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Rotating Navier-Stokes Equations with Initial Data
Nondecreasing at Infinity
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Abstract

This is a supplementary note of the paper {12} by Yoshikazu Giga, Alex Mahalov, Shin’ya
Matsui and me. In [12] local-in-time unique existence of strong solutions was obtained for
the rotating Navier-Stokes equations in R3 for a class of initial data that contains some
nondecreasing functions at space infinity. The rotating Navier-Stokes equations has the
Coriolis term of the form es x u, where eg denotes the vertical unit vector. The Coriolis
solution operator is estimated uniformly in the Coriolis parameter @ € R, using its skew-
symmetry. Then it is shown that local existence time estimate for the rotating Navier-Stokes
equations is uniform in @ € R.

1 Introduction

We consider the rotating Navier-Stokes equations in R:

ug — Au+ (u, Viu+ Vp = —Qez X u forzeR3, 0<t<T,
(RNS) divu=20 forz €RS, 0<t<T,
Ulimo = Uo for z € R3,

where u = u(z,t) = (ul(z,1),u?(z,t),u3(2,1)) is the unknown velocity vector field and p =
p(z,1) is the unknown scalar pressure field, while up = u(z) = (uh(x), ud(z), uj(z)) is the given
initial velocity vector field. Besides, T >0, 1 € Ris a scalar fixed constant, es = (0,0, 1), and
x represents the outer product, hence, —{e3 X u = (Qu?, —Qu?, 0).

The equations (RNS) are the Navier-Stokes equations with the term —es X u. The constant
Q is called the Coliolis parameter and the term —Qes X u is called the Coliolis term, which
represents the Coliolis force when the fluid is rotating with angular velocity €2 /2 around x3-axis.
The Coliolis term has an another expression:

—Qes x u = —QJu,

with the skew-symmetric matrix J defined by

0 -1 0
J=11 0 0
0 0 O

For (RNS) in the case of periodic and cylindrical domains, Babin-Mahalov-Nicolaenko [3] and
Mahalov-Nicolaenko [19] proved local existence and uniqueness of solutions uniformly in the
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Coriolis parameter €. Moreover, they proved global in time regularity of solutions when €1 is
sufficiently large. The method of proving global regularity for large fixed €2 is based on the
analysis of fast singular oscillating limits (singular limit { — +o0), nonlinear averaging and
cancellation of oscillations in the nonlinear interactions for the vorticity field. It uses harmonic
analysis tools of lemmas on restricted convolutions and Littlewood-Paley dyadic decomposition
to prove global regularity of the limit resonant three-dimensional Navier-Stokes equations which
holds without any restriction on the size of initial data and strong convergence theorems for
large Q.

Our aim is to prove local existence with its existence time estimate uniformly in € € R for
nondecreasing initial data ug at space inifinity. For this purpose we transpose the Coriolis term
—Qez x u = —QJu to rewrite (RNS) in the form

u — Au+ QJu+ (u, V)u+ Vp=20 forz eR3 0<t<T,
divu=0 forzeR% 0<t<T,
U0 = Uo for z € R®,

so that the Coliolis term is dealt with the diffusion term Awu as a linear problem. Then we
multiply the Helmholtz operator P = (&;; + RiR;)ij, 1 <1,j < 3 formally to get the abstract
ordinary differential equation

(A) us — A+ QPJu + Py, Viu =0 fort > 0.

Here, 4; ; is the Kronecker delta and R; is the scalar Riesz operator whose symbol is i&; /1€l. To
get (A) we used the fact that

Pu =u for divergence free vector field u (1.1)

and that PA = AP.
However, instead of (A), we consider the following equation:

(ABS) ur — Au+ QPIJPu + P, Viu =0  fort >0,

which is equivalent to (A) because PJu = PJPu if divu = 0 by (1.1).

The corresponding integral equation to (ABS) is written as:
t
(0 u(t) = exp(—A(Q)t)ug —/ exp(—A(Q)(t — s))Pdiviu®u)(s) ds fort >0,
0

where A(Q) = —A + QPJP. Hence, exp(—A(f2)t), the exponential of the operator —A(Q)1, is
represented by
exp(—A(Q)t) = exp(tA) exp(—OQPIP?) (1.2)

and can be called the 'Heat-+Coliolis’ solution operator.

In the case © = 0, that is, on the Navier-Stokes equations (NS} without the Coriolis term,
unique local existence of mild solution was proved if initial data ug belongs to Ly, the space of
bounded solenoidal functions, in Cannon-Knightly [6], Cannone [7] and Giga-Inui-Matsui [11].



Of cource, the space L contains nondecreasing functions. There are several related works for
L™ initial data [7],[18]. The method in {11] is to use estimate for the derivative of the heat kernel
in the Hardy space H! obtained by Carpio [8]. For (NS) with initial data L, Giga-Matsui-
Sawada [13] obtained unique global existence of strong solution u € LY in the 2-dimensional
case and J. Kato [17] proved uniqueness of weak solution (u, Vp) when u € L and p € BMO
in the n-dimensional case with n > 2 (see also {14]). Here, BMO is the space of functions of
bounded mean oscillations.

