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1 Introduction

We are concerned with two-dimensional, irrotational flow of incompressible ideal fluid
with free surface under the gravitational field. The domain occupied by the fluid is
bounded below by a solid bottom and above by an atmosphere of constant pressure. The
upper surface is free boundary and we take the influence of surface tension into account
on the free surface. Our main interest is the motion of the free surface, which is called
capillary-gravity wave. In the case without surface tension, it is called gravity wave or
water wave.

Mathematically, the problem is formulated as a free boundary problem for incompress-
ible Euler equation with the irrotational condition. After rewriting the equations in an
appropriate non-dimensional form, we have two non-dimensional parameters ¢ and € the
ratio of the water depth h to the wave length A and the ratio of the amplitude of the wave
a to the water depth h, respectively. In this communication, we consider capillary-gravity
waves characterized by the physical condition 6> = ¢ < 1. In this long wave regime,
Korteweg and de Vries [10] derived a very notable equation, which is nowadays called the
KdV equation, from the equations for water waves. Here, we note that even in the formal
Jevel the bottom of the fluid is assumed to be flat in the derivation of the KdV equation.

Until now, there are several efforts to give a mathematically rigorous justification for
the KdV equation as an approximate one to the full equations for water waves over a flat
bottom. Kano and Nishida [9] gave the justification in a class of analytic functions. In
order to guarantee the existence of solution for the full equation, they used an abstract
Cauchy-Kowalevski theorem in a scaled Banach space, which is a modified version of



those due to Ovsjannikov [14, 15] and Nirenberg [12], so that analyticity of the initial
data is required. Based on the existence theorem due to Nalimov [11] and Yosihara [28],
Craig [4] gave the justification in the framework of Sobolev spaces. In the long wave
regime, the dynamics of the free surface is approximately translation of two wave packets
without change of the shape, one moving to the right and the others to the left, for a
short time interval 0 < t < O(1). The dynamics of each wave packets is very slow so
that it is invisible for the short time interval. By introducing a fast time scale T = &t,
the dynamics can be visible and described by the KdV equation for a long time interval
0 <t < O(1/g). One of the difficulties in the justification is to obtain a uniform estimate
of the solution of the initial value problem for full water waves with respect to ¢ for the
long time interval. Craig established well the estimate under the restriction that the wave
is almost one-directional. Recently, Schneider and Wayne tried to refine the Craig’s result
in [19] and to extend it to the capillary-gravity waves in [20]. However, their formulation
of the problem is different from Craig’s and ours and they treated the problem as regular
perturbation, so that their results are weak.

Our main purpose is to analyze the long wave approximation of the capillary-gravity
waves in the case that the bottom is not flat and to derive simple equations whose solution
approximates that of original equations for a long time interval 0 < ¢t < O(1/g). If the
amplitude of the bottom is comparable to that of the free surface, then the effect of
the bottom can not be negligible and the approximate equations become coupled KdV
like equations. Another purpose is to give a refined version of the claim in Schneider
and Wayne [20]. Since the well-posedness of the initial value problem for fixed & >
0 was established by Yosihara [29] and Iguchi [5], our main task is to obtain a priori
estimate for the long time interval. To this end we follows basically the strategy due to
Craig [4]. However, as explained in Iguchi, Tani, and Tanaka [6], we do not have to use
the Lagrangian coordinates for the analysis to capillary-gravity waves, so that we will
study the problem in the Eulerian coordinates. Owing to this choice of coordinates, an
expression of the operator K, which is the Dirichlet-to-Dirichlet map for the Cauchy-
Riemann equations, becomnes simpler than Craig’s.

Notation. For s € R, we denote by H* the Sobolev space of order s on R equipped with

the inner product (u,v)s = o= [R(1 + £2)56(€)0(E)dé, where 4 is the Fourier transform
of u, that is, 4(¢) = [Rulz)e ™ dz. We put fJulls = +/(u,u)s, (4,v) = (u,v)o, and
%] = Jlullo. For a non-negative integer m and a real -y, we denote by H™" the weighted
Sobolev space on R equipped with the norm [[ullmy = (3irg ]I(x)’*(a‘%)lu,}!)l/z, where
{z) = (1 4+ 2?)Y2 For 1 < p < 00, we denote by | - |, the norm of the Lebesgue space
I? = IP(R). For a non-negative integer m, we denote by W™ the Banach space of
all functions 4 = u(z) on R such that (%)zu € L™ for 0 < | < m with the norm
lullwmee = maxo<icm [(%)iulm. For 0 < T < 00, a non-negative integer j, and a Banach



space X, we denote by C?([0,T]; X) the Bana,ch space of all functions of C’J-dass on the
interval [0, T'] with the value in X. A pseudo differential operator P(D), D = —iL, with
a symbol P(¢) is defined by P(D) = & [ P(OLE)e™ dE.

