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1 Introduction and Main Theorem

The Boltzmann equation in the field of a potential force is written as

(1) U 6 V.f - V() Vel = QU )
Here f = f(t,z,&) is the unknown scalar function which stands for the distributional
density of gas particles at time ¢ in the phase space of position z € R*® and velocity
¢ € R?, while ® is a given potential function and Q is the collision operator. We restrict
ourself to the hard sphere model for Q.

We also assume that @ is t-independent, i.e. @ = ®(z). Then, the local Mazwellian

given by

1
Ro

(3

1) M = L e () + 1) } = M0 (6)

(@rRE
where R > 0 is the gas constant and p,0 > 0 are some constants, is a stationary solution
to (1.1), which describes, physically, the distributional density of a gas in an equilibrium
state with the mass density

(13) =~ 2,
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zero bulk velocity, and absolute temperature .
Our aim is to show that this local Maxwellian is asymptotically stable. More precisely,

we consider the Cauchy problem of (1.1) for t > 0 and (z,&) € R® x R® with the initial
condition

(1.4) £0,2,8) = folz,8),  (5,§) eER* xR,

For a constant 6. > 0, let

1 €1
M_(§) = ———7 _
) = Grrayn EXP( 239_)’
be the Maxwellian specified by 6. We will prove the

Main Theorem. For any posilive constants p, 6 and for any integer N 2> 4, there exist
a small positive constant € and a positive constant 6_ € (6/2,0) such that if the potential
d and the initial data of the form fo= M + M_l_/zgg satisfy

(1.5) ol + > logdlle+ > 108wl <«

1<]o<N+1 lod-+|B1<N

then, the Cauchy problem (1.1), (1.4) has a unique classical solution in the large in time
of the form ~
f=M+ M7,

with g satisfying
8705009 € ORe 5 Li) N IRy 5 Lag),
for any v + la| + |8 < N, and
(1+1€)V28]0°00g € L3, (Ry x B® x RY).
for any v+ |a] > 0,4 + |a| + 8] £ N. Moreover, the asymptotic property

sup [|78208g(t, 3, Mz =0 (£ —>00),
zeR3

holds for any v+ |a| + 8| < N — 4.

Remark 1. A similar result was announced in [1] on the Lg° solution under the additional
assumption that the support of @ is compact. On the other hand, the compressible Navier-
Stokes equations with the potential force was solved in [7] on the same global existence and
asymptotic property under the same assumption on @ as in our theorem. Recently, the
initial value problem of the Vlasov-Poisson-Boltzmann system has been solved globally in
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time in the torus in [3], and in the whole space in [9]. See also [4] for the Vlasov-Maxwell-
Boltzmann system.

Remark 2. The assumption (1.5) requires, among others, that ® € L2, but this does
not contradict to the fact that the potential ® is unique only up to an additive constant,
because this constant can be absorbed into the constant p.

Our proof relies on the energy method based on the macro-micro (fuid dynamic-
kinetic) decomposition of the Boltzmann equation which was developed recently in [6].

The energy estimates for the macroscopic (fluid) component of f are obtained with
the H-theorem for the lower order derivatives and by the usual integration by parts on
the differential equation for higher order derivatives. Both estimates contain Sobolev
norms of the microscopic (kinetic) component of f. It should be noted that if these
norms are dropped, our estimates coincide with those derived in {7] for the compressible
Navier-Stokes equation.

The norms of the microscopic component can be estimated by virtue of the microscopic
H-theorem of a new type, i.e., the negative definiteness of the linearized collision operator
with different weight functions on the space of microscopic components, and again by
the integration by parts on the differential equations for derivatives of the microscopic
component.

This technique has been developed in [6] for the force-free case, where the energy
estimates can be closed only with (¢, z) derivatives of f. In our case, however, £ derivatives
should be also included. Recently, in [5], another L? energy method has been proposed
for the Boltzmann equation. Although the technique is quite different from [6], it applies
also to our case, to deduce the same result.

