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Dual structure in the conjugate analysis
of curved exponential families
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Abstract

Curved exponential families admitting conjugate prior densities are introduced and explored. Intro-
ducing extended versions of the mean and the canonical parameters, we expand the conjugate analysis
to these curved exponential families, Emphasis is put on dual structures. In fact, we derive the dual
Pythagorean relationships with respect to posterior risks, each of which makes it clear how the Bayes
estimator dominates other estimators. We also show that the conjugate prior density is the least
informative.
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1. Introduction

The conjugate analysis is one of the most important fields in Bayesian inference. It
has attracted interests of many researchers including Consonni and Veronese (1992, 2001),
Gutiérrez-Pena (1992, 1997) and Gutiérrez-Peila and Smith (1997). Simplicity in calculating
the posterior mean, or the Bayes estimator, is characteristic of the conjugate analysis. A
minimax property of the conjugate prior density was shown by Morris (1983) and Consonui
and Veronese (1992). Receutly, extensions of the conjugate prior density have been studied by
such authors as Ibrahim and Chen (1998, 2000) and Yanagimoto and Ohnishi (2005a). The
dual structure is elegantly observed in the exponential families and the curved exponential
families (Barndorff-Nielsen 1978a, Amari and Nagaoka 2000). In fact, the importance of the
curved exponential fainilies owes largely to the dual structure. That in the conjugate analysis
was pursued in naive ways by Yanagimoto and Ohnishi (2005ab).

The original definition of conjugacy is closure under sampling, i.e., that the prior and the
posterior densities belong to the same family of distributions, which was defined by Raiffa
and Schiaifer (1961, pp.43-57). In this paper we mean closure under sampling by conjugacy
according to their definition. It is known that this definition produces ambiguity. Take a
sampling density in a natural exponential family

pla; n) = exp{nz — ¥(n)} a(z) (1.1)

for instance. The prior density =(1; m, §) oc exp[d {muy — ¥(n)}] b{n) is conjugate, that is,
closed under sampling, and we cannot specify the type of the supporting measure b(n) by
conjugacy alone. Diaconis and Ylvisaker {1979) characterized the choice b(n) = 1 by linearity
of the posterior mean of the mean parameter and defined conjugacy by this linearity. The



reason why the present authors adopt such an ainbiguous definition is a conjecture that closure
under sampling in itself implies a certain optimuin property. This will be shown affirmatively
in Section 3.

The conjugate analysis is not restricted to the natural exponential family case. Mardia and
El-Atoum (1976) showed that the von Mises distribution, which is in the curved exponential
families, has a conjugate prior density. For the sampling density

1
pen (25, T) = WGXP{T cos(z — 1)}, (1.2)

where Iy(7) is the modified Bessel function of the first kind, the von Mises prior density
pem (g m, §) is conjugate. This prior density was employed by Guttorp and Lockhart (1988}
and Rodrigues et al. (2000). Here the linearity of the posterior mean of y does not hold in
the sense of Diaconis and Ylvisaker (1979), although Rodrigues et al. (2000) pointed out that
a type of linearity holds. ,

This paper has the following two aims. One is to reveal an essential aspect of the conjugate
analysis. We consider the following sampling density

pla; p) = exp{~d(z, p)}a(x), (1.3)

where ¢ and p are p-dimensional, and d{a, t) is expressed through the (2p + 2) functions,
fu(tY's and hy(t)'s, as :

p+1

dla, ) =y _hi(@){fi(t) — fi(a)}-

=1
In general, the density (1.3) belongs to the curved exponential families. As will be seen in
the subsequent sections, the sampling density (1.3) with p = 1 covers the natural exponential
famnily (1.1) and the von Mises distribution (1.2). Thus, a unified discussion is possible. We
will show that the prior density of the form x(u; m, 0) x exp{—dd{m, p}} c(p) is conjugate
for the sawpling density (1.3). We will also prove that the conjugate prior has the minirnum
information among a certain set of prior densities. This property implies a type of superiority
of the conjugate analysis over non-conjugate ones. It seems to be closely related to the
minimax property of the conjugate prior density shown by Morris {1983) and Consonni and
Veronese (1992).

The other, but main aim is to show dual structure of the conjugate analysis. We wiil
assume two types of prior densities which have dual properties, and discuss conjugate analy-
ses separately. The loss functions we adopt are also dual to each other. We derive the dual
Pythagorean relationships with respect to posterior risks. These relationships make it clear
how the Bayes estimator dominates other ones. The dual structure we will show is similar
to the one with respect to the mean and the canonical parameters in the exponential farm-
ilies, which Barndorff-Nielsen (1978a) and Amari and Nagaoka (2000) pointed out. It is a
substantial extension of previous results by the authors to the curved exponential family (1.3).

The organization of this paper is as follows. Section 2 introduces certain curved expo-
nential families admitting the conjugate analysis. Extended versions of the mean and the
canonical parameters are defined under some regularity conditions. Section 3 shows conju-
gacy of the assumed prior density. An optimum property of the conjugate prior density is
also proved. Sections 4 and 5 reveal dual structure of the conjugate analysis. We derive the
dual Pythagorean relationships with respect to posterior rigks. Extended versions of the dual
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Pythagorean relationships are also obtained. Section 6 discusses the conjugate analysis under
weaker regularity conditions, which covers the von Mises case.

