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On formal solution and genuine solution
for some partial differential equations

H Y B ARTEKR I #7) (Hiroshi YAMAZAWA)
Department of Language and Culture, Caritas Junior College

1 Introduction

Let C be the complex plane or the set of all complex numbers, ¢ be the variable in C;, and
z = (z1,...,%,) be the variable in C} = C,, x-+- x C,,,. We use the notations: N = {0,1,2,...},
a = (a,...,0n) € N*, la| = @1 + -+ + &, and (8/8z)* = (0/0z1)** ---(8/0zn)>". Let
|z| = maxy<icn{|zs}, DR ={z € C}; |z] < R} and Sp(T) ={t € C;; 0 < |t| < T and |argt| <
8}. O(Dg) (O(Ss(T) x Dg)) is the set of all holomorphic function on Dg (resp. Sp(T') x Dg).
Sg,(To) CC Sp(T") means g < 8 and Tp < 7.

We consider the following nonlinear partial differential operator D{(u):

o peey= Y s 11 {(g) (£) W)

lglz0 F+lalsm

Let Z% = 1, a<m Zia™ and gl = 30,1 1a1<m G- We assume that Dlaiz0 t70Cq (8, 2) 27 s
a convergent power series in Z and the coefficients c4(t, %) are holomorphic in Sp(T) x Dg and
satisfy ¢,(0,z) # 0.

Ouchi studied an equation D{u) = 0 in the case that El aiz0 £77¢q (8, z)Z7? is a polynomial
in Z with degree M. Let us introduce a function class and some conditions in Ouchi[3]. Put
ly = max{j + |a|; ¢j,« # 0}

Let us define Newton polygon for an operator D{u). We put
II{a,b) := {(z,y) € R*; z < e and y > b}.
Then we define Newton polygon NP(D) and NP(D) by

NP(D) = CH{ U Ty 0); ety z) 2 o} and NP(D) = OH{ U T, 0); clt, o) 2 o},

lgt=1 lg}=1

where CH{'} is the convex hull of a set {-}.

The boundary of Newton polygon NP(D) consists of a vertical half line X7, , a horizontal
half line X7, o and segments 3 ; (1 < i <p—1). Let 7, ; be the slope of ¥h; fori=0,...,p.
Then we have 0 = vp, o <vp; < -+ < 7p, = 0. Further Newton polygon NP(D) have p point
vertices, we denote them by (I;,04) with lp < Iy <--- <lpy =m.

For NP(D), we define X}, ;, v5; for i = 0,...,pp and (Ipi,op,) for i =0,...,pp — 1 by
same rules.

Further we treat an equation that is obtained by substituting ¢ u(t, «) instead of u(t, z) in the
operator (1.1). For the operator obtained by this, we define the former and denote by NP(D;v),
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NP(D;v), £5,(v), £54(v) and so on. Then v, ; = ¥p:(v) bolds for i = 0,...,pp — 1.

At next let us define an operator £; with respect to £}, ; for i = 1,---,pp — 1. Let I; =
{g; opi —0qg =75 ;(Ip,i — ;) and |g| = 1}. Then we define

tateer = T T1 {5 (2) o)™

g€l; jtlol<m
= Y tegalt z)( )’(%) u(t, z)
()€

where J; = {(j,a) € NxN* j+|a| < mand op; — 650 = ¥ (ps —J — |e])}. Let m; bea
differential order with respect to z of L;.
Quchi’s three conditions are as follows;

Condition 1. 371 >, t79c,(t,z) 27 is a polynomial in Z with degree M.
Condition 2. The equation D(u) = 0 has a linear part with order m.

Condition 3. For L; the followings hold;
(1) Ifj +lal < Ip; then |a] < m; and (2) 3,1 ajmtp. jal=m: & £(0,0)% # 0 where £ =
(1,0,---,0).

Lemma 1. If the equation D(u) = 0 has a linear part with order n, then there exists a sufficiently
large vg > O such that for v > vy NP(D;v) = NP(D;v) holds.

Definition 1. Put S = So(T) and Sy = Se,(To) Let v > 0. Asy%ﬂ(S x D) is the set of all
functions f(t,z) € O(S x Dg) such that for any So CC S

[f(t,2)] < Coexp(—colt|™)
where ¢g depends on Sg.