Tn the case 2 £ 0, that is, rotating case, the crucial step is to estimate the Corlolis solution op-

erator exp(—QPJt) that comes from the Coriolis term PJu = (=RyR1u® + Ry Ryu?, ~RyRyu? +
RoRsu!, —RsRiu® + RaRpu'). The difficulty is that the term contains the Riesz operator R;
which is not bounded in L. Moreover, Carpio’s estimate does not apply to the term since it
has no derivatives.

Hicber-Sawada [15] and Sawada [20] constructed a local solution for (RNS) with generalized
Corilolis term Mu with 3 x 3 matrix M whose trace is zero for the solenoidal initial data
up € BY, ;. Here, BY, ; is a homogeneous Besov space including various periodic and almost
periodic functions, that do not decay at space infinity. The space Bgo’l, which is a subspace of
L%, was first used to solve Boussinesq equations by Sawada-Taniuchi [21] (see Taniuchi [22] for
recent improvement). The advantage of the Besov space is boundedness of the Riesz operator
in it. They are successful in estimating the Coriolis term in the Besov space.

However, their existence time estimate depends on 0, since the equations (RNS) were trans-
formed to the integral equation

u(t) = exp(tA)ug — ]t exp((t — s)A)P{div(u @ u)(s) + Qes x u(s)} ds fort>0
0

to regard the Coriolis term as a perturbation. In this paper, we transformed (RNS) into (D to
estimate the linear “Heat+Coriolis” term uniformly in the Coriolis parameter by using skew-
symmetric structure of the operator PJP. That is the reason that we deal rather the equation
(ABS) instead of (A). We estimate the Coliolis solution operator in the form exp(—QPJP¢) as
in (1.2) instead of the form exp(—QPJ4). Smallness of the Coriolis term is not assumed. This
is a major difference between our and their approach.

In the integral equation (I), the unboundedness problem in L* arises again in the linear term.
Since the Coriolis solution operator exp(—QPJP1) contains the Riesz transforms, one cannot
expect its boundedness in L. There was still a possibility that the “Heat+Coriolis” operator
exp(tA) exp(—QPJIPt) is bounded in L*, even if exp(—QPJPt) is unbounded in L*°. Unfor-
tunately, our exact calculation of the symbol arrived at conclusion that the solution operator is
not bounded in L™ (see [[12] ; Appendix AJ).

In this situation we are forced to restrict initial data to a subspace of L¥. To introduce our
new subspace we split initial data into 2D3C (2 dimensional 3 components) vector field part and
z3—dependent part by taking vertical average.
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Definition 1.1. (Vertical averaging)
Let u € LS (R®). We say that u admits vertical averaging if

S T -
Jm o . u(z1, €2, 23)dzs = T(T1, T2)
exists almost everywhere. The vector field T{w1, x2) is called wertical average of u(z1, T2,%3).

Definition 1.2. (Space for initial data) We define a subspace of Lg® of the form
L, = LT, (R®) = {u € L7 (R%); u admits vertical averaging and u™ € By, 1 }.
Here Bgo)l is a homogeneous Besov space (see subsection 3.2 on details of its definition and
properties). The space Lgf’a(R3) is a Banach space with the norm
Il 25, = Il eimey + sl o sy
Now we introduce theorems obtained in [12].

Theorem 1.1. (Existence and uniqueness of mild solution u)
Suppose that ug € Lgf’a(Rg’). Then
(1) There exist To > 0 independent of Q and a unique solution u = u(t) of (I) such that

u € C(16, To}; L) N Cu([0, To}; Lg")  for any 6 > 0. (1.3)

(2) The solution u satisfies

sup ]]tl/ZVu.HLgo < 00 and VueC{sT); LY) foranyd > 0. (1.4)
t€(0,To) :

Remark 1.1. (i) For a lower estimate for Tp > 0 we get
To 2 C/lluollies,

with C independent of ).
(it} If in addition we assume that @y € BUC, then the solution v € C([0,To]; BUC). Here,
BUC denotes the space of all bounded uniformly continuous functions in R3.
(iii) Let ug € L3, (R®) be uniformly continuous. Then the solution u of (I) obtained in Theorem
1.1 satisfies

1gfgr1/2nw,(t)nwma) =0.

Theorem 1.2. {Existence of classical solution u)

Suppose that uo € L3, (R%). Let u = u(t) be a solution of (I) satisfying (1.3) and (1.4). If we
set

3 ] Ry (Rz'ul - Rluz)
Vo(t) =V Z R;Rewdur(t) — Q| Ry (Rou! — Ryu?) fort >0, (1.5)
Fk=1 R3 (Rpu! — Rju?)

then the pair (u, V) is a classical solution of (RNS).
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Such a solution (satisfying (1.3)-(1.5)) is unique. In fact a stronger version is available.