2. Extended mean and canonical parameters

In this section we introduce certain curved exponential farnilies for which we can discuss the
conjugate analysis. Counterparts of the mean and the canonical parameters in the exponential
families are defined. We will learn that these parameters ave useful in understanding the dual
structure of the conjugate analysis. The two propositions and the two lemmas are obtained,
the proofs of which are given in Appendix.

We investigate the conjugate analysis of the curved exponential family

F={p(z; 1) | pla; p) =exp{—d{w, p)}a(z) }, (2.1)
where = and p are p-dimeusional, a(z) is the supporting measure and

ptl
d(a, t) =Y _ hi(a){f;(t) - fi(a)}. (22)

i=1

Tn the above we assune the following three regularity conditions:

(C.1)  hi(t),..., hyp (t) are linearly independent.

(C.2) 1, fi(t}, ..., fpr1(t) are linearly independent.

(C.3) d(a,t)>0andd(e,t)=0ifand onlyifa ==
The function d{a, t) is the deviance function introduced in Jgrgensen (1997, p.4). The regu-
larity condition (C.3} implies that

id(a, t) =0 for any a. (2.3)
at t=a
The family F covers the exponential family case. In fact, set fiyyi(2) = 1 in the sam-
pling density in (2.1). Then the density is written as p(z; p) = exp{— Z?:l hj{e)fi(p) —
Forr ()} @(@), where a(x) = exp{3F_; hyla)f;(z) + fpir(2)}a(x). This is a density in an
exponential family.

Now, we define extended versions of the mean and the canonical parameters in order to
develop discussions similar to those in the exponential family case. Let Fp, ,(£) denote the
p X p matrix whose {4, j)th conponent is 8f;(¢)/0¢; (1 < i, § < p). In addition to (C.1)-(C.3)
we assume the following regularity condition:

(C.4) det F, ,(t) # 0 for any &£.
The case where this non-singularity condition is not satisfied will be discussed in the final
section. Here we show that h,y1(a) # 0 for any a. Suppose that fhpi1(ap) = 0 for some ag.
The equality {2.3) can be rewritten as

A

] d
£y pla) h{a) = ~hy1{a) %fpﬂ(“)-,

where h(a) = { (a),...,h,,(a))T. This set of linear equations, together with (C.4), gives
that h(ag) = 0 and therefore that d{ag, t) = 0 for any ¢, which contradicts (C.3). Thus, we
assume without loss of generality that

(C.5)  hyi(t) >0 for any £.



We introduce a new parameter vector = (,... ,'rpp)T as

i = —fi () (2.4)

for j =1,...,p. It follows from the inverse function theorem that (C.4) guarantees the one-
to-one correspondence between p and 17. We may call 7 the eatended canonical parameter.
The parameter vector 7 is the very canonical one in the exponential family case.

We regard fp1{p) as a function of n and set

() = forn). (2.5)

This function becomes the curnulant function in the exponcntial family case. Although the
cumulant function is convex, the convexity is not obvious in the curved exponential family F.
We show in the following lemma that convexity also holds true for F.

Lemma 2.1,
The function (n) defined by (2.5) is convex.

Using the Legendre trausformation, we define another parameter 8 and aunothel COnvex
function ¢(6) conjugate to i and (n), respectively. We set 8 = (f1,.. ,0p)F as 0
(8/0n;)b(n) for j =1,...,p. As is given by (A.4) in Appendix, we have

il o
i= 5l (2.6)

The following lemma clarifies the meaning of 8. We wmay call 8 the estended mean pararm-
eter.

Lemma 2.2.
It holds for =1,...,p that

E[hﬁ’i{:ﬂ) —8ihpy1(z) i pl®; H” =0

The convex function conjugate to ¥(n) is expressed as ¢(8) = 87y — () where 5 is the
parameter value corresponding to €. Note that the convexity of ¢{n) guarantees the one-to-
one correspondence between 1 and 8. The function ¢(@) has the following representation as
a function of

P

hj u)
9) = AON -~ (2.7)
¢( g hp—}-l (ﬂ) p+1 (I"’)

The definition of ¢{8) yields that
L(p, po) = $(61) + plm2) — 1 m2 (2.8)

is positive where p;, 1; and 8; are equivaleut to one another (i = 1,2). It seemns to be natural
to adopt L{fr, pt) or L{p, 1) as a loss function. It should be noted that the following identity

Lipy, ps) — L{pn, po) — L{pa, ps) = (61~ 02)" (n2 — n3) (2.9)
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holds, which will play a key role in subsequent discussions.

An interesting result is found in the relation among d{p1, w2), L{p, po) and the Kullback-
Leibler separator. Note that the function d(e, u) of p given data @ becomes the normed
log-likelihood function, ie., d(x, p) = maxu{logp(z; 1)} — log p(@; p). A calculation using
the formulas (2.4) through {2.7) gives

d{p1, p2) = hpy1(p) L{p, po). (2.10)
Also, the Kullback-Leibler scparator from p(a; p1) to p(z; po) is calculated as
KL(p1, p2) = E[ by (@) | pla; )] L{pa, pa)- (2.11)

These two expressions (2.10) and (2.11) reveal the relation among d(p1, po), L{fe. o) and
KL{p;, uz). Modification of the loss functions L(f, p) and L{p, p) will be dealt with in
Sections 4 and 5.