'Then we have same result as Ouchi’s that in the case that 2iglz0 7 cg(t,z)Z9 is analytic in
Z. -

Theorem 1. Let cy(t,z) € Asy% (Sg(T) x Dg) (0 < 8 < /273 ). Suppose that Condition
2 and 8 hold for £; (i = 1,...,pp — 1). Then there is a solution u(t,z) € Asy{ ¥ (Sgr (T) x D,)
O <8 <m/2v% ,, 1) of D(u) =0 for 0 < p < R.

Tn this paper it is main purpose that we investigate the relation between formal power series
solutions and genuine solutions of some nonlinear partial differential equations. For this purpose
we apply Theorem 1.

Now we consider the following equation:

(1.2) Lu{t,z) = F(t’ z, {(tgz)j (é%) u x)}maxsfn)

where L =}, 01 %.e (2)(td]8t)7 (8/0z)* and a;q(x) € O(DR).
We define the operator L(z, k,8/0z):

(13) L{zk o) = H%Q @i (2)",

and we simply denote L(z, k,8/0x) by Li.
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Assumption 1. The operator Ly is a differential operator with order my.
We put _
(1.4) PSIL{z, k€)= Y (@)
Ftlal=l
Assumption 2. P.S.L{z,k, .f) is a polynomial in k with degree | — my and does not vanish for
E=1,2,... where £ ={1,0,...,0) € N*.

Assumption 3. The function F(t,z, Z) is holomorphic in a neighorhood of the origin in #,z,2Z)
and satisfies the following two conditions:

i) F(0,1,0)=0

OF
. _ <
1) 3Z]a(0$0) 0 for j+lal<m.
By Assumption 3 F(¢,z, Z) has the following expansion:
(1.5) F(t,z,Z) = g(t,z)+ Y t79g,(t,5)2% =: g(t,2) + G1(t, z)(Z)
lgl>1

where g,(0,2) # 0 and o, > 0 for |¢| = 1. We may assume that the coefficients g(t,z) and g,(t, )
belong to O(Ss(T) x Dg,)-

For thus type equations Gérard-Tahara [1] and Ouchi [2] studied an existence of a formal power
series solution with Gevrey type estimate and further Ouchi [2] studied a formal solution of a more
general form Y ux(z)t? with g € R.

We define the index v, as follows;

o4+ !Q[

-1
1. = min § e’
(1.6 = min {0 > 1)

where J = {g: g,(t,z) % 0}.
Let us define some function class.

Definition 2. Let s > 0. We define G1*} as the set of all formal series of the form u(t,z) =
ks uk(T)t* with up(z) € O(Dg) such that the series Sopsg Uk(Z)tR /K1 is convergent in a
neighorhood of the origin. -

Definition 3. Put S = S¢(T) and Sy = Sp,(To). Let v > 0. Asy;,1(S x Dg) is the set of all
function f(t,z) € O(S x Dg) such that for any So CC S

N-1

fta) - Y fulo)t

k=0
where fi,(z) € O(Dg) (k € N) holds for constants Ay and By where Ag and By depend on So.

Then we have;

< ApBYMNT(N/y+1) teSo

Theorem 2. Suppose that the equation {1.2) satisfies Assumption 1, 2 and 3. Then the equation
(1.2) has a formal solution U(t,z) = 3,5, uk()t* with
9 \h
(1.7) (--—) ue(0,2) =0 for h=0,1,...,mz — 1.
8121
Further (1) if | > m the formal solution is convergent in a nengorhood of the origin, (2) ifl <m
the formal solution belongs to G1/m?,
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Remark 1. Let (E') be an equation obtained by substituting u(t, z) = (8/0z1)™*w(t, z) into the
equation (1.2). We apply Gérard-Tahara’s result ([1] Chapter 10) for this equation (E') with
respect to w(t,z). Then we can obtain Theorem 2.