Theorem 1.3. (Uniqueness of classical solution u)
Suppose that up € LT, (R?). Let

we L2((0,T) x B),  p € L,(0,T); BMO)

be a solution of (RNS) in a distributional sense for some T > 0. Then the pair (u, Vp) is unique.
Furthermore, the relation (1.5) holds.

Remark 1.2. (i) The space Lg%, hasa topological direct sum decomposition of the form Ly, =
W @ B°, where

W= {f e L®; 8f/0x3 =0 in distributional sense RS for i = 1,2,3},
B ={fe Bl NI Flz,22) =0 ae (21,22) € R?}.

(i) Existence of vertical average of initial data is not needed for the thorems, but the following
representation is needed:
Uo = ¢(.’E]_,CE2) ‘[‘1/1(581,1'2,%3) (16)

with ¢ € W and ¢ € B°, that is, ug belongs to the space W + B° which is larger than
Ly, =W @ B° (see Remark 3.4).

This manuscript is organized as follows. In section 2, 3 and 4, we give a brief sketch of the
~ proof of the theorems for readers’ convenience although it is given in [12]. In section 2 and 3,
we estimate the nonlinear term and the linear term of the integral equation (I), respectively.
In section 4, we introduce Mikhlin-type theorem in the Hardy space and a homogeneous Besov
space, which is crucial for uniform boundedness of the Coriolis solution operator.

In section 5, we show Remark 1.1(ii) and (iii). In [12], detailed proof of Remark 1.1(ii) is not
written and the assertion (iii) is not mentioned.

2 Estimate for nonlinear term

In this section we prepare estimate for the nonlinear term of the equation (I} using an estimate
for derivative of the heat kernel in the Hardy space ‘H? obtained by Carpio.

Lemma 2.1 ([8]). Let Gy = G() be the heat kernel (4mt)~™? exp( _L“?Z) fort > 0. Then there
ezists a constant C > 0 (depending only on space dimension n) that satisfies

IVGellsa@ny < CEH2 fort > 0.

Since it is well known that the dual space of the Hardy space H* is BMO, the space of functions
of bounded mean oscillations, we immediately have

Lemma 2.2. There ezists o constant C > 0 (depending only on space dimensions) that satisfies

1Vet® £l < Ct 3| fllmo  fort >0, f € BMO.
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By the above two lemmas and Corollary 3.1, which will be given later, we get the following
estimtes for the nonlinear term.

Proposition 2.1. {(Estimates for the nonlinear term)
There exists a constant C (independent of Q,t and f) that satisfies

|| exp(~A(Q))PAIV(f ® f)l|z < CT S|}, t>0, and
IV exp(—A QB PAIV(f ® )iz < C V|Vl flizee, >0

for all f € L™ with Vf € L.

Proof. The proof is given in [12](Lemma 4.3) using symbol calculation of the operators, however,
here we give proof again without symbol expression. For the first statement we have

|| exp(—A(Q))PAIVF]| o

< ||V exp(tA)|| Bmo—re= || exp(—QUPIP)|| BMmo— Bmol|Pl|BMo— Brmollf ® fllBMO
< Ct™2||f ® fllBmo

< Ct2|f @ fllze < CEV2| SR

Here, in the second inequality we used Lemma 2.2, Proposition 3.2 and the boundedness of the
operator P in BMO since the Riesz transform is bounded in BMO. In the third inequality we
also used the embedding L® «— BMO. For the second assertion one sees similarly

|V exp(—A(Q)t)PdivE||p

< ||V exp(tA)|| Bro— e || exp(—UPIP)|| Bro—pmol Pl Bro~smolldiv(f & f)llsmo
< G V2div(f @ fllsmo

< CtY2)|div(f @ Pl < CEYV2V fllzee] fllzes -

3 Estimate for linear term

In this section we show boundedness of the solution operator for the linearlized equation for
nondecreasing initial data. By virtue of skew-symmetry of the operator PJP, that we use
instead of PJ, boundedness problem of exp(—QPJPt) is reduced to boundedness of exp(wR3)
for some w € R. By ¢(T") we denote the symbol of a operator T'.

3.1 Poincaré-Sobolev equations

The linealized equations of the Rotating Navier-Stokes equations is called the Poincaré-Sobolev
equations and has the form:

divu =20 forx eR® 0<t<T,

U —Au+QJu+Vp =0 forz €eR% 0<t<T,
(PS)
Ult=o = Ug for z € R3.



Multiplying the Helmholtz operator P, the equations (PS) are transformed into
—Au+QPJu=0  fort>0, Ult=0 = Up- (3.1)
Instead of (3.1), as mentioned in introduction we deal rather
—Au+QPIPu=0 fort > 0, Ult=p = Ug, (3.2

whose solution operator is expressed by (1.2).
Before calculating the symbol of the solution operator exp(—tPJ P), we define the operator
R by

0 _ & £
l€] g{
cR)=REO=| # EO ~% (3.3)
E 1
- @m0

We note that the symbol R(£) is a 3 x 3 skew-symmetric matrix. Since the operator R has the
property

R?= -1  in divergence free vector fields, (3.4)

we call R the vector Riesz operator. Here, I denotes the identity operator.
Simple matrix multiplication and (3.4) give the following expression of the operator PJP.