The following two exatples give calculations of the extended mean and the extended
canonical parameters. We deal with the natural exponential family and the hyperbola distri-
bution.

Ezample 2.1. Let us consider the case of the natural exponential family {1.1). Let u be
the mean parameter and ¢{u) the convex function conjugate to the cunulant function ¢(n).
Noting that n = ¢'(s) and ¢(z) = z¢(z) — (¢/(z)), we obtain another expression of the
density (1.1) as

pla; 1) = expl—u{—¢' () + & ()} — (B(&' (W) — (¢ (2))}] Fafe).

I we set fr{p) = —¢/ (1), falp) = ${¢'{1), h(z) = z and hyp(z) = 1, then we obtain the
mean and the canonical parameters in the ordinary sensc.
When the sampling density is defined on R*, another choice is possible. The pair (1/y, —4i:{n))

of the extended mean and the extended canouical parameters is obtained by setting fr{u) =

P (w)), fo(p) = =&/ (p), hi(z) =1 and ho(z) = 2. If we adopt this paraineterization in the
gamma distribution, the derived dual convex functions are the saine as those in the Poisson
distribution under the ordinary parameterization. This is directly related to the fact that the
gamma prior density is conjugate for both the sampling distributions.

Ezample 2.4. We discuss the hyperbola distribution having the density
. 1
pule; gy 7) = Wexp{~7 coshiz — p)}, (2.12)

where Kp(7) is the modified Bessel function of the third kind. The addition formula for the
hyperbolic cosine function gives

cosh(z — p) — 1 = siuhz (—sinh g + sinh @) + coshz (cosh u — cosh w).

The regularity conditions (C.4) and (C.5) are satisfied if we set fi{u) = ~sinhg, fo(p) =
cosh i, h1{z) = sinhz and hy(z) = coshz. The extended mean and the extended canonical
parameters are given by # = tanhp and n = sinhp, respectively. This sampling density
allows us the conjugate analysis as the von Mises density does. A close relationship between



this density and the von Mises one was pointed out by Barndorff-Nielsen (1978b} and Jensen
(1981).

3. Conjugacy with the least information property
Cousider the prior density

w{n; m, d) = exp{—dd(m, p) + K(m, 6)} b(n) (3.1)

on the oxtended canonical parameter n where b{n) is a non-negative function and exp{K(m, &)}
is the normalizing constant. We prove that this prior deunsity is conjugate for the sampling
deusity in (2.1). Comparing with non-conjugate prior densities, we also show the least infor-
mation property of the conjugate prior density.

First, we give a proof of the conjugacy in terms of the duality of the parameters n and 8.
Let 8(p) denote the p-dimensional vector with the jth component 8; = 8;(u) in (2.6). In this
paper we employ the standardized posterior mode figmap, which is a modified posterior mode
of p derived by discarding the Jacobian factor b(n) in Yanagimoto and Ohnishi (2005b). In
our case it is given by

fismop = arg min{d(x, p) + dd(m, p)}. (3.2)
"

It should be noted that the estimation procedure is invariant with respect to a parameter
transformation.

The regularity conditions (C.4) and (C.5) yield that the standardized posterior mode is
uniquely deterinined for any @, m and §. Actually, a calculation using (2.8) and (2.10) gives
the expression of the standardized posterior mode émap as

iy 11 (@)B(@) + Bhy 1 (m)B(m)
hyti (@) + Sl () -

esmap =
Noting that ésmw = 0{fismap) and recalling the equality (2.6), we obtain the componeutwise
expression

B (fsmap) hj() + dhj(m) ; ) 3.
- == 1 S ¥ S ). (3‘3
h‘p+1(ﬂ'smap) hpti{@) + 5hp+1(m) ( 7=P) )

We can see a type of linearity of the standardized posterior mode in 8. It is interesting to
compare this linearity holding for any {1} with the posterior linearity by which Diaconis and
Ylvisaker (1979) characterized the constant supporting measure on the canonical parameter.

Theorem 3.1. .
The prior density (3.1) is conjugate. The posterior densily is expressed as w(N; Psmap, 0°)
where fismap 8 the standardized posterior mode (3.2) and

g o Mori(@) Sy (m) (3.4)
! bp41 (I:['smu.p)
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Proof. The posterior density is proportional to cxp{—d(z, u) — dd(m, p)tb{n). The
expression (2.2} of d{a, t) gives

dix, ”’) + §d(m7 fl‘) - d(z, ﬂswm;u) - 5d(m7 [’/sm,ap)
ptl
= Z{hj(m) + ki (m)H fi{p) — FilBesrmap) }- (3.5)
j=1
Tt follows from (3.3) and (3.4) that
() + Bhy (m) = 6%y sman)

for j = 1,...,p. Thus, using (2.2) again, we see that the left-hand side of (3.5) reduces to
8* d{frgmap, ), which completes the proof. o

