
k=1
fal@,a',p) = M, p) (e, &', p) Infa) +2*Pga(a, d, p)
where g1, go are entire functions in z and @', while X is entire in a'. Moreover, g1 is mero-

morphic in p with at most simple poles when —p € N,

1. When p ¢ Z, then X(d',p) =0 and g2(z,2’,p) = g1(z,a', ~p).

' 00
2. When p € N*, then ga(z,a,p) = (1 + ZBk(g,p)zk) with By = 0. Moreover, for all
k=1
k € N, A(d,p), Bi(d,p) € Cla'], and A(w.d',p) =w™PA(d,p).
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[o 8]
3. When p = 0, then Ma',p) = 1 and go(z,d,p) = ZBk(g’,p)x’C with, for all k € N,
k=1
By(a',p) € Cla'].

Remark 3.3. When —p € N*, just change p into —p in theorem 3.2.

Remark 3.4. In the special case when ¢’ = 0, the function g; is meromorphic in p with at
most simple poles when —p € mN*,

Remark 3.5. For every p € N*, A(d/, p} can be computed exactly.

.From theorem 3.2 and from the quasi-homogeneity of equation (&p,), one easily obtains:

Corollary 3.6. We consider the fundamental system of solutions (f1, f2) of theorem 3.2.
Then,

( g ) (w™z,d,p) =93T(Q’,p)< ;; )(w, a) 8
where

Zims(p)
et 0 ) 9)

! —

is the monodromy matriz at the origin.

4 The Ooo connection matrices

To compare the set of fundamental systems of solutions (®y_1,®y) of (&) introduced in
section 2 with the fundamental system of solutions (f1, f2), we introduce, for all &k € Z:

( %: ) (z,0) = Mx(d,p) ( ;; ) (z,d,p) (10)

where the matrices My (d/, p) are invertible.

Definition 4.1. The matrices My(d', p) are called the Oco-connection mairices.

We now give some properties of the My, see [8].
Theorem 4.2. a) For allk € Z,

L k=D=B (0 0)
2(~1) for p#£0
det My (d, p) = P (11)

z(ml)k—lw(k—l)u—%}+r(w".g_) for p = 0.

b) For oll k € Z, the matriz My(a',p) is entire in a. More precisely,

Mi(d,p) =
Ly(a', p) 5 Ly(d',p) (12)
WP Ly(w.a',p) + ZENa, p)w’ P Ly (w.d,p) P Lp(wad,p)

where Li(a’,p) and Zk(g’,p) are entire in g'.



¢) For all k € Z, the matriz My(a',p) is holomorphic inp ¢ Z, and
Vp ¢ Z,Vd € C"7', Li(d,p) = Li(d, ~p).

Moreover, Ly, extends analytically at p € N*.

d) We have:
Mpn(d',p) = Mo(a',p)D(d', p). (13)

In addition to theorem 4.2, it is easy to show the following proposition (the special case
where @' = 0 follows from remark 3.4):

Proposition 4.3, The restriction to p ¢ Z of the function Lg(a’,p) (resp. Li(d,p)) has a
meromorphic continuation in p, with at most simple poles when p € N (resp. —p € N},

In the special case where o' =0, the restriction to p ¢ Z of the function Li(a) (resp. Li(a))
has a meromorphic continuation in p, with at most simple poles at p € mN (resp. —p € mN).

5 Functional relations

The different results we have described open on a set of interesting functional relations.

5.1 First functional equation

Comparing the definitions of the Oco connection matrices M}, and of the Stokes-Sibuya con-
nection matrices, we see that, for all kK € Z:

Gila) = My(a,p) M (d,p). (14)

Therefore, ‘
So(a)61(a) - Gm-1(a) = Mo(d', p) M (d,p).

Using (13}, we obtain the following theorem:

Theorem 5.1. The Stokes-Sibuya connection matrices satisfy the following functional rela-
tion:
G0(0)G1(a) - Gm-1(a) = Mo(d', )M (d', p) M5 (&, p). (15)

This new functional relation, which is equivalent to formula (7), induces the following two
corollaries.

Corollary 5.2. We have Tr (Go(a)S1(a) - - - Sm—1(a)) = —2cos(np) where Tr is the Trace.