2 Formulation of the problem

We assume that the domain Q(t) occupied by the fluid at time ¢ > 0, the free surface
I'(t), and the bottom ¥ are of the forms
Q@) = {(z,v) € R*; b(z) <y < h+n(z 1)},
T(t) = {(z,y) € R*; y = h+n(z,t)},
== {(z,y) € R*; y = b(z)},
where k is the mean depth of the fiuid. In this paper b is a given function, while 77 is

the unknown. The motion of the fluid is described by the velocity v = (vi,v2) and the
pressure p satisfying the equations

{ plve+ (v-V)v) +Vp=—p(0,9),

1
) V-v=0 V+ov=0 in Q(t), t>0,

where p is the constant density and g is the gravitational constant. It is assumed that
both p and g are positive constants. The dynamical and kinematical boundary conditions
on the free surface are given by

(2) {p:pO"UfL
(6t+v-‘§7)(y—~?7x,t)):o on I'(t), t>0,

where po is the atmospheric pressure, o is the surface tension coefficient, and H is the
curvature of the free surface. It is assumed that po is a constant and o is a positive
constant. In our parametrization of the free surface the curvature H at the point (z,h+
n(z,t)) is expressed as

H(z, ) = (1 + (el 1)) " "na(@, 1)),
The boundary condition on the bottom is given by
(3) v N=0 on %, t>0
where N is the unit normal vector to ¥. Finally, we impose the initial conditions

(4) 77(37,0) = 770(33)7 ’U(.’E,'y,O) = UO($)y>'



It is assumed that the initial data satisfy the compatibility conditions, that is,

V-ou=0, Vt-u=0 in Q(0),
- N=0 on .

We proceed to rewrite the equations (1)-(4) in an appropriate non-dimensional form.
Let A be the typical wave length and a the typical amplitude of the free surface. We
introduce two non-dimensional parameters § and € by

a
— and ¢

A TR

respectively. We will consider asymptotic behavior of capillary-gravity waves when ¢ and

§

I

¢ tend to zero keeping the relation
8 =e.

We rescale the ihdependent and dependent variables by

A -
=X, y=~hy, t=-—7=1,
(5) voh
a . a . - - ¥
vlzﬁ gh i, 02:}\- ghty, p=po-+pghp, n=ai, b= ab.

These new variables are called Boussinesq ones. Here, we note that the function b of
the bottom is rescaled by a the typical amplitude of the free surface. Putting these into
(1)-(4) and dropping the tilde sign in the notation we obtain

evys + €2 (10V1z + Vav1y) + P =0,
(6) £%ugs + 3(v1Vag + V2v2y) + 0y +1 =0,

Vig +Voy =0, Uiy — €V =0 in Q(t), t>0,

- p= —e*u((l+e*n2)~n,),,

m+evine —ve=0 on TI*(t), t>0,
(8) ey —vp=0 on Xf, t>0,
(9) ‘)’)(3’3,0) = "70(17)7 'U(xa'% 0) = 'U(J(xvy)7
where

Q(t) = {(z,y) e R*; ebz) <y < 1 +en(z,t)},
re(t) = {(z,y) e R*; y=1+en(z,1)},
5 = {(z,y) € R*; y = eb(2) },



and y is a non-dimensional parameter called the Bond number and defined by

- g
H= pgh?

The function b and the initial data 9, and v may depend on €.

According to [5], we reformulate the initial value problem (6)—(9) as a problem on the
free surface. Put
u(z,t) = v(z, 1 +enl,1),1),
which is the boundary value of the velocity on the free surface. Then, we see that the
unknowns 1 and u = (u1, us) are governed by the equations

Une + T + EUIU1s + €7 Uzt + EULURe) = en((1+%12) %) .

(10) Nt + eurny — U2 = 0,

up = K(n,b,e)uy  for ¢>0,

(11) n="ng, U= Uo at t=0.

This is the initial value problem that we are going to investigate in this communica-
tion. The Dirichlet-to-Dirichlet map K = K (n,b,¢€) for the Cauchy-Riemann equations
appearing in (10) can be written explicitly in terms of integral operators as

1 -1
—_ _5“1/2 -
K=—¢ (2 Bg) Bi,
where B
By = Ag + (6¥2 At — As)( FAs+ 53/2A4b’> Ar,
-1
= Ay — (32 AsY — As) (5 + As+ 53/2A4b’) As.