Next, we show that the conjugate prior density has the least information property. For
this purpose we make comparison with a non-conjugate prior. Let 7(n) denote an arbitrary
prior density, and write the corresponding posterior density as w(rfle} for a given . Then we
consider the family P(x, m, &) of prior deusities satistying

E[ (07, 4(n)) | winlz)] = B[ (07, v(@)) | 7(n, fomap, 5] (3.6)

Since L{f, p) = ) + () - #T7, this condition is equivalent to the condition that the
equality

E[L(ﬂ" M) l W(I]];L‘)l = E[L(ﬂ, u ’ 71, Lsinap 6*:”

Lolds for any estimate fi. To be specitic, any prior density in Pz, m, ) has the identical
Bayes estimate aud the identical posterior risk of the Bayes estimate. Thus, it is reasonable
to compare the amount of information contained arong the prior densities in Pz, m, §).

The following theorem gives a Pythagorean relationship holding for the canjugate prior
density. See Figure 1. The least information property is obtained as a corollary.

Theorem 3.2.
Let n(n) be any prior density in Pz, m, §) defined by the condition (3.6), and write the
corresponding posterior density as w(nle). Then, the following Pythagorean relationship

KL(W(ﬂlw)a m{n; ma, 51)) = KL(”(W;“’L (11 Bsmap ‘5*))
+ KL(W(”I; fsmap, &%), wim; ma, (51)) (3.7)

holds for any hyperparameters my and &;.
Proof. Note that
KL(W(T)](EL W(ﬂ; my, 51)) - KL(W(nlm)a W(??; IA‘JS'r‘rmpf é*})

.5 *
= | log W("?a Hsinap, & ) W(mm):i .

w{n; my, 1)




1f we replace m(nlx) with w(1; fsimep, 6*) in the right-hand side, the expected value becomes
the Kullback-Leibler separator from n{n; figmap, %) to w(n; my, &1). Thus, it is suflicient to
show that this replacement does uot change the above cxpected value. It follows that

{1 ftsma.ps ) T ;
iogw =a + oy + a3z,
’/T(??- ma, (}1) IR/ 2% (77) 32
where a1, a2 and a3 are independent of n. They are explicitly represented as

a =46" h;v+1 (ﬂsmap) éamap — & h,:H }(ml) e(ml),
ay = thpﬂ-l (ml) &* hp+1(ﬂamap)
ay = +§th+1 ml) (75(9 m;}) — hp+1(ﬂ'smap) d’iesmap) I((ml, 51) + K'([f&s-,,mp, 5*)

Since the posterior density 7(x]z) satisfies (3.6) by definition, the required result is obtained.
O

w(n|z)

w(m; ™, &)

W('f]; ll.s‘map P bx\)

Figure 1: The Pythagorean relationship holding for the conjugate prior.

Now, we solve the minimization problem of the following functional

Glr(n)} = KL{x(n|z), =(n; =, 1)).

Recall that the factor b(x) in the prior density (3.1) is discarded when deriving the stan-
dardized posterior mode (3.2). Since we may look upon the sampling density px; p) =
exp{—d(e, p)} a(x) as the prior density 7(n; z, 1), the functional G[r(n)] can be regarded
as the information contained in the prior density n{n). The following corollary gives the
minimizer of Gr(n)].

Corollary 3.3.
The conjugate prior density (3.1) minimizes the functional Glm(n)] = KL(w(nlz), n(n; =, 1))
among the family P(x, m, 8) of prior densities defined by the condition (3.6).
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Proof. Set my = @ and &; = 1 in Theorem 3.2, and we have
Glr(m)] = Glr(m; m, )] + KL(n(nz). 715 fsmap, 8°) )
This equality completes the proof. |

Note that this corollary is closely related to discussions on the minimax property of the
conjugate prior density emnployed by Morris (1983) and Consonni and Veronese {1992).

We close this scction by emphasizing to a potential relation between the conjugate analysis
and the generalized linear model (GLM}). Conjugate priors for the GLM were studied by Chen
and Ibrahim (2003). The GLM is based on the sampling deusity p{x; u) with mean g in
the one-parameter exponential family. It is known to hold that log{p(®; fr)/p(; )} =
KL(p(y; fian)s PO ;1)) where [iy,, = 2 is the maximum likelihood estimator. This is formally
rewritten as

KL(8(y = fnn)s 2(y; 1)) = KL(3(y — )y 5 fnar)) + KL(p(ys fisa), 23 4))

where 8(y —x:) is the Dirac’s delta function. A similar Pythagovean relationship holds approx-
imately in the GLM. Comparing with the Pythagorean relationship {3.7) in Theorem 3.2, we
learn that a type of similarity lies between the conjugate analysis and the GLM.

4. A Pythagorean relationship

In this and the following sections the dual Pythagorean relationships arve derived, each of
which manifests how the standardized posterior mode dominates other estimators. The loss
functions we adopt in the two cases are dual to each other. Assuming the two conjugate prior
densities, or the two types of b(17), we discuss the conjugate analysis separately.