In the case [ < m, under some conditions we will investigate that for some sector Sy and r > 0
there exists a genuine solution ug, (¢, %) € Asy{4,}(S1 x D,) where v, defined in (1.6}

Let us start a construction of a genuine solution. It follows from Theorem 2 that for the formal
solution #(t, ) there exists a function uo(t, =) € Asy(y,3(Se(T) x Dgr) with 0 < 6 < m/27; such
that for any Sy CC Se{T)

N-1
luo(t, ) — Z up(2)t*] < AoBoNHNT(N/yi +1) for te€ S
k=1

where Ag and By depend on Sp.
We construct a genuine solution as the following form:

u(t, x) = uo(t, z) + v(t, z).
Put

NIy O\
D(ult, ) = Lult, z) —-F(t,:c, {(ta) (@) u(t,x)}j+lal$m).
We consider the following equation with respect to v(t, z)as follows:
(1.8) D (v) := D{ug +v) = 0.

Theorem 3. Let § = So(T) with 0 < 8 < 7/2%pug p_.,—1- Under the assumptions of Theorem
2, suppose that Condition 2 and 8 for alli = 1,...,pp«o — 1 hold for the equation (1.8). Then for
S CC S there exists a solution ug, (t,z) € Asy(y,3(S1 % D») of the equation (1.2).

Proof. Put §(¢,z) := Lug(t,z) — G1(t, 2)(uoe(t, )). Let go(t, ) = g(2, z) —g(¢, z), then we have
(1.9) lgo(t, z)l < Ce™¢™™  for te S
For the proof, see Quchi ([3],Proposition 5.2)

For the equation D¥ (v) = 0 by showing ¥, ; = 71 we can obtain Theorem 3 from Theorem

1.
The equation D*(v) = 0 has the following expansion:
NIy B\~ R
L’U(t,.’l)) = go(t,:z:) + Z tang(t, :0) H {(ta)l(%) (UQ +’U)}q
(1.10) laj21 FHalsm i e Yt
— Z tang(t,x) H {(ta) (5-;) ug} .
lgl>1 jt+|algm

By G(t,z) = 34>, uk(z)t* we can put (t8/8t) (8/0x)>uo(t, T) = tcja(t, z) for cja(t, z)
€ O(S % Dg). Then D*u(t,z) becomes

Lo(ta) — 3 Y gt g, 0) (et a)} o

lgj>1 j+Hef<m

(1.11) | y ( I {cj,’a,(t,z)}q,,qf)(t%)f(%fv(t,w).

il Hlali<m
(3" e’ Y4, a)

From (1.11) we understand that D*¢v(t,z) is constructed by all differentials of the equation (?7).
Therefore we have ¥5u, ; = 71 by the definition of 41. Hence we obtain Theorem 3. Q.E.D.
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2 Preparation of Theorem 1

In this section it is our purpose to prepare a proof of Theorem 1. Let 0 < R < Rq. Let us define
an operator P as follows:

e ()R - T () ()

Jefe=m>
ay<m*

¥ ewneald) ()

where a.(t,z) and by, «(t, z) belong to O(Se(T) x Dr)-
Let us consider the following equation:

(2.1) Pu= 3 g (ta) ] {(t%)j(%)au}%a +g(t, z)

fal>1 itla|Sm

where ¢, (t,z) € O(Ss(T) x Dg) for |¢| > 1 and g(t,z) € Asy{,;(Ss(T) x Dr), and the orders
o, — o+ satisfy as follows;

[ —q(LF =1+ JE (E>0) for L <L*
(2.2) Ug—O0p+ = { v*(ly — L*) +J§ (qu >0) for I, >L*
where 0 <y < 4* < oo. If {g; I, > L} = 0 then we define v* = cc.
Let us introduce the following functional class X, 4 . where p € N and ¢,¢,v 2 0.
Let p > 0. For p(z) = ¥ gen- apz” we define the norm ||g]|, by

!
(23) lielle = 3 lasligrr®o!
BEN )
For a fixed a > 0 we put
w___ ok e 1 oW
© (k + 1)m+2 an ®R—P (R — p)k )

Definition 4. X, 4.,(Ss(T) x D,) is the set of all function p(t,z) € O(Ss(T) x D,) with the
following bounds; There exists a positive constant ® such that for all s € N

R

The norm of w(t,z) is defined by the infimum of & in (2.4) and is denoted by ||¢||p.g.c,v-

< BCC|H| exp(—cjt] )OETP for te Sy(T).
P

This definition is a little bit different from that in Ouchi {3].

