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About weak dissipations in Mathematicals models

Jaime E. Munoz Rivera

Abstract

In this paper we study models with weak dissipation, that is dissipations which are not
able ta produce exponential estability. Then our main task is to show the lack of exponential
stability to fin a class of weak dissipations. Then after to show that the dissipation is weak
we will find suitables norms and initial data, for which we show that the sclution decays
polynomially to zero.

1 Introduction

In this paper we study models with weak dissipation. For weak dissipations which mean dissi-
pations that are not able to produce exponential estability. That is we study some dissipative
models, then we show that the dissipation if weak by showing that there is no exponential decay
of the energy. Then, when the lack of exponential decay is proved we look for a suitable norm
and initial data, for which we get a polynomial stability. The main idea we use in this paper is
to apply the following Theorem see [28].

Theorem 1. Let S(t) = e be ¢ Cy-semigroup of contractions on Hilbert space. Then S(t) is
ezponentially stable if and only if

p(A) D {if: e R} = iR

and L
FEL I8 - A7 < o0

hold, where p(A) is the resolvent set of A.

Alternatively we use also the energy method.

Therefore we will introduce some dissipative models, we will show that the dissipation is
weak, then for an appropiate nor we will show that there exists a polynomial decay. The rest of
the paper is organized as follows. In section 2 we consider system with frictional damping and
we show that there no exist exponential stability but for apropriate norms in Hilbert spaces,
there exists exponential stability. In section 3 we consider a model of the ionized atmosphere,
which is a linear dissipative system of memory type. We prove as in section 2,that there is no
exponential stability, but polynomial decay in appropiate Hilbert spaces. Finally, in section 4
and 5 we consider Models for acoustic waves and Magneto elasticity, in comum we have that we
are not able to show wether exists or does not exist esponential stability. But using the energy
methods we are able to show that there exists polynomial rate of decay in an appropriate norms.
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2 Weak Dissipative system: Weak Frictional Damping

In colaboration with A. Pazoto
One simpler model of vibration with inertial term is given by

Ut — Uggtt — Ugp + U =0,
u(0,t) = u(L,t) =0
w{0) = ug, u(0) = uy

The above model was proposted by Love [9] (see page 429). Which can be rewriting in a general
setting as

Cuy + Au+ Bus =0 (2.1)
'U,(O) = uO,Ut{()) = U3 (22)

where A, B and C are a self-adjoint positive definite operator with the domain D(A) C D(C) C
D(B) dense in a Hilbert space H. With this degree of generality we have

2.1 Asymptotic behaviour of the semigroup

We assume the existence of eigenfunctions A, and eigenvectors wy, of the the operators A and
B with unit norm in H satisfying

Aw, = Ay

Buw, = f(AJ)wy, with f(A)= o( A=)
Cw, = gA)wy, with g(A) = o(A)).
Ay — 400, and 0<a,f8<1

(2.3)

The following theorem descrives one of the main results of this paper

Theorem 2. Let Sp(t) be the Co-semigroup of contructions generated by Ap, and
, 1 1
B0 = SIAY2, + 2

the energy associated to (2.1). Then, if operators A and B satisfies (£.3), it follows that
(i) Sp(t) is not exponentially stable; but

(i) There ezists a positive constant ¢; such that

Et) < E Eg(0), Vt>0
where, . .
Ep(t) = GlIL 2wl + 511Q ullly, V>0
with L = CB~1C and Q = CB~1A.

Proof: First we prove (1). To do that we make use of Theorem 1.
Let ¥'= (f,9) € H, U = (u,v) and consider the system

iU — AU =k
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ie.;
AU — v = f
{ iAW+ C Au+C 1By =g (2:4)
Solving for f =0 and g =w,
“A2u 4 C7 Au + iAC™ Y Bu = w,,.
Because of the boundary conditiond we can take
u=quw,, v=>bw,.
Then we have
(—-/\2 + )8+ +'i)\)\;°‘) aw, = Wy.
=0
Therefore we get
=B+1 Bl
A=X72, w=—ioNT T jw, and v=o(A\S)w,. (2.5)
Now we claim that
U1l — +o0.
Let us denote by A = C~14, and
0 1
Ap = < ClA C-1B )
To prove the claim, note that
W1 = INAY2ulf + ol
k_l-
= [loOA2)wy | +[IC™2AV =oAT T Ju)
B g1
= oIl +11 - o )05 T Y|l
2/\30‘ — +o00.
Recalling that
AU — AglU = F <= U = (41\] — Ap) ¥
it follows from Theorem 1, that S B(t) is not exponentially stable.
2.2 Polynomial decay
To prove (i), first we observe that since
Cug + Au + Bu; =0, (26)
we have
CBWICU‘“’ + CB1Au + Cug = 0. (27)
Thus, taking the inner product of (2.7) with u; we deduce that
dEp
—= = =0y 3. (2.8)

dt
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Now, if we take the inner product of (2.7) with u, and put