First, we pursuc an optimality of the estimator under the loss function L(js, u) = d(fx, 1)/
Ryp+1{f), when there exists a non-negative function b.(n) such that

g f . .
o [ expl=tuLom, )} butm) dn = 0. (4.1)

We sct the integral in (4.1) as exp{—K(d1)}. The deusity exp{—d;L(m, p) + K(51)} be(n)
belongs to the proper dispersion model introduced in Jorgensen {1997, p.5). Setting §; =
0hyi1(m), we assume the prior density

we(m; m, 8) = exp{—dd(m, p) + K (Shgs1(m))} be(n). (4.2)

It should be noted that the normalizing constant depends ou m and § only through the
product 6hypi(m).

The conjugate prior density (4.2) has the following property with respect to the expectation
of the extended canonical parameter,

Proposition 4.1.
Under the assumption (4.1) it holds for any m and 6 > 0 that

E[f) - ﬂ('m) 1 (15 ™M, 5)} =90,



where p{m) = ~(f1(m),..., fp(m))T. Further, the posterior density corresponding to
m.{n; m, §) satisfies

E[n — Dsmap ’ Te( 11 Brsmap, 5*}] =0

Proof. Differentiating the integral in (4.1) with respect to 8(m), we have

/kn(m) — ) exp{~3i L(m, u)} be(m) dn = 0 (43)

for any m and §; > 0. Setting 6, = dhys1{m); we obtain the former part.

Theoremn 3.1 yields that the corresponding posterior density is expressed as Te(T8; Bsmups
6*). Noting that fgmap = M{ftsmap), We see that the latter part follows from the former part.

O

This proposition is an extension of Proposition 4.5 (ii) in Yanagimoto and Ohnishi (2005a),
where the sampling density is restricted to be in the natural exponential family. This extension
is realized by introducing n suitably.

We clarify implications of Proposition 4.1 through the following example where the sam-
pling density is in the natural expounential family (1.1}.

Ezample 4.1. Set fi{u) and hi{z) (i = 1,2) in the natural exponential family (1.1} as in
the former part of Example 2.1. Suppose that the assumption {4.1) is satisfied, that is, the
normalizing constant in (4.2) depends only on d. Then, the posterior mean of 5 = ¢'(u) is
& (Dsmap) With fignap = (& + dm) /(1 + 8},

Next, we deal with the case where the sampling density is defined on R and set f;{u)
and hj(z) (i =1,2) as in the latter part of Example 2.1. The assumption (4.1) is equivalent
to the one that the normalizing constant in (4.2) is a function of §m. Under this assumption
the posterior mean of ¢(5) = (¢ (1)) is P(H(Bsimap))-

Now, let us derive a Pythagorean relationship with respect to posterior risks.

Proposition 4.2.
Under the assumption (4.1) the Pythagorean relationship

E[L{ﬁ, ﬂ) - L(ﬂsv’rmp» ﬂ) - L(f"’ ELSTIMLP) I Wc("?% I}’Mm&py 5*)] =0 (44)

holds for any estimator fi. Thus, the standardized posterior mode fsmap 18 optimum under
the loss L{fs, 1)

Proof. Tt follows from the identity (2.9) that

=

L{f, 1) — L(ﬂsmupa su) - L(ﬂa I:ls-map) = {9(.&') - ésrnrtp}T<ﬁsmtzp -n). (4.5)

Note that 8(j1) — ésmap is constant in n. Thus, the latter part of Proposition 4.1 yields the
Pythagorean relationship (4.4). The optimun property of flsmayp follows from this Pythagorean
relationship. O
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We derive an extended version of the Pythagorean relationship in Proposition 4.2. This
is done by modifying the loss function L(f, p) for an appropriate choice of &(n) in the prior
density (3.1). Suppose that there exist a positive function I (m) and a non-negative function
b.(n) such that

5% / exp{—&I(m)L(m, p)} be(n) dn = 0, (4.6)

and we write the integral in (4.6) as exp{—K (§;)}. The assumption (4.6) is weaker than (4.1},
since the former allows I{m).
The prior density we assume ou 77 is of the form

el m, §) = exp { —dd(m, p) + K (%%@) } be(n)-

Theorem 3.1 means that the corresponding posterior density is expressed as e(1; Bsmaps ).
A modified Pythagorean relationship is derived under the loss I(f)L{j, p). It should be
noted that the posterior risk difference is expressed through the Kullback-Leibler separator
between the two (prior) densities.