Lermma 3.1 ([4]). (Symbol of the operator PJP)

(1) We have ﬁ_I .

“H
o(PIP) = & % 0 —% | (= 2ReE). (3.5)

gl g TR
l€] I€f
(2) In particular, in divergence free vector fields
oy _ &3 , 2 _ p2L

o((PIP)*) = ]5‘21( (i |§5)( \§|> ) ie, (PIP)" = Rsl (3.6)

Remark 3.1. The matrix o{PJP) is a 3 x 3 skew-symmetric matrix. This fact is key in the
argument of the subsection 3.3.

By (3.5) and (3.6) we can calculate the symbol of the exponential of the operator PJP defined
by '

exp(— QtPJP) = z( )(PJP)J'
=0

to get
Proposition 3.1 ([4]). (Symbol of the operator exp(—QtPJIP)) There holds

exp(—QUPJIP) = cos( 2ot - sm( 2 QYR(E) fort>0. (3.7)

i€l 13
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3.2 Homogeneous Besov spaces

In order to estimate the linear term exp(tA) exp(—QPJIPt)ug in L™, the difficulty is that the
Coriolis solution operator exp(—QPJPt) contains the Riesz operator that is not bounded in L.
Moreover, Carpio’s estimate does not apply the linear term since it has no derivatives.

It is possible that the "Heat+Coriolis” solution operator is bounded in L3 even if the Coriolis
solution operator is not bounded in L°. However, the calculation of the kernel K(z) (see
Appendix A in [12]), that is, the function K(z), defined by the identity

exp(tA) exp(—QPJPY) f = F~! (e~t16!2 cos(%ﬂt)l _ gtk sin(%m)R(f)) x f=K=xf,
turned out to have the asymptotic behavior
K(z) ~ C‘—:gl—g for large ||

The corresponding integral operator cannot be viewed as a bounded operator in L™ (R?) since
a characteristic function of the outside of a large ball is always mapped to oo by this operator.
In this situation we are forced to restrict initial data to a subspace of LS, in which, the Coriolis
solution operator (in particular, the Riesz transform) is bounded. We follow the idea to use a
homogeneous Besov space Bgo,l, that was first used to solve Boussinesq equations by Sawada-
Taniuchi [21].

Before introducing the homogeneous Besov spaces, we prepare some notations. By S we denote
the class of rapidly decreasing functions. The dual of &, the space of tempered distributions is
denoted by S’. Let {¢;}°_., be the Littlewood-Paley dyadic decomposition satisfying

j=—co

5i(6) = ho(2778) € C(R™), suppdo C {1/2< 6] <2}, 3 H(©) =1 (E#0). (38)

j=—o0

Definition 3.1. (See, e.g. [5] page 146)
The homogeneous Besov space B, ,(R™) for n € N is defined by

By (R™) == {f € Z;[If; By 4ll < o0}

forse R and 1 < p,q < oo, where

(552 ol;» i@ it g <o

j=—00

SUP_oo<i<oo st”qu * [y LP(R™M)] if g =occ.

Here Z' is the topological dual space of the space Z, which is defined by Z = {f € §; D* flo) =
0 for all multi-indices a = (a1, ...,0n)}.

”fHB;,q(R") =

The above definition yields that all polynomials vanish in Bg,q(R"), however, it is well known
that

By (RY) = {f €85 |fllgy gy <ocownd f= ) ¢;xf 8} (3.9)

j=—o0



if s<nfp or (s=n/pandg=1). (3.10)
Since indices of our target space BEO’I(R"‘) satisfy (3.10), the space B;;’q can be regarded as
(3.9). Tt is known that the inclusion B, ;(R™) C BUC(R") and the embedding BY, 1(R?) —
L®(R") — B&,W(R“) hold. For the details and examples one can consult e.g. [20},[21],[22].

3.3 Uniform estimate of the Coriolis solution operator

Tn this subsection we show boundedness of the Coriolis solution operator exp(—%PJP) in
BMOQO and the Besov space Bgo,l defined in the previous subsection uniformly in © € R and
t > 0. For the purpose it is sufficient to show boundedness of the operator of the form exp(wR3)
uniformly in w € R. In fact, noting that cosz = (exp(iz) + exp(—ixz))}/2, we see

o(cos(%ﬂt)) = U(COS(—ii%Qt)) = cos(—iRaflt) = %{exp(Qth) + exp(—$2tR3)}
and similarly
o(sin(%ﬂt)) = %{exp(Qth) — exp(—$2tR3)}.

Besides, the vector Riesz operator R appeared in the symbol (3.7) of exp(—PJIP) is bounded
in BY,, and BMO.