B(8) = (Cu, ) + 3152l (29)
we get J |
_d.‘i_s = [[CY %)% — || AV ?ul|%,. (2.10)

Consequently, putting (2.7) and (2.9) together yields

[ CM 2| + €| C2ugl |y — €] AVl
~(1 = &)||CM2uq |}y — €] A 2w}
< —E(?) (2.11)

for some Yo > 0, since 0 < € < 1. Integrating (2.10) from 0O to £, we obtain

< {s(t) + 90}

i

{
Eg(t) +€(t) + Yo /O E(s)ds < Ep(0) + £4(0), Vt>0,

and conclude that

400
/ E(s)ds < cEp(0) , (2.12)
0
for some positive constant c. Finally, we have
d aF
- 1 — ] hatenl < 1
dt{tb(t)} B(t)+t ) (1) < E(t) (2.13)
and from (2.8), we obtain after integrating (2.13) that
+o0
tE(t) < E(s)ds < ck'g(0) ,
Jo
ie.,
¢
E(t) < I Eg(0) .

This complestes the proof.

Some Examples

Plates

Py — VAU + APu+auy =0, in 2x]0,00]

u=Au=0 in 00x]0,00]

u(z,0) = ug(z), w(z,0) =w(z) In O
where p, v and o are positve constants

Abstract wave equation
Let H be a Hilbert space, A a positive selfadjint operator with (A) C H compact.

pug + Au+ A" =0, in L*(0,00; H)
w(0) =ug, w(0)=wu; in H.



82

3 The model of the ionized atmosphere: polynomial decay

In colaboration with M.G Naso, E. Vuk (Brescia - Italy)
The simplified model is given by

V. E(t) =0. (3.14)

Ey(t) - AE(t) + g E(t) — (e E)(t) =0
{ Exn=0on 00

Together with the thermodynamic restrictions, we assume that the kernel @ € C*(R*) N
W2L(R™) satisfies the following set of hypotheses

—cpafs) <d(s) < —crals), VseR™Y, afs)>0 (3.15)
t

a(t) = og — / alrydr >0, VteRT (3.16)
J0

lo(s)] < cpa(s), VseRT (3.17)

with ¢;, ¢ = 0,1, 2 positive constants.
The set of auxiliar functionals

1

() = 5/ (B2 + |V x BP + &|E]? + (o0EB)] da
JQ

E(t) = % / [V X Byf? + |AE”> + &|V x E?> + (aOV x E)dz
SO

FO) = 5 [ e B0 da- [ @) (ax B0 da

K@) = /Q Eq(t) - E(t) do

ﬁ(t) = NE& (t) + N 52(t) +.7:(i) -+ ?i—o))(j(t),

with IV > 0. The main result of this section is given by

Theorem 3. Let us suppose that « € CHRYYNWHH(RF). Then there exists a positive constant
C such that o
& (t) < {SI(O):— 82(0)] )

Proof.- there exists a positive constant vg such that

2L0) < —nE).

By an integration with respect to t, we get

t
£(t) — £(0) + 0 / Ei(7)dr <0.
Jo
d
Because of Eﬁ(t) < 0, we observe that £{t) < £(0), for any ¢t > 0. Then, we have

t
/ E(r)ydr < L{0), Vt>0.
Jo



d
Since EZ&(Q <0. t ,
g‘z FE(D)] = Ealt) +t ZE1(1) SEa(1), VE>D.
By an integration with respect to ¢, we find

i
tgl(t)g / 81(7’)03’?’513(0), Vit > 0,
J0

and it follows that there exists a positive constant C such that

ClE(0) + &(0)]
%

&1ty <

Remark 1. Note that the polynomial decay obtained in Theorem 3 is not in the same norm
for the solution and the initial data. Then, it s not possible to get exponential decay using the
semigroup property.

3.1 Non-exponential stability

We use that a Cg-semigroup et in a Hilbert space X is exponentially stable if and only if
iR C p(A) and there exists M > 1 such that [[({ A — A)7H < M, VX € R, where A is its
generator.

