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Mode generating effect of the solutions to
nonlinear Schr\"odinger equations

(北 直泰) Naoyasu Kita
Faculty of Education and Culture, Miyazaki University

Abstract

We consider the initial value problem of the nonlinear Sclu\"odinger equation with

superposed $\delta$-functionns as initial data. The speaker will treat $\mathrm{t}\mathrm{l}\dot{\mathrm{u}}\mathrm{s}$ problem case by

case, i.e., the cases in which the initial data consists of single and double $\delta$-frmctions ,

respectively. In particular, when the initial data consists of double $\delta$-functions, the

solution receives $\mathrm{t}1_{1}\mathrm{e}$ generation of new modes which is visible only in the nonlinear

problem (see section 3).

1 Introduction

In this proceeding, we present several results on the initial value problem of the nonlinear

Schr\"odinger equation like

(NLS) $\{$

$i\partial_{t}u=-\partial_{x}^{2}u+\lambda N(u)$ ,
$u(0, x)=$ (superposition of 5-functions $f$

where $(t, x)\in \mathrm{R}\cross$
$\mathrm{R}$ and the unknown function $u=u(t, x)$ takes complex values. The

nonlinearity $N(u)$ is given by

$N(u)$ $=|u,|^{p-1}u$ with $1<p<3$ .

The nonlinear coefficient $\lambda$ takes arbitrary complex number. The functional $\delta_{a}$ denotes

the well-known point mass measure supported at $x=a\in$ R.

Prom the physical point of view, the cubic nonlinearity (i.e. $p=3$ which is excluded

in our assumption for mathematical reason) frequently appears. For example, (NLS) with

$\lambda\in \mathrm{R}$ and $p=3$ is said to govern the motion of vortex filament in the ideal fluid, In fact,

letting $\kappa,(t, x)$ be the curvature of the filament and $\tau(t, x)$ the tortion, we observe that

$v_{j}(t, x)= \kappa(t, x)\exp(\mathrm{i}\int_{0}^{x}\tau(t,y)dy)$ (which is called “Hasimoto transform” [3]) satisfies

(NLS), where $x$ stands for the position parameter along the filament
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To our regret, our argument does not contain the cubic nonlinearity. However, if one
allows us to treat the solution as a fine approximation of the physically important case,
we can imagine the time evolution of vortex filament with the locally bended initial state
(which is described as $\kappa$ ( $\mathrm{O}$ , $x)=\delta_{a}$).

The nonlinear evolution equations with measures as initial data are extensively sutud-
ied for various kinds of initial value problem. As for the nonlinear parabolic equations
like $\partial_{t}u-$ $\partial_{x}^{2}u+|u|^{\mathrm{p}-1}u=0$ with $u,(0, x)=\delta_{0}$ , Brezis-Eriedman [2] give the critical power
of nonlinearity concerning the solvability and unsolvability of $1_{1}\mathrm{h}\mathrm{e}$ equation. They prove
that, if $3\leq p$ , there exists no solution continuous at $t=0$ in the distribution sense and
that, if $1<p<3$ , it is posibble to construct a solution with a general measure as the
initial data. For the $\mathrm{K}\mathrm{d}\mathrm{V}$ equation, Tsutsumi [5] constru cts a solution by making use of
Miura transformation which deforms the original $\mathrm{K}\mathrm{d}\mathrm{V}$ equation into the modified one.
Recently, Abe-Okazawa [1] have studied this kind of problem for the complex Ginzbu rg-
Landau equation, The ideas of the proof for these known results are based on the strong
smoothing effect of linear part or the nonlinear transformation of unknown functions into
the suitably handled equation. In the present case, however, the nonlinear Schr\"odinger
equation does not have the useful smoothing properties and the transformation into easily
handeled equation. Therefore, it is still open whether we can constru ct a solution when
the initial data is arbitrary measure.