Here, A1, ... ,As are integral operators, which map real valued functions to real valued

ones, and satisfy the relations

( (At ida)f(o) = Sis D)@ + o [ log(l pics L Z(”’“) 2 wa,

(s + i) f(@) = Slisen DI @) + o | log(1 4 e “) ble >) 2 yay,

—- T
(As + 14a) (&) = 5o~ 1P (=1 + i(isgn.D)) /(@)

J} _1_ 532 (y) (55 t) f

(A7 +1ids) f(z) = %e—elﬁwi (1 +i(isgn D)) f(z)

32 t) — b(:c)>

1
| +_2_7_r_i Rlog(l-ma ——_——_x+zsl/2 —(y)dy.




By using this expression we can expand the operator K in terms of (n,b) as

N1

K=Y Ki+t Ko,

k=0

where the operator K}, is homogeneous of degree k in (1,b). Particularly, we have

Ko = —~ Y% tanh (/2 D),

(12) K, = —¢(n +itanh(e"/2D)n i tanh(e'/2D)) (iD)
+ esech (Y2 D) (iD)bsech (£7/2D).

Remark 1. Under suitable assumptions on n and b, for each positive € the operator Ky
possesses a smoothing property and we do not need the expression of K1 when we fix .
However, in order to get uniform estimates of the solution for the initial value problem
(10) and (11) with respect to € the above explicit formula for K, plays an important role.

For the remainder term K, we have the following lemma.

Lemma 1. Let m, mo, and n be positive integers satisfying m,me 2> 2 and n+m 2
me. Put my = max{m,mg — 1} and mo = max{m,mo} + 1. There exists constants
C > 0 and & > 0 such that for any n € H™, b € W™, and ¢ € (0,1] satisfying
e(nllmy + [0llwmae) < 61 we have

[ K llm < Ce™ =02 (e(|7]lmy + [Bllwmacs))" [ £ o

Remark 2. This estimate says that K, has a smoothing property, which is very impor-
tant to the existence theory for the initial value problem (10) and (11). But, if we use the
smoothing property, then we lose a power of £ and we shall face a difficulty when we try
to get uniform estimates with respect to &. However, taking n sufficiently large, we gain
a power of €. For our problem, it is sufficient to expand the operator K up to n = 2.

Remark 3. By virtue of Taylor's formula we have tanhz = z — 32° + O(2°) and
sechz = 1+ O(z?) so that (12) implies

_ %(@ D)+ 0(e?), K= —en(iD) + (iD)b+ O(?).

Ko = —(iD)
Since Ky = O(e?), we obtain

K = —(1+en)(iD) + (iD)b ~ %(mﬁ 1+ O(eY).

Here, we should note that the remainder term O(e?) contains high order derivatives. This
is one of the reason why we require much differentiability on the data.



3 Formal asymptotic analysis and main results

In this section we begin to study formally an asymptotic behavior of the solution (n®,u)
to the initial value problem (10) and (11) when € tends to 0 and derive coupled KdV like
equations, whose solution approximates (n°,u°) in a suitable sense. Then, we state our
main results.

It follows from the first equation in (10) that
Utt + M + EUIUI — smm = O(e).
By the third and the fourth equations in (6) we have
oy = —Vls, UVagy = —EVaze; Voyyy = EVlmam,  Vayywy = € Vausoz-
These relations and Taylor’s formula imply that

’Uz(l‘,yo,t) = ’1)2<:r,y1,t) + (yl - yﬂ)’l)lm(x:yht)
£ €
—§(y1 - yo)2?)2mm(x, yl,t) - E(?}l - yo)3v1m(a:, yl,i)
£2

1
+'6—(y1 - y0>4 / V2zzax (1', Syo + (1 - S)’g/l,t> ds.
0]

Putting 1 = 1 + en(z, ) and 1o = €b(z) in the above equation and using the relations

k k
2 ) = S o 1ol 0,6+ 06 for k=123,

we obtain

uo(z,t) = eb(z)vifx,eb(x),t) — (1+e(nlz,t) - b(z)))viz(z, 1 + enlz, 1), t)

g 1>
+§u2mx(x7t> + "éulfvmz(xa t) + O(€2>7

where we used (8) the boundary condition on the bottom. Similarly, we get
14en(z,t)

ur(z,t) = vi(x,eb(x),t)%/ v2q(Z, Y, 1)dy
eb{x)

= v (z,eb(z),t) + O(e)

and

ulm(xat) = Uiz (.’23, 1+ 8’7(37> t)a t) + 62?7;,,(56,12)‘02:3(33‘, 1+ 577(17> t)v t)
= vlm(:c, 1+ sn(x,t),t) + O(e%).