We fix a positive constant § such that 0 < § < min{J}; ¢ with [, < L*} and v*/6 € N. We
define Py by Py = [0k/v+] + (L* — m")k. I {g; l; > L*} = @ then P, = (L* —m")k by v* = o0
where [a] denote the integral part of a.

Theorem 4. Let S = Sp(T). Suppose that for all s € N there ezists a positive constant G such
that

(2.5) H(t-gi)sg(t, -)HR < Q¢ exp(—colt| O™ for teS.
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Then the equation (2.1) has a formal solution u(t,2) = 3 4~ ug(t, &) that satisfies for k > 0
1

2. t-—- . < 5| 4|8k _olt—Y (s+Fs)

(2.6) H uk(t, )Hp < Upl®|t°" exp(—clt] )((L* — *)k)!GR“P for t€8

for a sufﬁciently small T >0,0< p < R and 0 < ¢ < ¢y where the series 3,4 Uitk converges
in a neigborhood of the origint = 0. -

Let us introduce some lemmas for the functional class Xy g c -

Lemma 2. Assume

(2.7 Hul]p<® ~, for 0<p<R.

(1) Let k > 0. Then we have

(2.8) H&L_ H < MOBO(HU for 0<p<R
1

and have

(2.9) H o | < Moe®$*D for 0<p<R

fori=2,...,n where My = 2m+2.

(2) Let k > 1. Then we have

-1

(2.10) H(gg—) u“ <27 G)(k 1) for 0<p<BA.

1

Proposition 1. Let 0 < I’ < L <m and P, P' > 0. For functions u(t,z) and v(t,z) we assume
that there exist positive constants U and V such that fort € S

H(t%) squ <UL eXp(—cIt[_"f)_;_!@(s+P+L)
and
Then we have fort € S

H(t%)s(uv)”p < UVC5|L‘|4+q' exp(—cltl“‘r)(_}%ﬁm@(s+p+p'+mv

Proposition 2. Let P > 0. For a function u(t,z) we assume that there ezists a positive constant
U such that fort € S
O\°¢
5) 4,
”( 5t) "

Then we have the following estimates;
there ezists a positive constant C such that fort € 8

&Y ll(f%)s{(at)_l Hi < W ™ ¢+ exp—cit ™) 5 @425 if a=0,

< UC |t exp(—clt| ™) 5 e““’).

15 {Cz) M, < U@lti%xp( )08 if 40,
@ |5 ) U} pS—*UCslt!qeXp(-citl‘“’)——(agi’f),
(3) H(t—%)s t"“’u)H Cs“lt[" exp(— c{t["r) @(Hf-kl)
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Let us prove Theorem 4. We consider a solution of the following equation:

(2.11) Plw(t,z) = W(t,z)
where
8 —L*4m” 8 —m*
YO v v
- per(d) (L)
For the equation (2.11) we assume for 0 < p< Rand t€ S
AN SR wers( |~ 1 (s+-P+m*)
|(t52) W, < wet™ esplet ™ = ®

Let Aa = HaaH0,0,0,v and BL,ot = ”bL,aHQ,0,0,'y-

Proposition 3. Let P > 0. The eguation (2.11) has a singular solution w(t,z) that satisfies

[63)"l, < =2

forte€ S and 0 < p < R where

1 gls+P+m”)
T =)D

wesltk exp(—cltl—“’>(

] * L*_L * ] *
C{¢,7) = Z Aa(Moe)h |(27_)m —a Z BL,Q(E) o —[al(Moe)la 1(27)’” —oy
|a|=m* ELISL* &Y
oy <m* a|<m*

Proof. We construct a solution w(t,z) = E?:o wg(t, z) as follows:

wo(t, z) = W(t,z)

wﬁ(t,m): Z am(t,x)(%>a—elm w,g_l(t,ﬁ’l)
jor|=m*
e *em* o a-—-eym”™
CY )G

L<L*
laj<m*

for g > 1.
By Lemma 2, Proposition 1 and Proposition 2-(3) we can show that the following estimate
holds for 8 > 0:

018)  ||(12) || < CEAPWEUt el T

fortESa.ndO{p(R.
By the definition of C(¢,7) we have C(¢,7) < 1 for a sufficiently small 7 > 0. Hence for

w(t, 7) = Y poo wplt, x) we have

COR

Lt
1- G(C) T)

1 g m*
@( + P+ )

WCsltlak exp(~—clt| ™) (L —~m=)(k — D)t R—p

lp <
QAHLD.