The global existence is concluded by combining the local existence and the energy esti-
mates. Our local solutions should be, therefore, in consistence with our energy estimates,
that is, they should be L? solutions with respect to & as well as (t,z). Such solutions
can be constructed by using the L? estimate of @ derived in [2] and time local L? energy
estimates.

The present paper is organised as follows. In the next section, it is shown that the
macro-micro decomposition of [6] works also in the presence of the external force. Actually,
we will derive a system of fluid-type equations governing the macroscopic component’
whose main parts consist of the compressible Navier-Stokes equations, and the equation
governing the microscopic component. These equations will be used in §3 to establish
an a priori estimate for L? Sobolev norm of the solution. The norms of lower order
derivatives of the macroscopic component are estimated by the celebrated H-theorem
of the Boltzmann equation and those of higher order derivatives by applying the L2
energy technique developed for the compressible Navier-Stokes equations in [7]. The
L*-energy method is also shown to work for norms of the microscopic component thanks
to a microscopic version of the H-theorem. Since the computation is delicate and lengthy,
only an outline is presented. The detaill will appear in [8]. The a priori estimate in §3
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is combined with the local existence theorem established in §4, to conclude the global
existence theorem under the smallness conditions both on the initial data and potential
function.theorem. L2-local solutions are constructed by the contraction mapping principle
based on local energy estimates. It is noted that the smallness conditions on the initial
data and potential function are necessary even for the local result.

2 Macro-Micro Decomposition

The decomposition of [6] has two significances: It made possible to develop a new theory
of the Boltzmann equation, that is, the I2-theory based on the energy method familiar
in the theory of partial differential equations, and it provided a new method to reveal the
mathematical and physical relation between the Boltzmann equation and the compressible
Navier-Stokes equations. :

Originally, it was developed for the force-free case, but it works also for our case.
Thus, we decompose the solution f(t,x,&) of (1.1) into the macroscopic (fluid) compo-
nent specified by the local Maxwellian M = M(t, z,£) = Mp,,6(£) and the microscopic
(kinetic) component G = G(t, z,&):

(2.1) ft,2,6) = M(t,z,§) + G{t, 2, §)-

Here,

3 _ p(t,x) € — ult, z)?
(2.2) M = Mt z,8) = RO o) exp (—W> 5

is the local Maxwellian with the macroscopic density p(t,z), bulk velocity u(t,z) =
(uy,ug,u3), and temperature 6 associated with this particular f by

(o= [ 1ee0

pmMMwszyMwmaaﬁmm=Lza

(2.3)
(B4 1) 60) = [ @),
| E =R9, :
E being the inner energy density. And ¥o(£), @ =0,1,-+ ,4, are the collision invariants,
24) WO =1, WO=& for =123, $u©)= 5P,
satisfying

Ya(£)Q(h, g)dé =0, for «=0,1,2,3,4.
R3
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With this local Maxwellian, we now define the inner product

Then, the functions
[ xo0(&pu,0) = %
xi(&pub) =4
xa(§ pyu,8) = 7%7 ('é bk — 3) M,

(i) Xi)y = 0> fore,j=0,1,2,3,4,

\

form an orthonormal basis of the space of macroscopic {fluid) components of the solution,
so that

4
(2.6) Poh=> (h,Xx;)mxs,  Pih=h—"Poh,

§=0

define orthogonal self-adjoint projections w.r.t. the inner product {-,-)nm. Po is called the
macroscopic projection and Py the microscopic projection, respectively. A function A(§)
is called microscopic or kinetic if it has no fluid components, that is,

(2.7) /R h(E)a(€)d =0, for a=0,1,2,3,4,

It is clear that such a function is in the range of the microscopic projection P;. Notice
that the decomposition (2.1) satisfies

(2.8) Pof=M, P,f=aG,

Plug (2.1) into (1.1) to deduce

(29) M4+G)+£¢ V. (M+G)=-V, 2 V(M +G) =2Q(G,M) + Q(G, G).
By applying Py to (2.9), we have

(2.10) M, + Py (5 - va) + Py (g . VEG) ~V,®-V:M = 0.

where we have used the fact

(2.11) Pof; = (Pof): = M.
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Notice that (2.11) holds only for the particular f specifying M and Pp, but does not if
Py is defined with (p,u, ) independent of f.