These three relations yield that

£
Uy = —(1 + En)ulm + 5(bu1)m + %’U'Zx:r + gul”c'mz + 0(52)-



Particularly, we have ugz = —u1,+O(€). Putting this into the right hand side of the above
relation we obtain

€
(13) Ug = —(1 + 5?7)11.1:,; + E(bul)m - EUM:M + 0(52),

which is exactly the same formula as that in Remark 3. This together with the second
equation in (10) implies that

€
m + e + £(( — blua) + Utsas = O(e?).
To summarize, we have derived the partial differential equations
Ure + T + EULUL — EWTTnas = O(€7),

(14)

£
e+t + (0 = D)u ), + FUiawe = O(e?),

which approximate the equations in (10) up to order O(e?).
Now, let us consider the limiting case &€ = 0. Then, the equations in (14) become

Uit + Nz = 0:
Nt + U1y = 0.

Under the initial condition (11) this system can be easily solved and the solution has the

u{z,t) \ [ e —t)— oz +1)
nz,t) |\ almz—t)+ag(z+t) )’

where the functions o and as are determined from the initial data no and ue by

r(e) = £ (m(a) +uo(a)),  aa(a) = 5(m() — (@)

form

For the case 0 < € <« 1 we can show that under suitable assumptions on the data the
initial value problem (10) and (11) has a unique solution (n,u) = (n°,u°) on some time
interval and that the solution satisfies

15) ( s (z, t) ) N ( ai(z — t) — gz + 1) )

n°(z,t) ar{z —t) + alz +1)
in an appropriate sense. Therefore, the dynamics of the free surface is approximately as
follows: the free surface divides into two wave packets, one moving to the right and the
other to the left with the same speed 1 without changing their shapes. Here we should
note that the approximation (15) is valid only for the time interval 0 < ¢ < O(1). Roughly
speaking, this means that the dynamics is only translation for such a time interval.

In order to study the dynamics for a long time interval 0 < ¢ < O(1/e) we have to take
account of dynamics of the shapes of the two wave packets. Since the dynamics is very



slow, it is convenient to use a fast time scale 7 = et in order to make the dynamics to
be visible. It is natural to expect that the shapes of the two wave packets shall change
in this time scale 7 so that the functions oi(z) and az(z), which describe the shapes of
the wave packets in moving coordinates, should be replaced by the functions o (z,7) and
az(z, 7). These considerations lead the ansatz

wi(z,t) = oz — t,et) — on(x + t,6t) + e(fi(z — t,et) — folx + t,et)) + iz, 1),
n(z,t) = on(x — t,6t) + cn(z + t,6t) + ea(2, t).

Putting these into (14) we obtain

(017 + 01015 — PO1zer) — (Q2r — Qo024 + [Ol2zas)

— (@102)s — Bz — Poa + b1t + 2o = O(e)

and

1 A 1
(Oll-r + 20010015 + -3'011.mx) + (a’z«r — 2o, — '5032:1::53:)

— (blon — @), + Bz — faz + P2t + 1z = Ofe),

which are equivalent to the equations

1 1
201 + 3oyt + (T‘ - ﬂ) UXigze — (2162m + Qatvor + ('— + ff)) af2:cm:c>

3 3
— (a1a2 -+ b(t’ll — Ct’g))x -+ (le + 952)1; + (51 + fEQ)w = O(€>

and

2007 — 30 Cipye — (% - ﬂv) Ologer + (2/61'3 + a1 + (':1% + /—1') al:ﬂzz)
+ (041052 - b(al - sz))z - ((]31 - QEZ)t + (651 - C}S?)r - O(é‘)

Here, we define the corrective terms f = (B4, B2) and é = (¢1,H2) by

e, 7) = —3one )7 = 3 (5 4 1) areslar ),
(16)
bl ) = —y0a(z, 7V = 5 (5 + 1) oam@, 7)
and
( d—)l(x:t) + éz(&’},t) 1 .
= b(z)ou(x — t,6t) — sb(z)aa(x +1,6t) + “on(z — t,et)an(z + 1, 6t),
(17) 2 2

&l(xat) - 9?’2(9:71’) 1
L = %b(m)al(x —t,et) — b(z)as(x +t,et) — 5011(33 — t,et)as(x + ¢, ).