We remark that Kenig-Ponce-Vega [4] studied the ill-posedness aspect of the nonlinear
Schr\"odinger equation with $u(0, x)=\mathit{5}_{0}$ and $3\leq p$ . The situation is very similar to the
non linear heat case introduced above. They proved that (NLS) possesses either no solution
or more than one in $C([0, T];\mathrm{S}’(\mathrm{R}))$ , where $\mathrm{S}’(\mathrm{R})$ denotes the tempered distribution.
In this talk, we consider the construction of the solution to (NLS) for the subcritical
nonlinearity. We prove that the solution is explicitly obtained when the initial data
consists of single $\delta$-function (see section 2). Fu rthermore, we observe that, when the initial
data consists of double (or more) 5-functions, the superposition of infinitely many linear
solutions immediately appers (see section 3). This aspect is called “the generalization of
new modes”. Throughout this note, the Lebesgue space $L_{\theta}^{q}$ denotes

$L_{\theta}^{q}= \{f(\ ); ||f||_{L_{\theta}^{q}}^{q}= \oint_{0}^{2\pi}|f(\theta)|^{q}d\theta<\infty\}$ .

Let us state our main theorems case by case.

2 The case $u(0,$x) $=\mu_{0}\delta_{0}$

This case simply gives an explicit solution. Namely, the solution to (NLS) is given by

(2.1) $u(t, x)=A(t)\exp(\mathrm{i}t\partial_{x}^{2})\delta_{0}$ ,
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where $\exp(\mathrm{i}t\partial_{x}^{2})\delta_{0}=(4\pi \mathrm{i}t)^{-1/2}\exp(?..x^{2}/4t)$ and the modified amplitude $A(t)$ is

(2.2) $A(t)=\{$

$\mu_{0}\exp(\frac{2\lambda|\mu_{0}|^{p-1}}{\mathrm{i}(3-p)}|4\pi t|^{-\langle p-1)/2}t)$ if ${\rm Im}\lambda=0\rangle$

$\mu_{0}(1-\frac{2(p-1){\rm Im}\lambda|\mu_{0}|^{p-1}}{3-p}|4\pi t|^{-\langle p-1)/2}t)^{\frac{i\lambda}{(p-1){\rm Im}\lambda}}$ if ${\rm Im}\lambda\neq 0$ .

In fact, by substituting (2.1) into (NLS), we have the ordinary differential eq uation (ODE)

of $A(t)$ :

$\{$

$i \frac{dA}{dt}=\lambda|4\pi t|^{-(p-1)/2}N(A)$ ,
$\mathrm{A}(0)=\mu_{0}$ .

This is easily solved and yields (2.2). Note that ${\rm Im}\lambda>0$ implies blowing-up of $A(t)$ in

positive finite time.

3 The case $u(0,$x) $=\mu 0\delta 0+\mu_{1}\delta_{a}$

The superposition of $\delta$-functions causes “the mode generation” for $t\neq 0$ . Before stating

our results, let $l_{\alpha}^{2}$ be the weighted sequence space defined by

$\ell_{\alpha}^{2}=\{\{A_{k}\}_{k\in \mathrm{Z};}||\{A_{k}\}_{k\in \mathrm{Z}}||_{\ell\frac{\mathrm{O}}{\alpha}}^{2}=\sum_{k\in \mathrm{Z}}(1+|k|^{2})^{\alpha}|A_{k}|^{2}<\infty\}$
.

For the simplicity of description, we often use the notation $\{A_{k}.\}$ in place of $\{A_{k}\}_{k\in \mathrm{Z}}$ .
Then our results are

Theorem 3.1 (local result) For some $T>0$ , there exists a unique solution to (NLS)
$d\mathrm{i}s$ cribecl as

(3.1) $u(t, x)= \sum_{k\in \mathrm{Z}}A_{k}(t)\exp(it\partial_{x}^{2})\delta_{ka)}$

where $\{A_{k}(t)\}\in C([0, T]_{)}.\ell_{1}^{2})\cap C^{1}((0_{3}T];\ell_{1}^{2})$ with $A_{0}(0)=\mu 0$ , $A_{1}(0)=\mu_{1}$ and $\mu_{k}=0$

$(k^{\wedge}\neq 0, 1)$ .