As usual, the system of five conservation laws follow by taking the inner product of
(2.10) and the collision invariants 1a{£):

( pt + divg pu = 0,
3
(Pui)t + 2:1 (puiuj)mj + Pz — ﬁmz + (P - ﬁ) @m
1:

- i 'VmGda , = 7277

P + B+ 5 (o Gt ) +9)) s

_ _/ e (€ - VoG de.
R3

\

Here, p is the pressure for the monatomic gases: p = %pE = Rpf, and we have used the
fact that for p(z) = pe®@/(F9) g in (1.2),

plx) = Rp(2)0,  Po, + pPu; = 0.

On the other hand, the microscopic equation for G is obtained by applying P to (2.9)
and using again (2.11):

(213) G+ Py (g V.G & VCCM) —V,3- V.G = LG + Q(G,G),

where
Lyg=Lypung = Q(M +g,M+ g) - Q{g,9)-

Tt is classical that Ly is self-adjoint and negative definite on the space of microscopic
components w.r.t. the inner product <-,- >m. Therefore, it has a bounded inverse and
(2.13) can be rewritten as

G =Ly (P VIM))
(2.14) 1157 (G + Pi(6- V,G) ~ Va2 - VeG - Q(G, Q)

= Lyt (Pa(é- V.M)) +6,
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f AJ(&) = %(5!2 - 5)63'7 .7 - 11 2a31
Bi)(f) = '5163 - %51'1}6!27 Z?J - 172)37
ﬁ /J:(G) = —R# RgBij (7_%5) Ll-\-al[l,u,gl (B'U (T;—é’) M 1,u,8 ) dE > O i # 7,

W(O) = —R | A (ﬁ) Lt (Ag (\/—%-5) Mu,u,g]) dé > 0.

After straightforward but lengthy computations, we have

- / Vi - Violyg (P1(£ : va))dg = fj [14(6) (Win; + Uja; — géijdiku)}mj , 1=1,2,3,
R3 j

— | € Vol (P1(§ : VmM))dE - 23: (ﬁ(g)gmj)xj
R3 !

N

3
+ > {M(Q)Ui (ﬂ'izj + Ujg; — -:?:;&,—divxu) }m,- .

\ i,j=1

Plugging these relations and (2.14) into (2.12) yields now another representation of the
equation (1.1) which contains a system of fluid-type equations:

pt + divg{pu) =0,

(o) + 3 (pusts)y + (p = B + (0 = §) e

2
= [ 4(6) ((ttiay + e, — F0udiven ) I,

(2.15) - 1,/)1' (£-V,0)dE, i=1,2,3,

{( u{2+EL+i(u( ( [u|2+E)+p)>wj

J=1

3
+pu -V, @ = Z {,u 6)u; (uimj + Uy — géﬁdiku) }

1,j=1 3
3

+ > (k(6)0s;),, - /R Wa (€ VaB) dE.

j=1

Notice that if one drops all the terms containing ©, then (2.15) reduces to the system of the
commpressible Navier-Stokes equations with the external force, which has been solved in
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[7] on the existece of global solutions in an L? Sobolev space by using the energy method.
This suggests the possibility of developing the L2-theory of the Boltzmann equation. This
is true, indeed, as seen below.