Corollary 5.3. We assume that p € N*. Then, with the notations of theorem 3.2,

65(2)81(@) - Bm-1(a) Ir@ g0 = (=1 ( (1) {i ) ‘

95
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5.2 Second functional equation

Theorem 5.4. We use the notations of theorem 4.2.

o 1. We assume p ¢ Z. We assume furthermore that a is chosen so that, for all k =
0, ,m—1, Lo(w®.a/,p) # 0*. Then

Lo(d',p) .w—%w—(m+1)§ mz—l wr(wk.g)+(k+1)p (5)
—_— = - - — — ,
Lo(d', p) psin(mp) & Lo(wk.a!,p)Lo(wh+.a,p)

o 2. We assume p € N*. Assuming also that @ is chosen so that, for allk =0,.-- ,m—1,
Lo(wF.a',p) # 0, then

m_1 r(w*.a.p)+(k+1)p
impwitiag,p) = ¥ :
k=0 LO(wk-Qlap)LO(wk+1*g'_’7p)

(17)

The proof of this theorem relies on elementary linear algebra. For instance, to get point
1), one just uses formulas (11) and (12) to obtain, for @ generic,

Lo(d, p) wrle)
Lo(g',p) 1 Lo(d/,p)Lo(w-¢', p)
. 2w .
£ : == : )
Lo(w™ ./, p) P S 0)
Lo(w™ g/, p) Lo(wmt.a',p)Lo(d, p)
where
WP s g 0
0
Q = : . 0 .
0 e 0 ws(_p) _ws(P)
— 8P 0 e 0 WP

is a m X m invertible circulant matrix. This gives the result. Point 2. of the theorem is
shown in a similar way, see [8].

Theorem 5.4 provides the following corollary:

Corollary 5.5. The Stokes-Sibuya multiplier Cy(a) satisfies:

o when m =1, for all g € C:
Co(a) = —2cos{mp),

®» whenm =2, for alld' € C and p ¢ —N:

Co(a)Lo(w.a',p) = —2ie™ 3 cos (g(p + al)) Eg(_q’,p),

“This is a generic hypothesis on g since Lo(a’, p) cannot be identically zero.



o whenm >3, for alla' € C™ ! and p ¢ —N:

Co(@)Lo(wd,p) =
w"'{ﬁ)—l-l'% (ZO(Q’,p)U_T(Q)+%_%+§ + zo(w2'gl,p)wr(_@.)—%+%—g) N

Proof. One deduces from (14) with k£ = 0 that

! 2 1 - .
Cola) = —Ewt-rwe) wrrol@op)  p Lol P 7 T ). (18)
2 Lo(d/, p) Lo(w?.a',p)

As shown in [8], the corollary is then a consequence of formula (16). O

6 Higher symmetries

6.1 Reduction to lower orders

In this subsection, we study a class of differential equations (&) with higher symmetries.
Namely, we shall consider the following differential equation:

d? .
(eﬁm) ngﬁ@(mvgn) = an(msgn)q)(wagn)'

with the following notations:

Notation 6.1. For m,n € N*, we define
a, = (aj)1<j<nm -s0 that a; =0 if j#0 modm.

For such a g, we also define:
f
2y = (05 1< <am—1

and

The key point in what follows is the following easy lemma:

Lemma 6.2. If & satisfies the differential equation (€J,,) with n,m € N*, then ¥ defined by
n=1

U(z,a,) =22 @ ((n%m)%,gn)

satifies the differential equation (&) with @ = @,, that 1s:

97
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This lemma allows to compare the connection matrices of equation (€%, ) with those of
(&€mm), associated with the polynomial P, (z,&,) of lower order. We refer to [8] for the proofs
of the following results.

Notation 6.3. We note C}(a,,) and 5g(g_n), k € 7, the Stokes-Sibuya coefficients associated
with equation (&, ).

Corollary 6.4. The Stokes-Sibuya coefficients C§(a,) and é{)‘(gn) associated with equation
(€2,.) are related to the Stokes-Sibuya coefficients Cy and Cy of equation (€y,) by:

CPan) = w's Co (@)
(20)
Cf(a,) = w™= Co (@)

2ix
where w =¢em ,

Notation 6.5. We note E’g(gﬁb,p(amn)) and LHay,,p(amn)), k € Z, the coefﬁcien;cs of the
0oco connection matrices associated with equation (&) ) with p(amn) = (1 + 4amn)?.