Remark 3.1. Let us call $A_{k}(t)\exp(\mathrm{i}t\partial_{x}^{2})\delta_{ka}$ the fe-th mode. Then, (3.1) suggests that

new modes away from O-th and first ones appear in the solution while the initial data

contains only the two modes. This special property is visible only in the nonlinear case
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Remark 3.2. Reading the proof of Theorem 3.1, we see that it is possible to gener-
alize the initial data. Namely, we can construct a solution even when point masses are
distributed on a line at equal intervals - more precisely, the initial data is given like

$’ \mu(0, x)=\sum_{k\in \mathrm{Z}}\mu_{k}\delta_{ka}(x)$
,

where $\{\mu_{k}\}_{k\in \mathrm{Z}}\in\ell_{1}^{2}$ . In This case, the solution is described similarly to (3.1) but $\{A_{k}(0)\}=$

$\{\mu_{k}\}$ . The decay condition on the coefficients described in terms of $\ell_{1}^{2}$ is required to
estimate the nonlinearity. This is because we will use the inequality like $||N(g)||_{L_{\theta}^{2}}\leq$

$C||g||_{L_{\theta}^{\mathrm{w}}}^{p-1}||g||_{L_{\theta}^{2}}$ where $g=g(t, \theta)=\Sigma_{k}A_{k}e^{-ik\theta}e^{i(ka)^{2}/4t}$ and $\mathit{0}\in[0,2\pi]$ . Accordingly, to
estimate $||g||_{L_{\theta}}\infty$ , we require the decay condition of $\{A_{k}\}$ .

The sign of ${\rm Im}\lambda$ determ ines the global solvability of (NLS).

Theorem 3.2 (blowing up or global result) (1) Let $ImX>0$ . Then, the solution
as in Theorem 3.1 blows up in positive finite time. Precisely speaking, the $\ell_{0}^{2}$ more
of $\{A_{k}(t)\}$ tends to infinity at some positive time.

(2) Let $ImX\leq 0$ . Then, there exists a unique global solution to (NLS) discribed as in
Theorem 3.1 with $\{A_{k}(t)\}\in C([0, \infty);l_{1}^{2})\cap C^{1}((0, \infty);\ell_{1}^{2})$ .

In what follows, we present the rough sketch to prove Theorem 3.1 and 3.2. The idea
is based on the reduction of (NLS) into the ODE system of $\{A_{k}\}_{k\in \mathrm{Z}}$ . The next key lemma
gives the representation formula of $\Lambda’(\sum_{k}A_{k}\exp(\mathrm{i}t\partial_{x}^{2})\delta_{ka})$ .

Lemma 3.3 Let $\{A_{k}\}\in C([-T,T];\ell_{1}^{2})$ . Then, we have

(3.2) $\Lambda^{(}(\sum_{k\in \mathrm{Z}}A_{k}(t)\exp(\mathrm{i}t\partial)\delta_{ka})=|4\pi t|^{-n(p-1\rangle/2}\sum_{k\in \mathrm{Z}}\tilde{A}_{k}(t)\exp(\acute{\mathrm{z}}t\partial)\delta_{ka}$
,

where

$\tilde{A}_{k}$ (A $=(2 \pi)^{-1}e^{i(ka)^{2}/4t}..\langle N(\sum_{j}A_{j}e^{-ij\theta i(ja)^{2}/4t}e^{-\prime}), e^{-\mathrm{i}k\theta}\rangle_{\theta}$,

with $\langle f, g\rangle_{\theta}=f_{0}^{2\pi}f(\theta)\overline{g(\theta})d\theta$ .