3 Energy Estimates

The construction of global L? solutions relies on an a priori estimate for the norm

(3.1)
N = sup (30 1680p— 5w 0Dl + D 11000, )

0TS N<a Iyl +1B]<4

t t
b [ o -DOlar+ Y [ronsfemil, o

1<]yi<4 fn+AI<4

The lower order norms of (p,u,8) involved here are controlled by the celebrated H-
Theorem

(5:2) [ hmrae<o

and the higher order norms by the L?-method developed in [7], while the estimate for
G are derived by using the microscopic H-Theorem of a new type, namely, the negative
definiteness of Ly with different weight functions,

B / GLmG v (§)G?
R3

(3.3) MZge>7 | Mg,

M R2 M

which holds if two Maxwellians M, M are rather close to each other, with a constant
& > 0 depending only on (u,, 0, 8), see [6] for a detail.

We also need the L2 estimate of the nonlinear operator @ established in [2]: 3C >0
such that

of m@rewy g <« ¢ / () ] 2 /ﬁd [ (e g |
3 )RB K< e M £ M £+ Rng e M £

where M is any Maxwellian such that the above integrals are well defined.
In the above, the function v (€) is the collision frequency associated with the classical
decomposition of the operator Ly,

(3.5) Ly = ~vm(§) X +EKwm,
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where Ky (+) = —Kym() + Kom(+) is a symmetric L?-compact integral operator. The
explicit expressions of 1y and the integral kernels of Kin(+) are

vm(§) = ,MR {(15 T+ 1€ — u]) /OIE—UI exp( 233) dy+RHexp( [%"1%12)} ,

k(€ &) :\/(2%%—)315 E[exp( 1641;;] %(;ﬂ")’

- "Et 2 2— 6* 2)2
| kam(§,6) = 27TR ]5 &| 1‘3XP( Igsml - (zlsislgl—slwl)? )

,

In the below, it is crucial that

vma (&) ~ (1 +[&]) as  |&] = oo.

3.1 Lower Order Estimate
Introduce the entropy

(3.6) ——pS M In Mde.

RS

By a direct computation, we see that

S = m-g-lnp +In(27RO) + 1, p= Rpb = kpges; k =1/(2me).

A convex entropy-entropy flux pair (7, g) around the sationary solution M = Ms(2),0,5) of
(1.2) is then given by
=3 [/} Ky g WP 255
(3.7) n—i{pB—GpSer[(S—g)ﬁ-i—T}-!-g 0},
q; = u;n + Uy (pH - ﬁ?) ) =1,2,3,

which satisfies, for some constant C' > 1 and with £ = %Ré

(38)  C(lo= B+ loul® + 1pB - pBP) < < C(lp— 4P + loul? +|pB ~ pEP?),

On the other hand, multiplying (2.10) by log M and integrating w.r.t. & by parts, we
get

(3.9)~§(p8)t - %divw(puS) + ¥V, (/113(§ lnM)Gd{) = /113 e (gl\;lva) d¢,
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which can be rewritten in terms of the pair (n,q) as

mdiag= - [ (G M + §ue@) & ) — u- V20
R3

+ Pl(g';‘;M)Gd,‘g.
RS
In the below, we assume that (1.5) holds for € € (0, €] with some fixed & > 0 (say
€1 = 1) and similarly that N(t) < &; with some fixed 6, > 0 (say 6, = 1). Plug (2.13) into
(3.10) and integrate w.r.t. ¢,z. Owing to the mass conservation law (2.12)4, it holds that

(p — p)®dz,

(3.10)

/ pu - Vo @dz = — V (pu)@dz = d
R3 dt

and as a consequence, we get

/ (n+2(p— ) ®) () + / / V. (u,0) Pdadr < O(1)¢2
o(1) ] /R 3 R:Mm (G + [V, + VeGP + N(DIGI?) (1,3, €)dédodr.
Here, N(t) comes by estimating Q(G, G) by (3.4). Notice also that
[ 1= plods < o=l

so that if € is small, this is absorbed into the entropy term J ndz.
The microscopic component G can be estimated by taking the inner product of (2.13)
and G and using (3.3), to result in

f / IG2 jede -+ / / [ HONSE ge dadr
R3 JRS Rre .JJRs

(3.12) <O +0(1)(e+ N(t)) // / z%}I‘?—t—cl&i:ccl’r
o Jre JR?