Corollary 6.6. When ._g(fnﬂfﬁ ¢ N,

=1t

L0 (dy, plamn)) = eEU- D= 2r@+ESm 1 (6’ e ”)) ' (21)

6.2 Quasi-exact solvable cases

In quantum mechanics, a special class of spectral problems admits partial (or even complete)
algebraization, that is part of the energy spectrum and associated eigenfunctions is calculable
algebraically. These systems are said to be quasi-exactly solvable, after Turbiner [19].

Here we discuss what can be thought of as an analog of the quasi-exact-solvability. The
consequence will be informations about the location of the zeros of the coefficient Lg.

We assume that m = 2k is even. We look for solutions of (€,,) having the following form:

e !
3(z,0) = 05000 3 L2 (“; 22’1{% )’p) 2"

n=0

T2 und p = (1 +4a,)%. We assume that p ¢ —N*.

We normalize ® by imposing the condition Qg(a’,p) = 1.
Demanding that @ is a solution of (€,,), one sees that the coefficients Q,(a/, p) has to satisfy
a (k + 1) term recursion relation:

with S(z,q) as in theorem 2.1, s(p) = !

k-1

> i@, 0)Qns(d,p) = (n+ K)Qnin(d,p), n € Z

7=0 (22)
QO(Q’.,)p) =1

Qn(d',p) =0 for n < 0.

In (22), the coefficients a,, are polynomial functions in (a',p) so that the recursion relation
(22) determines the Qn(d’,p) € Cla’,p] uniquely. We exemplify (22) for m = 2,4,6:



( S(z,a2) =

I.m=2 ¢ (a1 +p+1+2n)Qn(a1,p) = (n+ 1)Q@ns1(a1,p), n 20
[ Qolai,p) = 1.

( S(z,a) = 222 + Laiz

9 m—d m+p+1)[(aa—2ad) +2n+p+2]Qn—[as+ (n+ 5§+ 3)a1] Qnp1
) "] = (n+2)Qnta, n > —1

\ Q——l(g,3p) = OaQU(Q’ap) =1L

( S(zya) = 123 + ta1z® + § (a2 — Jad) o

(n+p+1(n+p+2)[~ia (a —ad) +a3+2n+p+3]Qn

3.m=6:¢{ +(n+p+2) [—Z(az—M) +ast(n+E+2)a1] Qnet
+[(n+8+3) (a2 — 10f) + a5] Qnyo = (N +3)Qn4s, n 2 =2

L Q-2(d,p) =0,Q_1(a,p) = 0,Qo(d,p) = 1.

In the case m = 2, the condition p+ a1 + 1 = —2N with N € N is a easily seen to be a
sufficient condition of quasi-exact-solvability since, for p ¢ —N¥,

B(z,0) = 2Pe EN: D(p +1)Qn(a1,8) .

n=0 F(n+p+1)

is an exact solution of (€). In such a case, ®(z,q) coincide with fi(z,a1,p), and more-
T 1 ‘ ~
over ®(z,a) = (~ l)NZN—(:[)—u~<I*0($,Q). This means that Lg{w.a’,p) = 0 when

I'(N+p+1)
{ p+c‘:;—i§*-—2N , 80 that:

p—a;+1€-2N
p¢-N '

The same kind of result can be otained for higher values of m. For instance, when m = 4,
assuming that there exists N € N such that as — -al + 2N +p+2 =0, then the three term
recursion relation (22) implies that for all n > N + 1, Q, is a multiple of @x41. Therefore,
{ az— a2 +2N +p+2=0, NeN

Lemma 6.7. For m =2, Lo(d',p) =0 when {

is a sufficient condition for quasi-exact-solvability (for
Qn+1(a,p) =0 d y(

1.2
. B . ag— 01 +p+2=0
instance, when N = 0, this yields { 203 + (p+1)a; =0

). In such a case, zo(w.g’,p) =0
again.

To end this subsection, note that some quasi-exact-solvability conditions for odd m can be
deduced from the even case by using lemma 6.2 (for instance, the m = 3 case can be deduced

from the m = 6 case).
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7 Applications

We end this paper by showing what kind of information we can extract from our analysis,
refering to[8] for the proofs.