Proof of Lemma 3.3. Note that the linear Schrodinger group is factorized as follows

$\exp(\mathrm{i}t\partial_{x}^{2})f$ $=$ $(4 \pi \mathrm{i}t)^{-1/2}\int\exp(\mathrm{i}.|x-y|^{2}/4t)f(y)dy$

$=$ $MD\mathcal{F}Mf$ ,



117

where

fiIg $(t, x)$ $=e^{rx^{?}/4t}g(\sim x)$ ,
$Dg(t, x)$ $=$ $(2\mathrm{i}t)^{-1/2}g(x/2t)$ ,

$\mathcal{F}g(\xi)$ $=$ $(2 \pi)^{-1/2}\int e^{-i\xi x}g(x)dx$ (Fourier transform of $g$ ).

Then we see that

(3.3) $\Lambda f(\sum_{k}Aj(t)\exp(\mathrm{i}t\partial_{x}^{2})\delta ja)$

$=N((2 \pi)^{-1/2}MD\sum_{j}A_{j}(t)e^{-i_{J}\mathrm{r}\mathrm{z}\cdot x-i(ja)^{2}/4t})$

$=$ $|4 \pi t|^{-(p-1)/2}(2\pi)^{-1/2}MD\Lambda^{(}(\sum_{\mathrm{j}}A_{j}(t)e^{-ija\cdot x-i(ja)^{2}/4t})$ .

Note that, to show the last equality in (3.3), we make use of the gauge invariance of

the nonlineaxity. Replacing $0\cdot$ $x$ by 0, we can regard $N( \sum_{j}A_{j}(t)e^{-\dot{q}j\theta-i(ja)^{2}/4\mathrm{f}})$ as the
$2\pi$-periodic function of 0. Therefore, by the Fourier series expansion,

$N( \sum_{j}A_{j}(t)e^{-tj\theta-i\langle ja)^{2}/4t})$
$=$

$\sum_{k}\overline{A}_{k}(t)e^{-i(ka)^{2}/4t}e^{-?k\theta}$

$=$ $(2 \pi)^{n/2}\sum_{k}\overline{A}_{k}(t)\mathcal{F}M\delta_{ka}$
.

Plugging this into (3.3), we obtain Lemma 3.3. $\square$

Our idea to solve the nonlinear equation is based on the reduction of (NLS) into the

system of ODE’s. By substituting $u= \sum_{k}A_{k}(t)\exp(\mathrm{i}t\partial_{x}^{2})\delta_{ka}$ into (NLS) and noting that
$\mathrm{i}\partial_{t}\exp(\mathrm{i}t\partial_{x}^{2})\delta_{k\alpha}=-\partial_{x}^{2}\exp(\mathrm{i}t\partial_{x}^{2})\delta_{ka}$, Lemma 3,3 yields

$\sum_{k}\mathrm{i}\frac{dA_{k}}{dt}\exp(\mathrm{i}t\partial_{x}^{2})\delta_{ka}$ $=$ $|4 \pi t|^{-(p-1)/2}\sum_{k}\tilde{A}_{k}\exp(\mathrm{i}t\partial_{i\mathrm{L}}^{2})\delta_{ka}$
.

Equating the terms on both hand sides, we arrive at the desired ODE system:

(3.4) $i \frac{dA_{k}}{dt}=|4\pi t|^{-(p-1)/2}\tilde{A}_{k}$

with the initial condition $A_{k}(0)=\mu_{k}$ . Now, showing the existence and uniqueness of

(NLS) is equivalent to showing those of (3.4). To solve (3.4), let us consider the following

integral equation.

$A_{k}(t)$ $=$ $\Phi_{k}(\{A_{k}(t)\}_{k\in \mathrm{Z}})$

(3.5) $\equiv\mu_{k}$
– $\mathrm{i}\int_{0}^{t}|4\pi\tau|^{-(p-1)/2}\overline{A}_{k}(\tau)$ dr.
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Then, we want to see the contraction mapping property of $\{\Phi_{k}\}_{k\in \mathrm{Z}}$ . The simple aplication
of Parseval’s identity derives the following.