The boundedness in the one space Bgolz is sufficient to get unique local existence, however, we
 could obtain boundedness in Bgo,q for all 1 < g € o as follows;

Proposition 3.2. (Uniform boundedness of the operator exp(wR;)}
Let X = By, , for 1 £ g < oo and BMO. Then there holds

lexp(wR;) flix < [Ifllx
for feX,weRand j=1,2,3.
Remark 3.2. (i) The uniform boundedness in BMO is used in Proposition 2.1 to get uniform
estimate of the nonlinear term. The uniform boundedness in BY, ; is used to estimate the linear
term.

(ii) The boundedness in Bgc,m (ie., g = oo) is used in the proof of the regularity result, Remark
1.1 {ii) (see section 5).

Proof. By spectrum mapping theorem we have for j =1,2,3

exp(R;)llx—x = sup{lz;z € Spec(exp(wR;))}
= sup{lzl;z € exp(—iw Spec(iR;))}
= sup{|exp(~iwz)}; 2 € Spec(iR;)}.
Here, Spec(T’) denotes the spectrum set of an operator T. Now consider the resolvent operator
of iR;, that is, (A—iR;)" for X € C. Since its symbol m{¢{) =1 / ()\+%) satisfies the assumption
of Mikhlin-type theorem (4.1) if A is not real, it follows that Spec(iR;) C R, which gives
|| exp(w Rl x—x < sup{lexp(—iwz)];z € R} =1

since |exp(—iwz)| =1 when z € R. O
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Corollary 3.1. Let X = Bgo,q for 1 < q < oo and BMO. There exists a constant €' > 0
independent of Q and t such that

(1) lexp(—uPIP)fllx <C|lfllx  fort>0, fe X,

@ llexp(~A@Dfllre < Clifllze | fort>0, Fe By

Proof. The statement (1) is obvious from Proposition 3.2 and and the argument in the beginning
of this subsection. For (2) one sees from ||Gi||1 = 1, B, ; < L* and (1) that

lexp(~AQ)N) fllze = ||exp(tA) exp(~UPIP)f(|ze
< lexp(—QUPJIP) f]|ze
< |lexp(—PIP)f]Ig0 |
< Clifllg, ,-

3.4 Vertical average

By combining Corollary 3.1(2) and the nonlinear estimate Proposition 2.1 at least for initial
data up € Bgo,l with divug = 0 local-in-time existence of (RNS) is guaranteed with its existence
time estimate is uniform in Q.

However, we can see the following property of the Corilois solution operator:

Remark 3.3. Let f be a 2D3C(2-dimensional 3-components) vector field, that is,

f = (fl(il,‘l,wg), f2(m1:$2)s .fs(:vbm?))?

Then,
exp(—QPIP)f = f fort>0.

In fact, the symbol matrix of the operator PJP, (3.5), has a &3 in all elements, hence, PJP
has 8/8,, in all components. Then there holds PJP f = 0 for a 2D3C vector field f. Hence its
exponential operator becomes the identity operator, i.e., exp(~QtPJP)f = f for a 2D3C vector
field f.

If we care about the structure of the operator PJP, the class L3, which was defined in
introduction, is allowed for local-in-time existence for initial data.

Proposition 3.3. There exists a constant C > 0 independent of Q0 such that
lexp(—A(Q)) fllz= < C|lfllLge,; for 1>0, feLg,.
Proof. Since by Remark 3.3 we see for [ € L, that

exp(—A(Q)1) f = exp(EAYTg + exp(tA) exp(—QtPIP)ug,



One has
|exp(~A@Dflize = ||&4F + & exp(~QUPIP) fH]|e

< |||z + |le exp(—QUPIP) f |z
< ([Pl + || exp(~OPTP) £
< |Fllz= + |l exp(—QtPIP) f+ |50
< |Fllo= + ClIfllgs,,
< Cllflleg,-

Here, we used Corollary 3.1 and |} - [z < |- HBE: g O

Remark 3.4. (i) The above proof does not require the existence of vertical averege of f but
require only the representation of f as in (1.6).
(i) Similarly, we can get the derivative estimate of the linear term

IV exp(—A(Q)t) fllze < Ct7 2| fllzge,s 1> 0,
for f € L3, (see Lemma 4.2 in [12]).

The estimates Proposition 3.3 and Proposition 2.1 yield Theorem 1.1 by the following iteration;

{ w(t) = exp(—A(Q)t)uo, (3.11)
uj1(t) = exp(—A{)t)uo — fg exp(—A(Q)(t — 8))Pdiv{uj_1 ® uj_1)(s) ds '

for j > 1. Lower estimate of existence time Ty (Remark 1.1(1)) comes from uniform estimate for

K; = K;(T) = sup |lus(s)||z= and - Kj= Ki(T)= sup s/2||Vu;(s)||ge for T > 0.
0<s<T 0<s<T
We note that Theorem 1.2 follows from Theorem 1.1 as observed in [11], where the case {1 =0
is discussed. We also note that Theorem 1.3 can be proved along the line of [17], where the case
Q = 0 is discussed. We won’t repeat the proofs.