Proposition 4.3. 3 }
Under the assumption (4.6) set m7(m; m, &) = exp{—d11(m)L(m, p) + K(8)} be(n). The
following modified Pythagorean relationship
E[I(ﬁ’)b(ﬁ ﬂ') - I([’»s;rrmp)L([-"smup’ ﬁl) t 7~rc(’f1§ ﬂsmu;o: 5*)]

. ~ e ~ ok -
= SQRL(WI("'N Hsmap: 5}); wr{n; i, 61)) (4.7)
1

holds for any estimator i where 37 = {hy+1(®) -+ Shpp1(m)}/ I{fsinap)- Conseguently, the
standardized posterior mode figyep ts optimvum under the loss 1 (BYL (s, ).
Proof. A calculation of the right-hand side of (4.7) gives

i .. R ] e

57 KL fsvaan, 07), 71 (s o, 37))

1

= E[I(ﬂ)L(ﬂ #') - I(ﬂsmup)ll(ﬂsmapy H) l Wl(ﬂ; Ilsmapa 5?)]
The equality (2.10) and the expression (3.4) of &%, together with the expression of 8] in
Proposition 5.1, give

5T1(ﬁsmmp)L(ﬂsmaw p) = o d(ﬁ'.sma;w 1),

k@ =& (_——-—_—5*”"@*}('1"%)) .
1 (I»‘-sm.ap)

Thus, we see that the posterior density 7. (1); fspap, %) is equal to 77(1; frsmap, 07), which
completes the proof. D

Another expression of the term L{f, flgmap) in Proposition 4.2 is obtained as
1

F KL(Wl(m frsmap, (5;)7 mi{m; i, 5?))
1

L(ﬂ; @smap) =



where 71(n; m, &) = exp{—&i L{m, p) + K(61)}bc(n) and 8 = hpyi(2) + Shppi{m).
The hyperbola density (2.12) provides us with an illustrative example of Proposition 4.3,
where a modified loss function I(2)L{f, u) is more familiar than the original one L{#, u).

Ezample 1.2. The dual convex functions are ¢(n) = cosh(sinh™! ) and ¢(#) = @ sinh({tanh ™" #)—
cosh(tanh™! #) in the hyperbola deusity pu(; g, 7) in (2.12). Thus, the loss function L{f, 1)
is of the form L{f, u) = {cosh(fi — p) — 1}/ cosh . A familiar loss function in the literature
is I{()L(f, p) = cosh{fi — 1) — 1, which is obtained by setting {i) = cosh . If we choose
b(n) as b(n) = du/dny = 1/ cosh(sinh™' 7)), then the integral

o0 N 00
/ exp{—& I(m)L{m, p)}beln)dn = / exp{—d; cosh{m — p)} dps
—0 4 -0
is independent of m. Note that the Kullback-Leibler separator from py (1s; ma, 8) 0 pulp; ma, )
is calculated as K,(5)
. . K1
KL{(m1,8), {(mag,8)) = ——={cosh{m; — me) — 1}.
(( Ty, ) (!nl )) KD(é) {COb (?71.1 ?,”2) }
For an arbitrary estimator i Proposition 4.3 gives the following modified Pythagorean rela-
tionship
~ ~ ~ : 1., ~ s PR
E[cosh(i — 1£) — cosh(frsmap — 1£) | Pultti frsmaps 67) ] = g;KL( (Bsmap» 81 )5 (B 7)),
1

where tanh figyep = {7 sinha+dsinhm}/{r coshz+d coshm} and 6] = {72 +8%+276 cosh{z—
m) 2. :

5. A dual version of the Pythagorean relationship

We move to the case of an alternative loss function L{g, ft), dual to L{ji, u). Another
conjugate prior density which is in a sense dual to m:(1; m, §) in (4.2) is dealt with. Setting
b(n) = 1, we assume the prior density

T(m; M, &) x exp{—dd(m, )} (5.1)

with respect to the Lebesgue measure on 7. When the sampling density is in the regular
natural exponential farily, this prior density reduces to what is called the DY prior density.
We attempt here to extend Theorem 2 in Diaconis and Ylvisaker {1979) in various ways.
For this purpose we assume that
lim d{m, ) =oo and lim d(m, ) =c0 forj=1,...,p. (6.2)
73— i =1,
In the above 7j; = 7; {(n(s)) aud n; = '_)27,( 7)) are respectively the upper and the lower boundary
point when ngy = (M1, =15 Tj41y0 - ,mp)T are fixed. Roughly speaking, this assumption
implies that the density vanishes at the boundary. The following proposition claims that the
prior density (5.1) has a property dual to the one in Propaosition 4.1.

Proposition 5.1.
Under the assumption (5.2} it holds for any m and § > 0 that

E[B — 8(m) | (s m, 5” =0.
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In addition, the posterior density corresponding to my(n; m, §) satisfies

E[ﬂ - ésmup ! T {1 ﬁb“rnﬂpa ém)] =0.

Proof. 1t follows from (5.2) that

.ﬁ. I
/ " oxp{—dd(m, u)}dn; =0
n; O

for j = 1,...,p. We have from (2.6) and (A.4)

% hi ()
—d(m, p) = —hi(m) + L~
gy A 40 = Rt )
Combining these, we obtain the former part.

The proof of the latter part is parallel to that of the latter part of Proposition 4.1. ~ [1

hpyi(m) = hyii(m){g; — 0;(m)}.

Now, let us derive a Pythagorean relationship with respect to the loss function Lip, i) =
d{gs, f1)/hpri(p). Note that the loss function and the property of the prior density are dual
to those in the previous Pythagorean relationship (4.4).