By Proposition 3 we have the following proposition;



Proposition 4. Let P > 1. For an equalion
Pu(t,z) = W(t, z)

assume that there erists o positive constant W such that fort € §

163)

Then we have fort € S

(5"

o116k exo(— — 1 (s+P+m')
. $ WC lti p( C|t| )((L* _m*)(kk )) @ ’

e
s (BT e g e el )

1 (s4+-P)

Proof. For the solution w(t,z) of the equation {2.11), we have

(2.14) u(t,z) = (t%)_(LLM*) (aiml)—m‘w(t, z).

By Lemma 2-(2), Proposition 2-(1) and Proposition 3, we obtain the desired result. Q.E.D.

Proof of Theorem 4.
We put C, = ||cg|lo,0,0,y- We construct a formal solution u(t,z) = Yoo uk(t,z) of the equation

(2.1) by same method as Ouchi [3}:

Puo{t,z) = g(t,x)

Pug(t,z) = Z 1797l e (t, x) Z H H(@é) (-f;) uk, (t, @)

1<lg1gk k() 1=k j+]ol <m i=1
(2.15) as -
+ Z tdq—ﬂ'z,*cq(t7$) Z H H( ) (5—“) ?.Lk,i(t,ﬂ'}>
e ()| + 35 (1~ L)k S+l Sm =1

= Wl,k(uk:; k< k) +W2,k(’ukr, k< k) : Wh(uk:, k< k)

Let us give ux(t,z) (k > 0) an estimate. By the assumption we have
AN s -ryQis+tm™)
|(25;) 3|, = 6¢ exp(-eoltl 04+,
By Lemma 2-(2), Proposition 2-(1) and 3 we have for t € S = Sg(T)
8\ s - s
[(tz7) || < o¢ exp(-clti™ef,

for a sufficiently small 7' > 0. So we put Us = G, then we have the desired result for k = 0.
At next we assume that we have the desired result for k' = 0,1,...,k — 1. By Lemma 2-(1)
for k; < k we have

163 {(05) o) =3,

Cj(Mge)lod 1 (s+Pk +g+!o¢1
T

Uk §7 11" exp(—eltl ™) e =5y O s

183
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Put P' = 3.1 ia1<m 2iet Pree We have ] 0 1cm 2% B/ (L7 = mM)k)t < PUY((LT -

m*)|k(g)|!, then by Proposition 1 we have

e e, I T ) o),

3 e I }
(2.16) < (E"__%(—lql——ﬁ{ H HC Mo ) {}Cﬂtlélk@)iexp(—cm"ﬁf)
P jHal<m i=1

1 Qls+P )

T = m) k@Dl *

Under 1 < |g| < k and |k(g)] + 1 = &, it follows from o, — oz» = —7(L* ~ o) + Jg, P +1y <
Py +1,— L* +m* and Py + m* — (P’ 4+ L*) < |g| that by Proposition 2- (3) we have

L*—lg i (Mge)le!
< ¥ &) aoram > { I 9%

1<(ql<k oY !k(q)l-}—l:k itial<m i=1
ig<L*

|6l

1 (3+Pk+m )
1Ox .
@& —mE—D)

At next let us estimate Wa,(t,z). As Wik(t,z) under the conditions 1 < |gf < k and
lk(q}|+7—(l ~L*) = k the inequality (2.16) holds for t € S. By Pp+m*~(P'+lg) > (L*—m*) (k-
|k(q)]—1) > 0and gy —0p+ = v*(lg— L) +J2 and Py +m* — (P’ +1g) < P+ L* = (P'+ L) < |g|
we have for t € S

lal i e!ai
@)Wl < ¥ g > { I ] £, )