10

Then, the above equations become

(2@1T + 3oy014 + (é— - ;f,) amm) (r —t,et)
— (b(z) + cz(z + t,6t))ar(z — t,€t) + %b'(m)ag(:c +1,et) = O(e)
and
(2@% — 3000 — (% ~ u) a2mmm) (x +t,et)
+ (b(@) + oz — ,68) )onala + £, et) - %b’(x)ozl(x _t.et) = O(e).

Neglecting the terms O(¢) in the above equations we arrive at the following coupled KdV
like equations

1
2001, + 3c0n, + (g - ;.l,) Qlzrx

1
—((Trjeb) + (Tarjecra)) 0t + 5 (Trjeb) (Teorjec2) = 0,
(18) < :
2000 — 3QoQiny — (— - M) A2zer
3 1
A+ (Treb) + (Tezreon))0e = 5 (Tor/b ) (Tozepstn) = 0,

\

where T is the translation operator with respect to the spatial variable defined by
(Tea)(z,7) = alz + 0,7). If the functions o1, ag, and b decay at infinity, then we
can expect that the coupling terms in the above equations converge to zero when ¢ tends
to zero and that the equations in (18) are reduced to the KdV equation (in the case u = %
they degenerate into the Burgers equation)

1
201, + 3aag + (— - /,I,) Klzze = 0:

1
209, — 3002 — (g - u) Qozrs = 0.

It is natural to specify the initial conditions in the form

1 1
(20) ay = 5(770 +ug), Qg= 5(770 — Up) at =0

Now, we are ready to give our main theorems.

Theorem 1. Let u and M be positive constants and m an integer such that m > 4. There
exist positive constants T, C, and €0 such that the following holds. For any € € (0, &0},
ny, tio € H™ and b € W2 saiisfying

Il (10, w0} lma1 -+ Bllwrmeses < M,



the initial value problem (10) and (11) has a unique solution (n,u) = (F,u°) on the time
interval [0,T/¢€] such that

(1) { 7 € C(0,T/el; H™?) N CH(0, T/els H™),

uf € C([0,T/el; H™ N CH{[0, T/e]; H™).

Moreover, the solution satisfies
Osstlé%a(![n (t) — (o5 (- — t,et) + a5 +1, st))”m+2
+ Hui(t} — (f(- —t,et) — o( + t,st))“mH) < (e,

where of = (af, 0f) is a unique solution of the initial value problem for coupled KdV like
equations (18) and (20).

Theorem 2. Let u, T, and M be positive constants and m an integer such that u # 1/3
and m > 4. There exist positive constants C and & such that the following holds. For
any € € (0,€0], No,uo € ™M N H™*? and b € Wmtoee | Hmt22 gqtisfying

(70, o) 11 + 11 (70, U lmt 32 + [ollwmssoo + [Bllmiz2 < M,

the initial value problem (10) and (11) has o unigue solution (n,u) = (7°,u") on the time
interval [0, T /€] satisfying (21) and

s (0= (eal =) + e+ 60

T s (t) — (en( — tyet) = ool + ety ) < O,

where a = (a1, @) is a unique solution of the initial value problem for the KdV equation
(19) and (20).

Theorem 3. Let p, T, and M be positive constants and m an integer such that p # 1/3
and m > 4. There exist positive constants C and o such that the following holds. For
any € € (0,€0], o, uo € H™ ! and b € Wmt9e satisfying

(| (70, o) mar11 + &7 ([[Dllwmso. + 170 — Uollms11) £ M

or
(170, o) [l 11 + €7 (Ibllwmo.co + [0 + tollman) < M,
the initial value problem (10) and (11) has a unique solution (n,u) = (n°,u’) on the time

interval [0, T /€] satisfying (21) and

sup (Hﬁs(t) — (- = t,68) g+ fluf (1) — a2 — ﬁﬁﬂ”mﬂ) < Ce
0<t<T /e

11



12

or
sup (°(t) = aal- + t,e0)msa+ i(6) +0a( + 6,0l ) < C,

0<t<T /e
respectively, where a = (a1, az) is a unique solution of the initial value problem for the
KdV equation (19) and (20).

Remark 4. Concerning the initial value problem (18) and (20), we merely know a local
existence theorem in time of solution, so that in Theorem 1 the time T may be small.
On the contrary, the initial value problem for the KdV equation (19) and (20) has a
global solution in time, so that in Theorems 2 and 3 we can take T as an arbitrarily large
constant.