4 Mikhlin-type theorems

We introduce Mikhlin-type theorems in 3 kinds of spaces— the Hardy space H!, the space of
functions of bounded mean oscillations BMO, and the Besov spaces Bgo,q for 1 < ¢ < oo. The
Hardy space version theorem is applied to estimate of nonlinear term, and the Besov space
version is for linear term. All statements in this section are valid for general space dimension
neN

Lemma 4.1. ((1),(2):Theorem 7.30 in [10], [16])
Let m(€) € CH(R™\ {0}) for some integer k > n/2 satisfy

| D*m(€)] < clellel (g£0)  fordl loj=ar+ o S k. (4.1)
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Then the operator defined by Ty, = F~ImF is bounded
(1) from HY(R™) to itself,

(2) from BMO(R“) to itself, and

(3) from BY %,q(R™) to dtself for all 1 < g < oo.

In {12, the statement (3) is proved by a Lemma on boundedness of convolution-type operator
(see [[12];Lemma B.1 and Remark B.1]), however, here we will give another proof of (3) in the
case k =n + 1 when n > 2, using the following lemma by Amann [1].

Lemma 4.2 ([1];Lemma 4.2(i)). Assume s € R, 1 < p,g < 00. Let m € CrHi(R™\ {0})
satisfy
Ky i= max sup  [€)eDm(€)| <0 for some j€Z. (4.2)
lafsn+l gi-1gjg]<aitt
Then F~Y(m¢;) € LL{R") and

NE mén) i wny < Chsy
where C = C(n) > 0 is independent of m and j.

Although we deal with only the scalar-valued Besov spaces with specific indices p = oo, g € [1, o]
and s = 0, that is, Bgo’q, Amann [1] proved Mikhlin-type theorem in the vector-valued Besov
spaces B3 q(R" E). Here, E is a Banach space without any restriction such as UMD nor HT
spaces (see also [2], [9]), and s € R, 1 < p,g < oo. Though he mentions only the inhomogeneous
Besov spaces, his proof can be adapted to the homogeneous Besov spaces B;,Q(R”, E).

Proof of Lemma 4.1(3): For f ¢ Bgo,q with 1 < ¢ < oo it follows from ¢; * (F~ImFf) =
05 % (Fm) « f = (F~}(mg;)) [ that

VP mE fllgg = _INE- H(mds)) * flIfe) 0.

JEZ

y (3.9) and Young’s inequality we get
I mFfllgg = (Do IE " (md) * £+ gull7e)?

5k€EL,|i—k|<2

<Y ETme)ILIf el SO0 S pdlif x gullfee) VO

Since the assumption (4.1} {the case k = n + 1) yields that

supp; < max  sup [¢]*|Dm(g)] < C
J€Z lol<nt1gern\ {0}

for some C > 0 independent of j, one sees

P mF fl] gg <Csu§uj O IIf = aull} )1/q<C'HfHBo
kEZ



5 Regularity of mild solution

In this section we prove Remark 1.1(ii) end (iii). All lemmas in this section hold for general

space dimension n € N although the Remark 1.1 is valid only for n = 3.

Lemma 5.1. There exists a constant C > 0 independent of f and g such that
|1 * QHBQQJ(R")‘ < Cllf“Bg’l(Rn)]IQHBgO’m(Rn)
for [ € By, (R™) and g € BY o0 (R™).
Proof. By Young’s inequality we have
I eallss, < S5+ (Fxllizm € 3 llds s (729« dellem

JjEZ JREZ
< g flloallex el
GkEL,|j—k|<2
< 3supllg* dellz= D115+ Fllze < 3llallzg, 1 llss
kEZ jez E )

i2

Lemma 5.2. Let Gy be the heat kernel (47t)~"/? exp( E:i ) fort > 0. Then

(1) [IVCe(@)l 39,y < T2
(2) Hvemf“fagc)l(mn) S Ct_lleifllg&’w(mn; for | € By, oo(R).
Proof. (1) Since ¢;(z) = 2¢o(2 ), we see
g+ VGl = (VG + Gells =21 [ 27 (Ve0)(Fy)Gue —idyll

< 29| 2(Vo) (@ )M lIGill < 21V olh]|Gell1-

On the other hand, we get by the mean value theorem and [ ¢o(z)dz =0
6:2VG)E) = | &W(TOE -y
- [ eV iy = | 6oVC -2
i R

- /R _4o(D{(VG) (@~ 272) — (VG (@)dz

Il

1 -
b0(2)2792( f (V2Gy) (@ — 0279 2)d) dz.
Rn 4]
Hence,

1
029Gl € 27 [ Igoa)z [ (V°G0(e - 027 )d8lds
R 0

AN

Z_j /Rn |¢0(Z)HZH|V2GtII1dz < 2—]l'¢0(z)!zmlnsztHl

(5.1)

(5.

f)

)
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Putting Cy = ||Véoll1, C1 = l|do(2)|2]||1, the inequalities (5.1), (5.2) and {|G:]|1 = 1 yield