We consider the spectrum of the “V x Vx” operator with homogeneous Divichlet boundary
conditions, namely

VUXxVxe,=Ae, infl
V-e,=0 inQ and Jley|lpey =1, v21

e, xn=>0 on B0
where (A, )y>1 — co. To use the semigroup approach we put
1 (s) = B(t) - E(t — ) (3.18)

where 7" represents the relotive electric field history.

[o o]
E‘,+V><V><E+6E+f a{s)n(s)ds =0
H A (s)m(s) (3.19)

n— Ei+ns=0,

=0

where & := oy — / ofT)dr. Let LE(RY,V(52)) be the a-weighted L? spaces of functions on

R+ with values in V (Q) endowed with the iuner product

ge el
(roe)ai= [ e{a)mis)mlo)) ds.
Finally, let us introduce the Hilbert space

7 = HL(Q) x V(Q) x LZ(RF, V().

83



84

Setting v := F; and
U(t> = [E(t)’v(t)aﬂ(t)}T , Ug = [EOJ'UOanO]T €4

problem (3.19 can be rewritten as an abstract linear evolution equation in the Hilbert space Z
of the form

(3.20)

Us(t) = AU ()
U(0) = U.

The operator A is defined as

E v
o0
Al v | =| =V xVxEmaE—/ a(s)n(s)ds |,
; J0
7 V=17

with domain
D(A) = {UEZ: AU € Z, / a(s)n(s)ds € V(Q2),
S0

7 € LART, V), n(0) = 0}.

Theorem 4. Under the ubove notation, the semigroup associated with the ubove system is not
exponentially stable.

Proof. Let ¥ = [Fy, Fy, F3]" € Z and consider the following equation
@il- AU =F, BeR
which in components reads
iBE-v=F |
iﬁv+VxVxE+&E+/Oma(s)n(s)d.s:Fg (3.21)
ifn—v+n,=Fy.
Setting

1
Fi=0, F,=0, Fy3=pf2e"s¢,

we look for solutions of the type
E=Ae,, v=2~8e,, ns)=¢(s)e,,
solving the above system for A2 = A, + a we find

B =184,

(@-a)A=-— / a(s)p(s)ds. (3.22)
Jo
Denoting 8 = v/A, +a =: 8,. So we have that

. 1
p(s)=Ce ey Ay ——_p 2 Prs, (3.23)

1—1
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By the initial data we have 7(0) = 0. Then,

1 ~i

C=-A- 2
i1
and (3.23 becomes
1 ~1 —i8us 1 -1 B,
o) = ~A-z— B ) e+ At = B %P0 (3.24)
Taking
als) =76, yeERY,
we find . .
Ax=CB 2=CA %, ashy — 0.
Finally, recalling that E = Ae,,
1
Bl g1, ) = Ad — 00, 85 Ay = 00,
Then, the solution of system can not decay exponentially. O

4 Model with acustic boundary condition

In colaboration with Yuming Qin (Shangai - China)

y

=Q{)/Q1

We consider the model

¢ =c*A¢ in Q

where ¢ is the speed of sound in the medium. We assume that the boundary 602 =T' is divided
into two parts,
T=Toully

such that o
ToNTy =0,T6 # 0.

We assume that

e Each point reacts to excess pressure of the acoustic wave like a resistive harmonie oscillator.
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o Different parts of the boundary I do not influence each other, that is, the surface is locally
© reacting hut subject to small oscillations.

Then the normal displacement ¢ of I'g into the domain satisfies an equation of the form

m(z)0u(z, t) + d{z)é(z, 1) + k(2)d(z, 1) = —poi(z,t) In Ty

where p is the density of the fluid, m,d and & are mass per unit area, resistivity and spring
constant on I'y, respectively. If we also assume that I'p is impenetrable, we obtain a third
equation from the continuity of the velocity at the boundary 'y

Od(z,t)

6,:(:1:, t) = £

in F()

where Q%(ff—’q = V¢(z,1) - v denotes the outward normal velocity at z € I'yp and v = v{z)
stands for the outward normal vector at x € .
We assume that ['; is rigid and on it ¢ satisfies Dirichlet boundary condition, that is,

¢(z,t) =0 m T4

For more details on the model we refer to [1-3] and [11]. Moreover, we assume that there is a
point 25 € R? such that

I' = {zel|(z—z) v{z) <0},
Iy = {zelj(z—z¢) v(z)>a>0}

for some constant a > 0.
Additionally, we prescribe the initial conditions

¢(z,0) = do(z), ¢1(x,0) =¢1(z) Vze, (4.25)
6(z,0) = dplz), &=, 0) = 6;1(z) Yz € I'y. {4.26)