t
+O(1)/0 ]RS (]Vx(u,Q)P +/;35-(-€—)%’”—§I—> dzdr,

where the uncommon weight M_ is needed to contorl the terms like 97, (log M), [o = 1,
A similar calculation with the weight M replaced by M_ gives,

t
IR TR
R3 JR3 o0 JR3 JR3

(3.13) < 0(1)é& + (e + N(1)) / t ] /1;3ﬂﬂc'—'2d£dwdr

1)/ /Ra (\V p— p,u,0)% + f M) dzdr.

Note that an extra term for Op appears here. (3.11)-(3.13) give the complete lower order
energy estimates.

(3‘11>
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3.2 Higer Order Estimates

The estimate for 87, (p — p,u, 0 — 8) can be deduced from (2.15) by proceeding just in the
same way as in [7], while the estimates for a;{waf G can be derived from (2.13) applied by
32,55? in a similar way as in (3.12) and (3.13), by knowing that the commutator

07, Lnt) = 6f Lna — L0

is bounded in L, . and that the quantity 6? Q(f,g) enjoyes a similar estimate as (3.4).
The computation is very much delicate and lengthy, however, and so, only the final
result is presented here. See [8] for the detail.

57(p—ﬁ,u,9—5){2dw+ > / / l—a%cﬂzdﬁdm
lvl<4 /RS hi+lel<4 /R VRS

t
sy +[ [ ( s oe-pudPs s [ %ﬁ"—g'—%) dudr
8 JR® \1<]yi<4 [ R3

+HAI<4

14
< O +OM(e+NE) T / / / UOITPCE g g
Ivl+|8i<4 /0 JR3 JR3 -

As in (3.13), the weight M can be replaced by M_, but again, at the cost of the extra

term of the form .
> [ [ 1o pu0)f dodr
o Jms

1<]y]<4
on the right hand side.

3.3 A Priori Estimate

An appropriate linear combination of all the estimates obtained so far yields an inequality
of the form

N(t)? < C1é + Cyle + N(£))N(t)?,

for some constants Cy,Cy > 0 independent of € and N(t). It is easy to see that there
exists a positive constant ey such that for each € € (0, &), the cubic equation

Cyz® — (1= Cy )22 + Cy ¢ =0

has positive solutions. Denote the smallest one by &, and set ¢ = min(e,€;) and
do = min(41.d,), to conclude that N(t) < &g holds for each € € (0, ¢p).
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4 Local Solution

Put f =M 4 g and consider the Cauchy problem
g]t:ﬂ - 90(37, 5)

In order to construct local solutions, we first analyse, for each given point (ty, %o, &) €
R* x R® x R®, the backward bi-characteristic curve (X (t), 2(t)) = (X, E)(t; to, To, o) of
(4.1) passing through the point (to, 7o, &) Which is given by

aX(t —
dig) = ‘:‘(t))

(4.2) £ = -v,9(X(t)),
(X(t)ig(t))!t:to - (Eg,&)).

Since ® is assumed sufficiently smooth with bounded derivatives, a smooth bi-characterisitic
curve exists uniquely for all time ¢.
Recall the decomposition

Lfff = _Vﬁ(“cag) + Ky,
vo(1 -+ 1€)) < vgp(z,€) < na(1 4 [€]), K5z : bounded on L%m,

and define the operator U(t) by

t
U(t)gg:exp{—/o VM(X(S,t,:B,E),E(S,t,12,g))dS}go(X(O,t,.’B,S),E(O.t,$,£))-

Then, (4.1) can be rewritten formally in the form of the integral equation

t
(43) 9(6) = U0 + | Ut =) {Kstols) + Qols) ) .
= V(g)(®).
 We shall show that the nonlinear map V is a contraction map in the energy space
8%8Bg(t,z,£) 2 3 3
2o 08 e BC, ([0,T), L, (R° X R
44) Xra= {g(t,w,é) vi-@ o » }

lalll <@ ol +18] < 4

8268 g(t,x,£)?
lilglll = sup > //" 1\/19_(t(5)'€'_)t dédz
0<t<T | |ej+[Alc4 JRE JR3