Co27,
Co277t7 1L

[lg; * VGilly < {

Here, Cp = C1]|V2Gy||1t is indepencent of t. Thus we get for any N € Z

o0 N o0
VGl g, mmy = 37 s * VG = ( Y + Y oy * VGe(@)lin

J=—00 j=—0 J:N

N [}
< G Z 27+ Cyt ™ ) 277 = G2V Co2~ N1,

Jm=—oo j=N

Taking N € Z such that (Cp/C)t~2 < 2N < (1/2Co)t~1/2, we derive the result.
(2) This is a direct consequence of (1) and Lemma 5.1. O

Proof of Remark 1.1(iii): Let ug = Gy * ug for small > 0 where G, is the heat kernel
2 .

(4rm)=3/2 exp(:ﬁ-j-). Then ug € L™ and Vug € BY, ; since [[uflleo < ||Gnlltiltolles < [uollo

and ||Vulleo < C171/?||uo||oo by Lemma 2.2. It is easy from the second inequality of Proposition

2.1 to see the nonlinear term
t
t1/2/ IV exp(—A(Q)(t — 5))Pdiv{u ® u)(s)]|ods
0 :

tends to 0 as ¢t | 0. On the linear term we get by Lemma 2.2 and Corollary 3.1 that

£172/|V exp(— A(2)(2))uolloo

tl/z(HVexp(tA) exp(—QUPIP)(up — ud)|loo + ||V exp(tA) exp(—UPIP)uf||oo)
CtY/24 12| exp(—UPIP ) (uo — ul)|| Brso + 13| exp(tA) exp(—UPIP)V U0
Cllug — ul||Bmo + 12|} exp(—UPIP) V]| oo

IAINAIA

By || llBmo <l -z <] HBSQ . and uniform boundedness of exp(—QtPJIJP) (Corollary 3.1)
we estimate ’

t1/2]|V exp(—A(2)(t))uo}loo

< Clluo = uflloo + /7] exp(~UPIP) Vgl o
< Clluo — wgfloo + Ct2|| Vg g0 _
< Clivo = uglloo + CtY20 2 fugl| g0 _,

where we used Lemma 5.2(2). After taking 7 = t'/2, send 1 | 0. Then the first term in the RHS
Cllug ~ ug}loc — 0 since ug is assumed to be uniformly continuous (see Lemma 5 in [11]). The
second term also tends to 0 since ||ugl|ge < |luol|Le < ||uol|zes, is finite.
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Lemma 5.3. Let 0 < a < 1. Then there ezists a constant Co = C(a) > 0 such that
(1) “("A)aGtHBgl(mn) L Cat™ fort >0,

(2) lI(=A)exp(tA) flI g0, wmy < Cat™||f 1l po, wry fort>0,f € By, o (R™),
(3) [l{exp(tA) = D fllge, @ny = Cat™(|(=2)*fllpg, mmy for t >0, f € D((-A)),
(4) H(eXp(SA) - eXp(tA))fHBgo‘l(Rn) < Culs —t)"t_“||fllggo,w(mn) fors>t>0, fe Bgo,l(Rn)-
Here, D((—A)%) = {f € B oo(R™); (~A)*f € B, 0o(R™)}-
Remark 5.1. By BS, ; < L™ — BY, ,, we immediately see by (2)
HETAYN exD(tA)fHBgom < Cat™||fllgg,, fort>0,f¢ B, o (5.3)

Proof. The inequality (1) shall be proved in Appendix. The assertion (2) immediately follows
from (1) and Lemma 5.1. For (3) we see for f € D((~A)*) that

(exp(tA) — L) f = — /;(—A) exp(sA) fds = — /:(-A)l‘“ exp(sA)(—A)? fds.

Then by (2)
t |
l|(exp(tA) =D fllge | < fD (=) "% exp(sA)]gg, e, [1(=8)fllgg, . 45
1
< Cia /O s~ tds||(—A) flige, . §01~a%t"|!(—A)“fllggw-

For (4) let f € BY, ;. Then exp(tA)f € D((-A)*) for ¢ > 0. In fact, f € BY,, C L%, hence
exp(tA)f € L% C BY o So, (2) implies (—A)*exp(tA)f € B, | for t > 0. It follows from
(5.3) and (3) that

I(exp(sA) — exp(tA) fllgo
= llexp((s — )2) = D(=A)llgg, __sp IN-A1 exp(tA)fllzg,
< Cals =%t fllga,,..
4

Proof of Remark 1.1(ii): Let {u;} be sequence of the succesive iteration (3.11). By the as-
sumption g € BUC we see exp(tA)ug € BUC since exp(tA) is an analytic semigroup in BUC
(see e.g. Proposition A.1.1 of [11]). On the other hand, uo € Ly, hence ug € Bgo,l yields
exp(—QUPIP)ug € Bgo,l C BUC by Corollary 3.1(1). Then exp(tA) exp(—QUPIP)ug € BUC
thanks to the semigroup exp(tA) in BUC again. Thusu; = exp(tA)ug+exp(tA) exp(—QtPJ P)ug
belongs to BUC.