151gi<s |b(g) v (L —L7) f3=k  +lal<m i=1

X C*|¢|°* exp(—clt| ™7

1 (8+Pk+m )
(R ICES) '

Therefore we obtain the following estimate for Wy = Wi  + Wa i

x  C°lt** exp(~cft| ™)

P c -l MC T (I (Moe)l™! ‘
2V wm] < ¥ (2 Tt S {0 j £
H( at) ]EisqlLSj (C’y) (R—p)lqu‘ﬂ 1) lk(q)!+1=k{j+la|sm =1 701 }
1 *
o116k = (s+Pr+m*)
X C°ft]°" exp(—clt| )((L*—m*)(k—l))faRw’a
Mlic, ¢ Moe)| '
i 1<lZi<k (R"‘P)lq(lql“l) Z { H ].:[ }
RN k(@) |4y (lg—L*) 6=k j+laj<mi=l
_ 1 s+Py+m*)
x  Co1EF exp(—clt]™ ®(+“ .
I exp(—ltl ™) e =Ty
Put
L* —m*\ L -m" me 1
M= ( ; ) e e

By Proposition 4, we have for t € §

1 (s+Petm™)

@ =G — o P

*[t°" exp(—cft| ™

[(5)" ], <




C\L* 1, Mo %G, M, )!a!
Ue = M 3 (c_') (R_:)zq(ﬁ;f~1) > { H H"*F?S‘ILU’“}

k(@) +1=k  j+le]<m =1
Mll}qic'g C](Moe)[ E
M (R~ p)la(al-D) > { 1I H =~ Us.}-
[B()|+v* (lg—L=)/6=k j+|a|<mi=1

At last we show that 3, Uxt® is a convergent power series in a neigborhood of the crigin.
Here let us consider the following equation:

g)b—lq'(“—lj;c—— H (ﬁj(Moe)l”‘iY)qj,a

m(lq|-1) o
w7 T dgm s T
- Mic CH{Mpe)l®l N5
(to=L*)y" /6 ___ 70 3 _ S0
+ M ‘; t (R_p)m(lq!*l) 3+|IA|[< ( e Y) .
JUZL al<m

Remark 2. The right hand side in the above equation is a convergent power series in Y.

By substituting Y(t) = 3,5, Yst* into the above equation, we have Uy < Y for k > 0. So
it is sufficient to prove that the above equation has a holomorphic solution. By implicit function
theorem at (¢,Y) = (0,G) we have a holomorphic solution with ¥'(0) = G. Hence > ;54 Uyt®
converges in a neigborhood of the origin ¢ = 0. Q.E.D.

3 Proof of Theorem 1

Tn this section we give a proof of Theorem 1. By Theorem 4 we obtain the following estimate;
there exist positive constants A and B such that for t € Se(T)
Nkt )lp < ABF[H* exp(~clt]™) if {g; Iy > L*} =10
k
@ (e, )l < ABHH expl-eltl )T (22 + 1) it {g; I, > L'} £0.

By (3.1), if {¢; I, > L*} = 0 then the formal solution > 4~ ur(t, :1;) in Theorem 4 becomes a
genuine solution of the equation (2.1}.
From now we discuss the case {g; I, > L*} # 0. It is our purpose to show the following two

propositions;
Let S = Sg(T) and Sy = S, (TQ) with WOI < 7r/(2'y*).Put

0so(60) = Pus,(t0) = Y ewetn) I {(og) (5) uset )}

lg]>1 it+loig<m
- g(t7 $)
Proposition 5. Letuy(t, @) be constructed in Theorem 4. Then there ezists a function us, (t,z) €
Asy,,(So x Dp) such that

al (N +1)5
HuSo - Zuk”p 5 ABN+1T(——‘:);‘—“ -+ 1)EfI(N+1)5 exp(—c]tl"") fOT' t e SO
k=0

with igol < 71"/(2’7*)

185
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Proposition 6. We have gs, (t,z) € Asy? ., (So x D,) for 0 < po <p.
0 {v*} P

Proof of Theorem 1
We can prove Theorem 1 by applying Theorem 4, Proposition 5 and 6. We omit a detailed proof.
Q.E.D.
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