Proposition 5.2.
Under the assumption (5.2) the Pythagorean relationship

E[L(Nv a) — L{p, !:Lsmap) - L(Ilsmup: ft) I Ton (705 Bsmaps 0*)] =0 (5-3)

holds for any estimator fi. Therefore, the stundardized posterior mode fignap is optimum
under the loss L{p, i)
Proof. The proof is parallel to that of Proposition 4.2. Instead of the identity (4.5), we
use

~ ~ - ~ A Ty -
Lip, pr) — L{p, Nsma;u) — L{ftsnap, i) = (B - gsmcm) ('ﬂs-nmp - 7?):

where 7 is the estimator equivalent to fi. O

Next, a modification of the Pythagorean relationship (5.3) is dealt with. We adopt a loss
function J{n)L{p, it} with J(n) being a positive function. The prior density we assume is of
the form

Ty (1 M, 8) o exp{—~dd(m, pu)}/J(n). (54)

Tt follows from Theorem 3.1 that the above prior density is also conjugate, and also that the
posterior density is given as 7, (17; flsmap, 0%). Here again we assume the regularity condition
(5.2). We learn that a modified Pythagorean relationship holds under the loss J{(n)L{(u, f).
Note that the third term in the posterior expectation in the following proposition is not
J(ﬁsmap}L(ﬂsmap; f"), but J(’?)L([Lsmapa ﬂ)



Proposition 5.3.
Under the assumnption (5.2) the modified Pythagorean relatzonsmp

E[ J(??)L(#, Il) - J("'J)L(ﬂ; flsmup) e J("?)L(ﬂuwnum ﬁ) l T {17 Esrmaps 5*” =0 | (5' )

<t

holds for any estimator fe. Thus, the standurdized posterior mode fismap 18 optimum under

the loss J(n)L{p, ft).

Proof. Comparing the two prior densities (5.1) and (5.4), we see that J (1) T (5 fsmap, 0°)
T (18} Fbsmap, 6%) as functions of 9. The modified Pythagorean relationship {5.5) is a rewrit-
ten version of the original one (5.3). ]

Interestingly, the standardized posterior mode is optimum for all the loss functions in Propo-
sitions 4.2, 4.3, 5.2 and 5.3

Let & = {&1,. .- ,@}T be a new parameter vector which has a one-to-one correspondence
with 7. We write the Jacobian of the parameter transformation as 9¢/0n. Consider the prior
density exp{—dd(m, p)} with respect to the Lebesgue measure on £ Especially when the
sampling density is in the exponential fainily, this prior density is called standard conjugate
by Consonni and Veroncse (1992). The prior density is equivalent to (5.4) with 1/J(n) =
| 0g/om |-

The following example gives implications of Propositions 5.2 and 5.3 to the natural expo-
nential family (1.1).

Ezample 5.1. Lot us assume that the natural exponential family (1.1) is regular, i.c., that its
canonical space is assumed to be open. This assumption implies that

lim KLGin, p) = oo and  lim KL{m, p) = oo,

] =
where KL{u1, s} is the Kullback-Leibler separator from p(w; p1) to p(w; pa). Thus, the
asswmption (5.2) is satisfied. It is known that the DY prior density exists for a regular
natural exponential family. It is of the form

Tl M, 8) = moy (15, 8) o exp{—dKL{m, p)}

with respect to the Lebesgue measure on 7. Then, the standardized posterior wode fgnap =
(z + dm)/(1 + &) is optimum with respect to the loss KL({u, fi).
Next, we introduce a new parameter £ = £(n) = £(¢'()), and consider the prior density

b d
Tm{m; m, 6) ox exp{—dKL(m, p)}ll ifﬂ

The function £(n) is assumed to be strictly increasing. Several cases of £(7) and the corre-
sponding loss function J(5)L{y, ji) are given in Table 1, where the function v(p) denotes the
variance function.
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Table 1: Examples of the parameter & and the loss function J (n)L{p+, &} in the natural
exponential family

£ Loss function Necessary assumption
n KL(y, i)
KL{u, &)
wlu)
HKL(p, £)

log 1 w> 0
v(y)

, KL{, 0t ,

() —%ﬂ #>0

) KL(ﬂ*a 1‘5)

B(u et B 7 >0
(w) no{p)

logn  nKL(y, i) n>0

6. Examination of the non-singularity condition

The aim of this section is to make regularity conditions weaker. Owr discussions in Sections
2 through 5 were based on the non-singularity condition (C.4). However, the conjugate
analysis is possible without this regularity condition to some extent. Aun example is the vou
Mises distribution, the conjugate analysis of which was studied by Mardia and El-Atoumn
(1976).

Let Fy,pi1(t) denote the p x (p+ 1) matrix whose (i, j)th component is afit) /ot (1 <
i <p,1<j<p+1). In place of (C.4) requiring the non-singularity of Fy ,(f) and (C.5), we
here assume the following regularity condition
‘ (C.4) rankF, ,.1(t) = p for any t.
In order to make the difference between (C.4) and (C.4') clear, we counsider the von Mises
case. Whether we set f;(t) = —cost or fi(t) = —sint, the condition (C.4) is not satisfied.
However, the rank of the 1 x 2 matrix (sing, —cost) is equal to one for any ¢, that is, (C.4')
is satisfied.