Next we show u; € BUC for all j > 2. Since it is known that f € L™ is uniformly continuous
if and only if || exp(6A)f = f|lpe — 0 as § | 0 (see e.g. Lemma 5 in [11]), it is sufficient to show
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that u; € L satisfies || exp(6A)u; — u;||z — 0 as § | 0. We have for fixed € (0,Tp] and any
d>0

|l exp(6A)u; — ujl|z=
< {lexp(6A) exp(—A()t)uo — exp(~A(Q)t)uo o |

+ /0 t | (exp(5A) exp(—A(Q)(t — s)) — exp(—A(Q)(t — 5))) Pdiv(uj—1 ® uj-1)(s)liz~ ds
< |lexp((t +6)A) — exp(tA)||go, . p0_ [l exp(~UPIP)]| B 2, o [WollBe,

4
t—
+ [ 17 e Bz el e~ - IPIPlsg oty

100
t—s
2

I eXP((t—;S* +8)A) = exp(——A)llgg g Mus-1 @ uj-1llgg  (5) ds

.

t
< Cad®t™Juoll go -+ Caé"‘/ (t — s)“"'%”uj ® u;|pee(s) ds
100 0

with all 0 < @ < 1. Here, we used Lemma 5.3(4), Proposition 3.2 and BY, ; < L. Choose
0 < a<1/2and send & | 0 to see RHS tends to 0, noting that |ju; @ us{|re(s) < Hug] |20 () for
all 0 < s < t. Thus we have proved that u; € BUC for all j > 1, which implies that its uniform
limit u € BUC. 0

A Appendix: Estimate for fractional power of Laplacian of the
heat kernel
In this appendix we shall prove Lemma 5.3(1).
Proof of Lemma 5.3(1): Setting @ = tY/22, it is easy to see that
((~A)*Gy)(z) =t~ T~ ((~A)*G1)(2) for t>0. (A1)

Hence, it is sufficient to show only the case t = 1. In fact, by scaling invariance {| f(A-)]| 59 (&) N
Adn”f“f;gl(mn) for A > 0 we get

1((=A)*Ge)(@)llgo, = 3 ((=A)7G1) (7 a) o | < Ct™37°t3||(~A)*Gillgo | < Cat™

For any fixed j € Z one sees that

8 (—A)°G, = ¢ * (FTL([€[22C1)) = F~(51¢[*G).
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Since (}}(5) = &E(z—f £€) we continue
bi% (~A)°G; = / G298 122G (£) de
= [erm@petiior

= g [y )G Pe)ie

= P (P0G (PO (Pa)
= PHREL(EPG0(6)) * (G182 ).

1t follows from
1 L

FHG@) = F sz FGUGIO) = 5561057

and F-1{|£[2go(8)) = (—A)*¢y that

65+ (~A)°G1 = 2P((=8) o x G1(55)|(F'a). (A2)
Hence Young’s inequality yields

5% (—ACL = 22|[(=A)0 * Cr()(@ D)1
2723m|[(=A)*¢0 * G1(55)}(@)n
292 |(— ) gl 1]|Ga (5l

2221 (—A)*ol|1]|G1lh
Ca2j2a- (A.3)

IA

IN

Here we used ||G1]l; = 1 and [[(—A)%@oll = [IF2(1€[**o)ll: < Ca because 2% € S. On
the other hand we shift (—A)* to G1(57) in RHS of (A.2) to get

Cr (FAFG = Pgox (-A)Ci(5)]@')
= 2((~A) o) + (~A)HC(5)|(Fa).

Here we put (—A)P~# = 1 with some 8 > 0. Then we get by Young’s inequality for any fixed
j € N that

I

g% (~8)°Gilly = 2*([((=2)"0) % (”A)“+ﬁG1(§§)}(2j$)|l1
= P2I|[(-A) 7o) + (—A)"*ﬁGl(?)l(th

ai2ain||( - AY ol |(~A) (ol i

IA



38

Noting that (—AY(Gi(2)) = a~2((-A)*G1)(3) for a > 0,7 > 0, and (=AY Pgolly =

a

IF=1(J€]=%# ¢o)l|1 < Cg for some C > 0 because 1¢]~2P g € S we continue

65 % (-AFGHll < Go2i® Il et (-A) Gy ) (D)l

< Cﬁ2‘72a_yn2_2(&+ﬁ)323n|l((‘A)a+ﬁGI)(§)lll

= Cp2 ¥|((-B)**G1)(a)llx-

Because
H(=AYGy]l1 £Cy for v>0

we get '
|65 % (=A)*Gilh < Cas27%7. (A.4)

Fix 8 > 0 to get from (A.3) and (A.4) that

”(_A)aGt(x)HBil(Rn) < Z COCsza + an2-j2ﬁ < Co.
j<0 7>0

O
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