We assume that m(z),d(z) and k(z) are positive smooth and bounded functions on I'g
4.1 The semigroup approach
Let us define the Hilbert space

H = Hp () x L3(Q) x L3(Tg) x L*(To)

with
HE () = {u:ue HY{(D),ulr, =0}

with the inner product
<u,w>= / (p 7 1 - wy + pe2ugwy )dr + / (kugwsg -+ mugwy)ds
40 4Tq

where u = (uy, ug, u3,uq)”, W = (Wi, wo, w3, wy)” € H.
The induced norm on H is

o= [ (617wl + pe )+ / (kfus? + mlug)ds

0



for any u = (uq,ug, Uz, us)” € H.
Next we define an operator 4 on H so that for smooth u = (¢, ¢4, 6,6;)7, (1.1)-(1.4) are
equivalent to u(t) € D(A) and us = Au. We define '

Au = [ug, 2 A ug,ug, -m”l(pu.z + kug + duy)]”
for u = (uy, ug, ug,uq)” € D(A), where

D) = (s duy € L(R), 5z € 13, (), 22 < ).

Here us in the last component of Au is understood as the trace in H1/2(I'y) and %‘il = uy4 I8
meant in the weak sense

L[(Am)@b + YU - YYldr = /r‘ ugds, Ve H%] ().

The relation u; € H2(Q) is equivalent to the condition that w4 is the normal derivative of u; as
a trace. Thus, similar to the proofs in {1-3], we readily obtain the following results on the global
existence and regularity of solutions.

Theorem 5. A is closed, densely defined, and dissipative. It is the generator of a Cy-semigroup.
Ifd =0, A is skew-adjoint and generates a unitary group.

Theorem 6. Assume that ug € H is O and vanishes near 08); let u(t) be the solution of
u'(t) = Au(t),t > 0, with u(0) = ug. Then u1(t), us(t) € C(Q) and us(t), ua(t) € C°(I'g) for
anyt 2 0.

Let us define energy functions

B0, = 3 (61w o ozt 3 [ (@8 +mimdf)ds,

Eit) = Bi(t,0) = Eo(t;8]4,018), j=1,2,--
The novelty of this paper is the following results on the asymptotic behaviour of solutions.
Theorem 7. Under the above assumptions and with smooth initial duta (bo, ¢1,00,01) such that

k41

> Ej(0) < oo (4.27)

j=0
for k > 0. Then there is a positive constant C such that

k C’k+1
> B < ?ZEJ-(O), vt > 0. (4.28)
j=0 j =0

81
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4.2 Energy Estimates

We use multiplicative techniques to establish some energy estimates.
By (1.1)-(1.6) and Green’s formula, it is not hard to verify

ﬁﬂo(t;d:,&) =— / d(x) 62ds.
dt I,

(4.1)

Similarly, noting Eq. (1.1) and boundary conditions (1.2)-(1.3) are all linear, we have that for

j:D)l"">k+15

fif;j(t;qs,g) =~ | dz)|6IT 6| ds.
dt JT%

Define
q(z) = z-—
Foti68) = [ (@ia g0+ eain
Fi(t) = Kt ,0) = ko(t;806,0]6), j=1,2,-- k.
Under the above notations, we have

Lemma 2. For j =0,1,---,k, we obtain the following identity

d 1 ; ;
G880 = 3 [(67op + & Safde

c? 7 212
—5/ q-v|v8i¢lds
J g
Y (Y S
.r'n 2 “ rl
+3 [ avigiopas+ & [ o5 gleds
2,[‘0 PAYY

Lemma 3. Forj =0,1,2,-+-,k, we obtain
d

GOstti6.8) = = [ kta) giepas+ [ m(@)IoF 5P + 506 0] o1ds.

Now we define the following Liapunov functional

k+1

k k
Li(t) = N¥Y_E5(t)+ NV2D"Gy(t) + Y Ki(t)
=0 J=0

=0

where /V is a large positive number specified later on.