Lemma 3.4 Let I $=[0,$T] and $\{A_{k}\}=\{A_{k}\}_{k\in \mathrm{Z}}$ . Then, u)e have

(3.6) $||\{\tilde{A}_{k}\}||_{L^{\mathrm{K}}(I_{j}\ell_{1}^{2})}\leq C||\{A_{k}\}||_{L^{\infty}(I:\ell_{\tilde{1}}^{n})}^{p}$ ,

(3.7) $||\{\tilde{A}_{k}^{(1)}\}-\{\tilde{A}_{k}^{(2)}\}||_{L^{\mathrm{K}}(I_{j}l_{0}^{2})}$

$\leq C(\max_{=j1,2}||\{A_{k}^{(J\rangle}\}||_{L^{\mathrm{r}}(I;\ell_{1}^{2})})^{p-1}||\{A_{k}^{(1)}\}-\{A_{k}^{(2)}\}||_{L^{\infty}(I;\ell_{0}^{2})}$.

Proof of Lemma 3,4. According to the description of $\overline{A}_{k}$ as in Lemma 3.3 and the
integration by parts, we see that

$k\tilde{A}_{k}$ $=$
$(2 \pi)^{-1}\mathrm{i}e^{-\mathrm{i}(ka)^{2}/4\mathrm{t}}\langle\partial_{\theta}\Lambda^{r}(\sum_{j}A_{f}e^{-ij\theta}e^{r(ja)^{2}/4t}), e^{-?k\theta}\rangle_{\theta}$

.

Then, Parseval’s equality yields

$||\{k\tilde{A}_{k}\}||_{\mathit{1}_{0}^{2}}$ $=$
$(2 \pi)^{-1/2}||\partial_{\theta}N(\sum_{J}A_{j}e^{-ij\theta}e^{?0^{\alpha}\mathrm{J}^{7}}.)\sim/4t||_{L_{\theta}^{2}}$

$\leq$
$C|| \sum_{j}A_{j}e^{-\tau j\theta}e^{i(ja)^{2}/4l}||_{L_{\theta}^{\infty}}^{p-1}||\sum_{\mathrm{i}}jA_{f}\epsilon^{-ij\theta},e^{?(ja)^{2}/4t}||_{L_{\theta}^{2}}$

$\leq$ $C||\{A_{j}\}||_{\ell_{1}^{2}}^{p}$ .

Thus, we obtain $(3,6)$ . The proof for (3.7) follows similarly. Since there is a singularity
at $u=0$ of the nonlinearity $N(u)$ , we do not employ $\ell_{1}^{2}$ -norm to measure $\{A_{k}^{\langle 1)}\}-\{A_{k}^{(2)}\}$ .
$\square$

We are now in the position to prove Theorem 3.1.

Proof of Theorem 3.1. The proof relies on the contraction mapping principle of
$\{\Phi_{k}(\{A_{j}\})\}$ . Let $||\{\mu_{k}\}||_{l_{1}^{2}}\leq\rho_{0}$ and

$\overline{B}_{2\rho_{0}}=\{\{A_{k}\}\in L^{\infty}([0, T];\ell_{1}^{2})\cdot,||\{A_{k}\}||_{L^{\mathrm{m}}([0,T];\ell_{1}^{2})}\leq 2p_{0}\}$

endowed with the metric in $L^{\infty}([0_{:}T];\ell_{0}^{2})$ . Then, in virture of Lemma 3.4, we see that
$\{\Phi_{k}(\{A_{j}\})\}$ is the contraction map on $\overline{B}_{2\rho 0}$ if $T$ is sufficiently small. Thus, Theorem 3.1
is obtained. $\square$

To prove Theorem 3.2, we apply the a priori est imates described in the following.