First application Particular simplifications occur when o’ = 0:

Proposition 7.1. We consider (€,,) on restriction to ¢’ = 0. Then

_in P _2ir
st = (e (e2) )

where p = (1 + 4an )%, Furthermore, for ;‘% ¢ Z, the Oco connection matriz My is given by

~ 1 .
P B o e )

ROt

ws(p)eﬁm(—iv)%[‘ (_%) ws(—p)eﬁmms’;ﬁr (%)

1
where s(p) = ——-;—_«E, while Bm(p) is an odd function, entire in p, such that for all k € N*,

ehmlbm) = Lok

This means that almost everything can be deduced from the symmetries in this case, apart
from the § function in the Oco connection matrix My. Using special functions (Bessel), one

. ~ i - P £
can derive from our analysis that Lo(0,p) = e mmm e m —L”-ﬁ
vmm

The m = 2 case In this case, the tools developed in sections 5 and 6 yield the following
result.

Proposition 7.2, We assume m = 2. Then the Stokes-Sibuya mutiplier Cy may be written
as

)

T

5 eP1®) gnd Cola) =e ™ (23)

Cola) = —2ie™" % cos ( i

[ Ll [T
p—

v+ 611)) L+
2

(& —

where B is an entire function satisfying f(a1,p) = Bla1, ~p) = —B(—a1,p).
Moreover, the coefficients of the Oco connection matriz My of theorem 4.2 satisfy, for p ¢ Z,

o of2

Lolar,p) = ~i2- T emd — L0 s
FE-%+3)
(24)

T cos (Z{p+
Lo(as,p) Eofuan, p) = 222 B2+ 1))
psin(np)

Using the Whittaker special functions, it is possible to show that the unknown function B
is simply B(a1,p) = —a;. With this addendum and corollaries 6.4 and 6.6, proposition 7.2
implies the following corollary:
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Corollary 7.3. For n € N, we consider the differential equation

d2
(€3,) mza-ﬁ‘? = (2% + anz" + agn) ®

ir . a a F(.E_ Q&_!_ ..1_) p a
C?‘l a.) = Ze_ﬁe_mw—z‘%zﬁf‘*ﬂ_u_uc(}* ( . n )

Then, 2n

~ _in _;en
Gg(ﬁn)= —e ne n
1
4asy,)?. Moreover, when p ¢ —nN,

on 4

~ i n
Blah,p) = e H e (3) 7

St
|
8o
el
—~

3
S’

Application when m = 3. We end with the m = 3 case, where no special function solution
of (&3) is known.
Corollary 5.2 yields the following functional relation between the Stokes-Sibuya multipliers:

Co(a)C1(a)Cala) + Co(a)Cala) + Ci(a)Cola) + Ca(a)Ci(a) = —2cos(rp)

where, by (4) of theorem 2.9, Co(a) = Cila) = Co(a) = %
find, forall o’ € C? and p ¢ —N:

Lofwa' p)Cola) = w™F (Tol@ pu? + Lo(w? ' ,p)w78), (25)

. Applying now corollary 5.5, we

Now, for p € N*, formula (17) translates into:

’iﬂpw%+%>\(g_’7 p)f’ﬂ(gjip)zo(w'Q’aP)ZO(w2'lep) =

26
Lo(w.d,p) + WP Lo(w’.a',p) + W Lo(d,p)- )
We now add the assumption that ¢’ has been chosen so that
Me'p)Lo(d,p) Lo(w-a,p) Lo(w” @', p) = 0.
Then, from equations (26) and (25) one can derives that Cola) = Ci(a) = Cala) = —w i =

(—1)P*1e~% . To summarize:
Proposition 7.4. For m = 3, the Stokes-Sibuya multiplier Cola) satisfies the functional
equation

Co(a)Co(w.a)Co(w?.a) + e (Cola) + Colw.a) + Co(w.a)) = —2cos(np) (27

2ix 2_1

in

with p = (1 + 4a3)% and w = €5, whereas Cyla) = €3 . Moreover, when a3 = P
p € N*, then

with

Md',p) Lol p)Lo(w.a',p) Lo(w’.a',p) = 0
is equivalent to Co being a constant, precisely Co = (~1)p+1e‘%.

For a given p € N*, the case A(g’,p) = 0 can be seen as an isomonodromic deformation
condition, since both the monodromy at the origin and the Stokes structure are fixed. In
other words:

Corollary 7.5. For m = 3 and p € N*, the condition Ma',p) = 0 is an isomonodromic
deformation condition.
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