Lemma 4. For N large enough, there are positive constants Cy, C1,Cy and C3 such that

k+1 k+1
0 < Coy Ey(t) < L(t) < C1Y_Ey(t), V20
7=0 =0

and

d ko
ZLk(t) < —ngobj(t), vt > 0.
J:

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)



Based on the estimates obtained above, we are able to finish the proof of Theorem 1.3.
Proof of Theorem 1.3: By (1.12) and Lemma 2.3, we get

k+1

/ Zb’ Ydr < C5H(Lk(0) = Lx(t)) < C5'C1 Y _Ei(0) < oo (4.7
, yard
Clearly, we get for any t > 0

d & k

E[t;}bj(t) ZL (t)—i—tz ﬁf, () < 2;0

whence,
k+1

k
> E;(t) < ZE - (4.8)
3=0

with € = Cy 1C,. The proof of Theorem 1.3 is now complete.

5 Magneto Elasticity

In colaboration with R. Racke (Konstanz-Germany)
and
M. Santos (Belem-Brazil)

Let © C R?, the the displacement vector u = (u*,4?,0)’ = u(t, #) depending on the time variable
£ > 0 and on the space variable z € , and for the magnetic field h = (h?, h%,0) = h(t,z) are:

u“~pAu—(/\+p)Vdivu-—a[V><h,]><H = 0,

—Ah— BV x [ux H) = 0,

]

Here A, i and x are positive constants. The coupling constants «, Jél %fmfy aff > 0. H«—
(H,0,0)" is a constant vector with 4 # 0.
Additionally, one has initial conditions

w(0,z) = uo(z), u(0,2) =u1{z), h(0,2) = ho(z) (5.9)
and the following classical Dirichlet-type boundary conditions
u=0, vx(Vxh)=0, v-h=0 onl:=08{ (5.10)

moreover,
divh = 0, (5.11)

which follows from (5.9) if div ho = 0. The vector ¥ = (11, va,0)' = v(z) denotes the exterior

normal vector in z € I' the boundary of .

88
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Figure Type I Figure Type I1 Figure Type 111

We show that the solution of the magnetoelastic system decays polynomially as time goes
to infinity, provided Q is of one of the following type

I: Q) is the union of finitely many rectangles with axes paralles to the i~ and zg-axes,
respectively, see Figure 1.1.

11: Q satisfies vivg = 0 in the first quadrant (where z; > 0 and z3 > 0) and in the third
quadrant (where z; < 0 and 23 £ 0). In the second and fourth quadrant (1 satisfies zv > o > 0,
for some .

111: {2 satisfies v1v9 = 0 in the second and fourth quadrant. In the first and third quadrant
2 satisfies zv > ag > 0, for some oy, see Figure 1.3.

By domains of partial rectangular type 1, all sufficiently smoothly bounded, connected do-
mains can be exhausted, also all connected Jordan measurable sets.

The energy £ = E(t)(of first order) associated to the equations (5.9}, (5.9) is given by

E(t;u, h) = %Q/ (;W + | Vul? + (u+ A)|divul® + %W?) (t,z)dx. (5.12)

We shall also use energy terms of higher order given for j € N by
Ey(t) = E(t; 8 u, 81h). (5.13)

Then it will be proved that the energy K(t) decays like t~!. More precisely, the main theorem
is the following

Theorem 8. Let (u,h) be the solution to the initial boundary value problem (5.9)-(5.11). Then
the energy & defined in (5.12) decays polynomially,

N
3d>0 Vi>0: b(t)g;izobj(o).

This result presents a polynomial decay that is uniform with respect to initial data but
involves derivatives at time ¢ = 0 higher than those estimated for t > 0. Indeed, it is open
whether there is a uniform exponential decay of the associated semigroup, and our calculations
do not assist this possibility.

The method we use is an energy method, looking for appropriate multipliers and Lyapunov
functionals.
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DRk RN

Solid of type I Solid of type 11 Solid of type 111

Remark 5. For solid of paraboloid type we have that the lateral surface T is defined by the
equation T3 = x% + x%, and the top surface I'g is given by the plane x3 = 1. In this case we have
thot

v=1(0,0,1) on Iy, 1/:%(23:1,2232,—1) on T,

where R = \/42% + 422 + 1. Let us take 2§ = 0 and 23 > 1/2. Under this conditions we have
that the function 11 defined in section 1, satisfies

R -1 z7

2
= — — 0% <
h 13 { 272 + 2z2 +w3+$‘5} <0,

which is an important inequality to get the decay.

Remark 6. In general we have

d

Sy = j 112
Lt = B‘/waag/q dz.

For j > 0. Using the fact that Q s simply connected, we conclude that

'/Q'[hlzclm < C‘L |V x h|%dz

hence

d

S0 < --c{/ﬂ 187 h|2da + /Q IV x h?dz}. (5.14)
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