Since it seems difficult to define the extended canonical parameter, we asswme prior den-
sities on the parameter . The assumed prior density has the form

(s m, 8) o< exp{—dd(m, u)}c(p), (6.1)

where ¢{p) is an appropriate non-negative function.

Proposition 6.1.
Suppose that the standardized posterior mode (3.2) is uniquely determined. Then, the prior
density (6.1} is conjugate.

Proof. The proof is similar to that of Theorem 3.1. We prove that the right-hand side
of (3.5) is proportional to d{fsmap, ). It suffices to show that the two vectors fz(m) +
Shim) and h(ﬂsmgg) are proportional where h(t) denote the (p + 1)-dimensional vector
(h,l(t), e ,hp.}.}(t))q. By definition, the standardized posterior mode fignap satisfies
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(B/0w){d(z, p) + §d(m, p)} ‘“:ﬂmw = 0. This is expressed in a matrix representation
as Fy py1(femap) { h{x) + §B(m)} = 0. The equality (2.3) with @ = fignap is rewritten as
Fy, p+1{flsmap) il fismiap) = 0. Note that the matrix Fy pi1(Bsmap) i3 of full rank. It follows
from the theory of linear algebra that there exists * such that
h(x) + 6h(m) = &* bl ftsmap)- (6.2)
Thus, the desired proportionality
diz, ﬂ) +dd(m, p) — d(=, Bromap) — dd(m, ﬁsmap) = 5*(1([?!,&,,,,,@, )

is obtained. The existence assumption of figmep guarantees that §* > 0. Thus, we see that
the posterior density is expressed as #w{p; Bemap, 07 ) ]

Discussions similar to those in Propositions 4.2 and 4.3 hold true under the weaker regu-
larity condition (C.4’) in place of (C.4) and (C.5). We assume the following prior density

mo{p; m, 6) oc exp{—dd{m, p)}co(ps)

under the assumption that there exist a positive function 7{(m) aud a non-negative function
co{pt) such that

a(:n / exp{—dal(m)d(m, p)} co(p) dp = 0. 63)

Proposition 6.2. B
Under the assumption (6.3) set 7ip(p; m, §s) o< exp{—d&ad (m)d(m, p)} co(p). The following
modified Pythagorean relationship
E[j(ﬂ)d{ﬁ'y ﬂ') - I(ﬂsnwy)d(ﬂsmw: ﬂ') ' Wo(ﬂ:: [l'smu-p; (5*)]
1 . . e o e
= “5‘;; KL(WO(“; Hsmap; O;), WO(“; £y 63))
2

holds for any estimator i where 6% is the constant given in (6.2) and 85 = 51/ I {frsmap)-
Consequently, the standardized posterior mode fismap i optimum under the loss I{f)d(f, p).

Proef. The proof is parallel to that of Proposition 4.3. The key is the equality mwo(#; Asmap,
5*) = ﬁu(ﬂ; Bsmap: é}) O
Here we investigate the von Mises case in order to explain the above proposition.

Example 6.1. Consider the von Mises density pou(a; i, 7) in (L2). If we set I(m) =1 and
co{e) = 1, the integral

2 27
/0 exp{ 8 T (m)d(m, p)}yeo(p) dp = /0 exp|—da{l — cos(m — p)} dp
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is independent of m. Since the condition (6.3) is satistied, we can apply Proposition 6.2. We
obtain the following modified Pythagorean relationship

. N . - 1 I(83 o i
E[Cos(lismup — ) - cos(ft — ) i Pom (#‘; Hemaps dZ) ] = 5; _{025‘;; {1 - COS(:U' - .U'swmp) b
2 2

where [igmap = arg max, {7 cos(x — p) -+ cos(m — p)} and 85 = {72+ 6%+ 278 cos(x — m) 2.
This result is to be compared with Example 4.2.

Although we succeed in extending Propositions 4.2 and 4.3, it sceins difficult to develop
the arguments parallel to those in Propositions 5.2 and 5.3. This is due to severity in defining
the extended canonical parameter without the regularity condition (C.4).
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Appendix

Proofs of Lemmas 2.1 and 2.2.
The chain rule for partial differentiation gives

D ) =3 2 a2 (A1)
oy e~ Ju In;
and
u a LI N
§ji = —=—filw) = = > =—hlw) 7, (A2
i dnjfz(u) ,;C’Hk fz(_u)aw A2)

where ;5 is Kronecker’s delta. It follows from the kth component of the equality (2.3) that

pr(m o M)Z @Jw (A.3)

Combining {(A.1), (A.2) and (A.3), we have

17, T (g2}
Sy — AN Ad)
o b fLi)H(l") (

Note that d{z, p) = — S5 nihjl@) +¢(mhpr1 (2) - Z*’)H hi(z)f; (). Differentiating both
sides of the equality 1 = [ exp{—d(z, p)} a{z) dx with respect to 7;, we have

B[ te) - b @

pla: m} 0, (A.5)

(u)p'

which is the required result of Lemma 2.2.
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Again, differentiating both sides of (A.5) with respect to 7, we sce that

Bhps1(@) | plas )] an;;‘amw(")
=5 [ {nter= et {5 s

This implies the convexity of ¢(r), which completes the proof of Lemma 2.1.