(4-5) T )
S / / / O8O g o,
laj+]Bl<4 JO JR® JR? -
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provided that T',a > 0 are chosen sufficiently small.

To this end, put A = V(g). First, assume that g € Xr,. Then, h is well defined (the
integral on the right hand side of (4.3) converges). If, in addition, g and go are assumed
sufficently smooth, then evidently, h is also sufficiently smooth and solves the partial
differential equation

h”tzo - 90(377 g)

The extra smoothness assumptions on g, go will be removed later, by appealing to the
limiting argument. See below the estimate (4.12).
Now, multiply (4.6) by A/M_ and integrate w.r.t. z,£ to deduce

(4.6)

LRI +201 - GOl < CallgllIFl + v *Qae), s D vt heo)l
where ¢ is like in (1.5) for ®, or more precisely, it is assumed that
(4.7) > llozellzs <«
1<|af<5

while (1, Cy > 0 are constants independent of g, h, and the norm is

A2 = f / 2 dade.

Finally, we apply 5gm8? to (4.6) and proceed as above. Fix € > 0 so that 1 — Cie > 0,
or,

(4.8) e < 1/(201).
Then, by virtue of (3.4), we get for || + |8] < 4,
nfﬂ RO + llnsr 0,08 h ()|
<G Y 11608l (1 + Ing ool s,

Jvi+181<4

Integrating this w.r.t. ¢ yields

(4.9) A=V < llgolllo + Calllgli(T + liigllD),

where the norm |}|g|]| is as in (4.5) and |||go]||o is defined also by (4.5) but with 7" = 0.
Consider the quadratic equation C3a® — (1 — C3T)a + |||golllo = 0. This has two positive
solutions if 1 — C3T" > 0 and D = (1 — CG3T)? — 4Cs||goll}o > 0, that is, if

1 (1—CsT)?

(4.10) T<z i< =5
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and the smaller one is given by
1

= 203(1— CsT — VD).

a

Under this choice of T', go, a, (4.9) implis that
gll} < a==[[V{g)ll| < a.

Further, let ¢ € X1, and put h = V(g) — V(g'). It is easy to see that if g’ is also
assumed sufficiently smooth, h solves

(4.11) { he+ € Voh— Vo Veh + vgg(§)h = Kiglg — ) + Qe + 9,9 - ),
‘ h"t:() = 0

Quite similarly as in (4.9), we can deduce

(4.12) Al =11V (9) — VI < Cslllg + ¢'lHlllg — 411l

with the same constant Cs as in (4.9). Since we are assuming g,9" € X1,q, we get

(4.13) V() VOl <pllls—-glll,  w=20a=1-vVD<L.

We can now remove the extra smoothness assumption on g, ¢, go required in the argu-
ments given so far. Indeed, any g € Xr,, can be approximated by a sequence {g,} C C§°
in the norm of X7, and (4.13) gives

1V {gn) — V(gm)Ill < #lllgn — gmlll,

which shows that V(g,) converges. The limit is of course V'(g), and by the limiting argu-
ment, we see that the estimates (4.9), (4.12), and (4.13) hold without extra smoothness
assumption.

Since X7, is a complete metric space with the metric induced by the norm ||| - |||
and since p € (0,1), the above argument implies that the contraction mapping theorem
applies and V has a unique fixed point in Xr.. This fixed point is the desired local
solution.

Note that this local existence result requires the smallness conditions both on the
potential ® and initial data go, as seen by (4.8) and (4.10).
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