Remark 5. Theorem 2 is a refined version of the claim in Schneider and Wayne [20],
where they did not work in the Boussinesq variables but studied the equations in the case
e = 1. Instead, they assumed that the initial data have the forms 7no(z) = e, (e /%)
and uo(x) = e®Pa(e/?x). Note that the solutions (n,u) of (10) for general ¢ > 0 are
related to the solutions (7, %) of (10) for € = 1 by the formulas #i(z,t) = en(e*/?z, /%),
U (z, 1) = euy (€¥22,61/%t), and 1ip(x, t) = €3/%ux(e/?2, €1/%t) in the case b = 0. Therefore,
it follows from their estimates that the L*°-norms of the error terms are of order O(e/%)
in the Boussinesq variables, whereas we have O(e). Moreover, their estimates do not yield
any uniform estimates for derivatives of the error terms in those variables.

Remark 6. The conditions |70 + uo|lms11 < Me and {10 — uollmt+11 £ Me in Theorem
3 imply that there exists a positive constant C; depending only on u, m, M, and T
such that the solution a = (@, ) of (19) and (20) satisfy [o1(7)|lmsnn < Ci€ and
oo () lms11 < Cie for 0 < 7 < T and 0 < € < 1, respectively. Therefore, the conditions
in Theorem 3 assure that the wave is approximately one directional up to order O(g). The
global existence theorem of the initial value problem for the KdV equation was established,
for example, by Tsutsumi and Mukasa [25] and Bona and Smith {2] in Sobolev spaces of
integer order and by Saut and Temam [18] and Bona and Scott [1] in Sobolev spaces of
fractional order. See also Temaimn [24].

4 Reduction to a quasi-linear system

In this section we reduce the system (10) to a quasi-linear system of equations, which
leads long time (0 < t € O(1/¢)) existence of the solution. Throughout this and next
sections we assume that (7, u) is a solution of the system (10) and sufficiently smooth.

Let o = (a1, o) be the solution of the initial value problem for coupled KdV like
equations (18) and (20) and define 8 = (B1,/:) and ¢ = (¢1,¢) by (16) and (17),



respectively. We define an approximate solution ¢ = (¢1, ¢2) by
{ b1(2,8) = an(z — tyt) — aglo -+ t,6t) + (Bl — 1) — Bala + 1,60)) + eda(2,2),
do(z,t) = on(z — t,t) + aa(a + t, €t) + eda(z, t)
and remainder functions 7 and @ by

(22) n(z,t) = ¢o(a,t) + €z, t),
uy(z,t) = ¢1(x,t) + eta(x, t),

and put ¢ = 7, Then, our task is to derive uniform estimates of these remainder functions
7 and @; with respect to small ¢ for long time interval 0 <1 < O(1/¢). To this end, we
derive quasi-linear equations for these remainder functions. The quasi-linear equations
are of the forms

( Uy + 2euU1 Uity + g2 (’U? + 3[1;(1 4 53(;2)_5/2@5)'&1931

(23) X — €24 Ly (1, D) iraraz + £L1(7, b)lige = €ha,
Cut + 21 Geo — (1 + £3¢%) 2 Kolowe + Kola
L - EQMLI("?: b)C_xmm +eL1(n, b)Exw = chag,
and

| @i + T = €hs,
(24) { 1t T7 3

Tl + T = €ha,
where L;(n,b) is a linear operator defined by
Li(n,b)f = — (n +itanh(e'*D)ni tanh(e"/2D)) f + sech (¢"/*D)bsech (eY2D)f.
For remainder terms A1, ... , hy, we have the following lemma.

Lemma 2. Let My, My > 0, m be an integer such that m > 4, and b € Wmt9e  There
exist positive constants €1 and Cy such that if lod ) It € My for 0 £ 7 < T and the
solution (n,u) of (10) satisfies

{ 17 lmaz + 17 ) It + s @ llmar + Jure(E)m < Mo,
| Koty () lmsr + [ Korse(t) lm £ Mo

for0<t<T/eand 0 <e < ey, then we have
a2, + ha @12, + a7 + 1R < Co (1 + £(1))
for0 <t < T/e and 0 < e < €1, where

@) = 1Tz + 17 Vs + 18O s + 172D

13
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In view of the quasi-linear equations in (23) we consider the linear equation

(25) Usy + EDP1ULe + EP2Uzy — 0K 0lUgge + Y02 Koz
+ Kotz + €2L1(Q1, bl)u:cmxo: + ELI(C]% bz)ﬂ-m = I+ 5F2>

where ¢ > 0 is a parameter, a, p1, P2, @1, @2, b1, b2, F1, and F, are given functions of (z,1)
and may depend on ¢, and v is a real constant.