Lemma 3.5 Let $\{A_{k}(t)\}$ be the solution to (34) in $C([0,T];\ell_{1}^{2})\cap C^{1}((0,$T]; $\ell_{1}^{2}$ ).
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(1) Then, we have

(3.8) $\frac{d||\{A_{k}(t)\}||_{\ell\frac{\mathrm{Q}}{0}}}{dt}=\frac{Im\lambda}{\pi}(4\pi t)^{-(p-1)/2}||v(t)||_{L_{\theta}^{\iota’+1}}^{p+1}$ ,

where $7I(t\theta)\}$ $= \sum_{k}A_{k}(t)e^{-k\theta}e^{l(ka)^{2}/4t}$ .

(2) In addition, if $ImX<0$ , then we have

(3.9) $||\{kA_{k}(t)\}||_{l_{0}^{2}}\leq Ce^{t/2}$ ,

where the positive constant $C$ does not depend on $T$ .

Remark 3.3 The a priori bound in (3.9) may be refined by sophisticating the estimates

in the proof.

Formal Proof of Lemma 3.5, Note that $v(t, \theta)(=v)$ satisfies the nonlinear equation

like

(3.10) $\mathrm{i}\partial_{t}v=-\frac{a^{2}}{4t^{2}}\partial_{\theta}^{2}v+\lambda|4\pi t|^{-(p-1\rangle/2}N(v)$ .

Also, let $11\mathrm{S}$ remark that $||\{A_{k}(t)\}||_{\ell\frac{[mathring]}{0}}=||v(t)||_{L_{\theta}^{2}}$ and $||\{kA_{k}(t)\}||_{t\frac{9}{0}}=||\partial_{\theta}v(t)||_{L_{\theta}^{2}}$ . Then,

multiplying $\overline{v}$ and taking the imaginary part of integration, we obtain (3.8). On the other

hand, multiplying $\overline{\partial_{t}v}$ and taking the real part of integration, we have

(3.11) 0 $=$
$- \frac{a^{2}}{4t^{2}}\frac{d}{dt}||\partial_{\theta}v||_{L\frac{\mathrm{Q}}{\theta}}^{2}+\frac{2{\rm Re}\lambda}{p+1}|4\pi t|^{-(\mathrm{p}-1\}/2}\frac{d}{dt}||v||_{L_{\theta}^{\mathrm{p}+1}}^{p+1}$

-2(Im\lambda )|4\pi t | ${\rm Im}\langle N(v), \partial_{t}v\rangle_{\theta}$ .

To estimate ${\rm Im}\langle N(v), \partial_{t}v\rangle_{\theta}$ in (3.11), let us multiply $\overline{N(v)}$ on both hand sides of (3.10).

Then we see that

(3.12) ${\rm Im}\langle N(v), \partial tv\rangle_{\theta}$ $=$
$- \frac{a^{2}}{4t^{2}}{\rm Re}\langle\partial_{\theta}^{2}v,N(v)\rangle_{\theta}+({\rm Re}\lambda)|4\pi t|^{-(p-1)/2}||v||_{L_{\theta}^{2p}}^{2p}$

$\geq$ $({\rm Re}\lambda)|4\pi t|^{-(p-1)/2}||v||_{L^{\frac{9}{\theta}p}}^{2p}$ ,

since ${\rm Re}\langle\partial_{\theta}^{2}v,N(v)\rangle_{\theta}\leq 0$ . Combining (3.11) and (3.12), we have

(3.13) $\frac{d}{dt}||\partial_{\theta}v||_{L_{\theta}^{2}}^{2}+K_{1}({\rm Re}\lambda)t^{\langle 5-p)/2_{\frac{d}{dt}}}||v||_{L_{\theta}^{\mathrm{p}+1}}^{p+1}-I\zeta_{2}({\rm Im}\lambda)({\rm Re}\lambda)t^{3-p}||v||_{L_{\theta}^{2\mathrm{p}}}^{2p}\leq 0$ ,

where $K_{1}= \frac{8}{(p+1)a^{2}(4\pi)^{(p-1)/2}}$ and $I \mathrm{f}_{2}=\frac{8}{a^{2}(4\pi)^{p-1}}$ . This is equivalent to