Lemma 3. Let My >0, r > 1, and m be an integer such that m > 4. There exist positive
constant €3 and Co such that if

e aa (@) fm + | (1), p2(8), q1(2), q2(8) Yl + [| (01(2), b2(2)) oo < Ms,
e ae(®)lls + Nlgue(®)s + flaze() 11 + | (P2 (t), bre(t), b2e(t) )| oo < M,
Mt <alz,t) < M; for (z,t) € Rx[0,T],

and u € CI([0,T]; H™3%/2) 5 =0,1,2, is a solution of (25), then we have

(26)  Em(t) <Gy (eC”tEm(O) + fo e D (1 + 1) Fi(7) | + €|lF2(T)HidT>

for 0 <t < T and 0 < € < &9, where

Bo(t) = () + “\/Dtanh(el/zD)u(t)H;+ H\/&.l/zD:s anth (€12 D)u(t)||.

Remark 7. By the inequality

=l

<+Vztanhz <l|z| for z€R,
T V !l

it holds that

€2 < 4{e7 ¢ tanh(e7/3¢) + €1/7¢° tanh(e1/28)),
612 tanh(e1/2¢) < €2, /2% tanh(eV/%€) < e&* for £€R,

which yields the following relations for the energy function E,.(t)

e ()17 + 47 ua ()17 < Bm(t) < fua()i7 + 16 lmia:

5 Outline of the proof

Since a local existence theorem in time of solution for the initial value problem (10)
and (11) for fixed ¢ > 0 was already given in [5], it is sufficient to derive a priori estimates
of the solution (7%, %) for long time interval 0 < t < O(1/g).
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First, we prove Theorem 1. By standard energy method and appropriate approximation
argument of the system it is not difficult to show that under the assumption of Theorem 1
there exist constants 7, M; > 0, which depend only on , m, and M, such that the initial
value problem (18) and (20) has a unique solution o = o € C([0, T'; H™H1 satisfying

o (P minn £ My for 0 7<T, e>0.

Then, there exists a constant My > 0 such that the approximate solution ¢ = ¢° defined
in section 4 satisfies

15 @) |20 + 1G5 D) I2s < ME for 05t <T/e, 0<e< 1

Now, we assumne that

(27) E() = 17O 22 + 1T s + 185 o0 + 08 < N

for 0 <t < T/e and 0 < & < g9, where the constants N; and g will be determined later.
Then, by (22) we have

{ 172 () 202 + 05y + IS @O 2nss + IuR@5 < (2M0)?,
1 Kous (t) 3 + [ Kout (D117 < (2Ma)°

for 0 <t < T/eand 0 < & < g3, if we take €5 € (0,1} so small that e3 < & and
g3 N7 < M,. Thanks of these estimates and Lemma 2 we see that there exist constants
C, > 0 independent of Ny and e; € (0, €3] such that

a2, + B2 @12, + 1A + [RaB))* < CL(1+E(1))

for 0 <t < T/e and 0 < € < e1. By (22) and (24) there exists a constants Cz > 0
independent of N; such that

17 ON2 s + 15 (0) [20e + 17 (O3 + 183 (0) i < C

for 0 < £ < ¢;. Since ¢ and @ satisfy (23), by Lemma 3 and Remark 7 it holds that there
exist constant Cy > 0 independent of Ni and &2 € (0, €3] such that

(28) (G (1), G0, 5ult), wiat)) I
< Cpe®((G(0), 85, (0)) 17 + 1 (C°(0), B(0)) se)

+ Che fo t eCo=t=7) (|| By (1) |2, + lha(7) |12, dr

t
S 0203602€t + 02015/ eGQE(t—T) (1 + (g}(TDdT

0
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for 0 <t < T/e and 0 < € < €5. Furthermore, 77 and % satisly also (24) so that we have
t
29) (T @, B < e {7°(0), w5 @) +¢ / e (b (7)? + liha (1)) dr
0

t
< Cae + Cls/ e (14 &(r))dr

and that
(30} 17O < 2as, @) + 26| ha )]
< 2EE, ) + 2Cie(1 + £(1)

for 0 <t < T/e and 0 < € £ g2, Summarizing the above estimates we see that there
exists a constant Cy depending only on u, m, and M such that

i
£(t) < Cye% 4 Cye / O (1 4 &(1))dr
o}

for 0 <t < T/e and 0 < & < &g, by taking &g € (0, €2] so small that 4Cig0 < 1. This and
Gronwall’s inequality imply that

E) < (Co+1)e*T for 0<t<T/e, 0<e <eo.

Therefore, by setting Ny = (Cy + 1)/2e%7T we see that (27) holds for 0 < ¢t < T/e and
0 < € < gg. The proof of Theorem 1 is complete.

We proceed to prove Theorem 2. One of strategies for the proof is to compare the
solution of (18) and (20) and that of (19) and (20). However, we do not know whether
the solution of (18) and (20) exists globally in time or not, so that we can not take the
time T arbitrarily large if we use the solution. In order to take T as an arbitrarily large
time, we use the global existence theorem, for example, in [1, 2, 18, 24] and we should
not use the solution of (18). Therefore, we have to modify the quasi-linearization given
in section 4.

Let o = (at, a?) be the solution of the initial value problem for the KdV equation (19)
and (20) and define 3 = (61, B2) by (16) as before. We define an approximate solution
¢ = (¢1,92) by

{ ¢1(z,1) = a1z — t,et) — aa(z +t,et) + e(Bi(z — t,et) — Bolz + 1, 61)),
oz, t) = a1 (z — t,et) + ooz + t, &t),

and remainder functions j and @ by (22), and put { = ;. Then, in place of (23) and
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(24) we obtain

( Ty + 25Uslaee + 62 (0 + 3u(L + €33 %G ) e
—ep((1+€3¢?) ™ Kolliar) , + Koo

(31) < - 52PLL1(7’}7 b)ﬂlmmmm + 5L1(77, b)ﬂlrm = §1 + 672,1,
(,,_'tt + 25’!1'1&:1: - 5/1'(1 + 53(:2)"3/2-[{053511 + I{Ofm
\ — e2uL1(n, ) Cawrn + €L1(n, b)Yz = G2 + eha

and

e + fie = Js + €hs,
(32) _lt _77 533 ~3

it + U1e = G4 + Eha,
respectively. Here, hy,... , hg satisfy the same estimate in Lemma 2 as hy, ... ,hg. For
G1,..- 04, we have the following lemma.

Lemma 4. Let m be a positive integer. There exists a positive constant C such that

152 (&)l 4 [152(8) o + G301} + 7 ()]
< C(1+ 072 (Jalet)lmrsz + [blmizz2) alet) Imisz

fort>0ande > 0.

Under the assumption of Theorem 2, there exists a constant M; > 0 such that the
initial value problem for the KdV equation (19) and (20) has a unique solution o €
c([o, T]; ™1 n H™+32) satisfying

la()lmen + et myae < My for 0<7<T, >0,
so that by Lemma 4 we have
15 @12 + g2 + 1531 + @O < G +6™

for 0 < t < T'/e and € > 0. Now, we suppose (27) as before. In this case, in place of {28),
(29), and (30) we obtain

(G (1), Go0), 35, (1), 35, (D) I
< Coe (1| (G(0), 85(0)) I + 11 (€°(0), B (0)) o)
+Cy /O et (1 4+ 7 (|5 () I+ 1527 [50) + € (IRa (D) + Wha(r) ) 7

t
< 020360251: + 0201 / eczs(t""'){(l + 7')_2 + 5(1 -+ (5’(7)) }dT,

0
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II?
(7°(0), B () I
+/ewwwqu+¢VWQum%H@hmﬂ+sm%vm“HmAﬂWN%

0

t
< Cse!t 4 Gy / eI (14 1)+ e(1 4 &(7)) }dr,
4]

and

35, (1))2 + 3| Ga ()| + 3%l ha(8) ]

ImmI? <
< 3llas, @ +3Ci{(1+ ) +e(1+60)},

respectively. Summarizing the above estimates we see that
t
E(t) < Cge + 04/ ec"“:(t“’){(l +7)72+ 5(1 + é?(r)) }dT
0

t
< 2049 + 504/ ec“‘s(t_T)(l + &(7))dr
0

for 0 <t < T/e and 0 < € < gy. This and Gronwall’s inequality imply that
&) < (20, + 1T for 0<t<Tfe, 0<e¢ < e

Therefore, by setting Ny = (2Cy + 1)V/2e%T we see that (27) holds for 0 < ¢ < T'/e and
0 < € < 9. The proof of Theorem 2 is complete.

It remains to prove Theorem 3. As explained in Remark 6, under the assumption of
Theorem 3 the solution o = (ay,a9) of (19) and (20) satisfies {|a1(7)||m+11 < Ce or
laz (7) |ma11 € Cé, so that we have

12 () o + 1528 m + [55E) | + 13 B < Ce

for 0 <t < T/e and € > 0. Therefore, we can show Theorem 3 in the same way as the
proof of Theorem 1.

The details will be published elsewhere.
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