(3.14) $\frac{d}{dt}E(t)\leq\frac{(5-p)K_{1}{\rm Re}\lambda}{2}t^{(3-p)/2}||v||_{L_{\theta}^{I?+1}}^{p+1}$ ,
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where

$E(t)=|| \partial_{\theta}v||_{L_{\theta}^{2}}^{2}+I\mathrm{f}_{1}({\rm Re}\lambda)t^{(5-p)/2}||\tau’||_{L_{\theta}^{\mathrm{p}+1}}^{p+1}-I\mathrm{f}_{2}({\rm Im}\lambda)({\rm Re}\lambda)\int_{t_{0}}^{t}\tau^{3-p}||v(\tau)||_{L_{\theta}^{2\mathrm{p}}}^{2p}$ dr.

In this proof, we only consider the most complicated case that ${\rm Im}\lambda$ and ${\rm Re}\lambda<0$ . The

other case follows more easily, By (3.14), we have $E(t)\leq$ (const.) for $t>t_{0}$ , i.e.,

(3.15) $|| \partial_{\theta}v||_{L_{\theta}^{2}}^{2}\leq C_{1}+C_{2}t^{(5-p)/2}||v||_{L_{\theta}^{\mathrm{p}+1}}^{p+1}+C_{3}\oint_{t_{0}}^{t}\tau^{3-p}||v(\tau)||_{L_{\theta}^{2\mathrm{p}}}^{2p}d\tau$

for some positive constants $C_{1}$ , $C_{2}$ and $C_{3}$ . Applying the Gagliardo-Nirenberg inequalities:

$||v||_{L_{\theta}^{p+1}}^{p+1}$
$\leq$ $C||v||_{H_{\theta}^{1}}^{(p+1)\beta}||v||_{L_{\theta}^{2}}^{(p+1)(1-\beta)}$ ,

$||v||_{L_{\theta}^{p}}^{2p}\sim$’ $\leq$ $C||v||_{H_{\theta}^{1}}^{2p\gamma}||v||_{L\frac{9}{\theta}}^{2p(1-\gamma)}$ ,

where l/(p+l) $=\beta(1/2 ・1)+(1-\beta)\underline{?}$ and $1/2p=\gamma(1/2-11, +(1-\gamma)/2$ , and using
Young’s inequality, we have

(3.16) $||v(t)||_{H_{\theta}^{1}}^{2}\leq C\langle t\rangle^{3}+I_{t_{0}}^{t}||v(\tau)||_{H_{\theta}^{1}}^{2}d\tau$.

We here note that, since $||v(t)||_{L^{2}}$ has a finite bound in virture of (3.8), it is included in the
positive constant $C$ . Applying Gronwall’s inequality to (3.16), we obtain (3.9). $\square$

Proof of Theorem 3.2. If ${\rm Im}\lambda>0$ , then, Lemm a 3.5 (3.8) and Holder’s inequality
$||v||_{L_{\theta}^{\mathrm{p}+1}}^{p+1}\geq(2\pi)^{-(p-1)/2}||v||_{L_{\theta}^{2}}^{p+1}$ give

$\frac{d}{dt}||v||_{L_{\theta}^{2}}^{2}\geq C||v||_{L_{\theta}^{2}}^{p+1}$ .

This implies that $||v(t)||_{L_{\theta}^{2}}=||\{A_{k}(t)\}||_{l_{0}^{2}}$ blows up in positive finite time. On the other
hand, if ${\rm Im}\lambda\leq 0$ , then, Lemma 3.5 gives the a priori bound of $||\{A_{k}(t)\}||_{l_{1}^{2}}$ for any positive
$t$ . Hence, the local solution to (3.4) is continuated to the global one. $\square$
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