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BE

We present a numerical method to enclose stationary solutions of the Navier-
Stokes equations, especially 2-D driven cavity problem with regularized boundary
condition. Qur method is based on the infinite dimensional Newton’s method by
estimating the inverse of the corresponding linearized operator. The method can
be applied to the case for high Reynolds numbers and we show some numerical
examples which confirm us the actual effectiveness.

Key words: Numerical enclosure method, driven cavity flows, infinite dimensional
Newton’s method.

1 Introduction
We consider the following Navier-Stokes equations

~Au+R-(u-Vu+Vp = f inQ,
dive = 0 in £, (1.1)
u = g on 0,

where u, p and R are the velocity vector, pressure and the Reynolds number, respectively
and the flow region {2 is a convex polygonal domain in R2. In what follows, for each
rational number m, let H™(Q) denote the L%-Sobolev space of order m on 2. The function
# = (f1, f2) means a density of body forces with f € (H*(Q)) and g = (¢91,92) € HY2(8Q)),
where we assume that there exists a function ¢ € H2(Q) satisfying (¢y, —¢z) = g on 5.
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The above problem was disccused by Wieners {7] for low Reynolds numbers. The
method proposed in it is based on Newton-Kantorovich theorem but it would not be
able to apply to high Reynolds numbers, because the estimation for the inverse of the
linearized operator directly depends on the Reynolds number. We also uses Newton
type verification condition, but the method which verifies the invertibility of linearized
operator is different from the Wieners’ formulation. Our method has an advantage which
enables us to verify the invertibility of the linearlized operator, even for high Reynolds
numbers, provided that the approximation space is sufficiently accurate and that the
inverse operator acually exists in the rigorous sense.

In Section 2 we introduce a stream function formulation of our problem and consider
the linearized operator which is needed in the infinite dimensional Newton method. In
Section 3, we formulate the verification method by computer to verify the invertibility
of the linearized operator. We then derive the infinite dimensional Newton method to
enclose the solution in Section 4 and we show some enclosure results in Section 5.

2 Stream function and the linearized operator

We first introduce a stream function % satisfying u = (¢, —,) by the incompressibility
condition in (1.1), where subscripts z and y denote the partial derivative for z and y
respectively. Using this function we can rewrite the equations (1.1) as

A%+ R J(,A¢) = (fa)o = (f1)y inf,

Y = ¢ on0f, (2.1)
® = % oo,

where J is a bilinear form defined by J(u,v) = u,v, — u,v, and 2 stands for the normal
derivative. Newly denoting u as ¢ — ¢ we have

nf},

i

{A2U+A2¢+R‘J(U+§03A(u+(ﬁ)) = (fa)s — (fi)y (2.2)
u:g—:- = 0 on 9L .

Our aim is to verify the existence of a weak solution u € H2(f2) of (2.2), where HZ(Q) =
{fv e H{OQ) | v =2 = 0 on 69} with the inner product < u,v >pz= (Au, Av)re
for u,v € HZ(Q).
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Let S, be a finite dimensional subspace of HZ(Q) that depends on h (0 < h < 1).
Usually S, is taken to be a finite element subspace with mesh size h.

We calculate an approximate solution u; € C(Q) of (2.2) in the finite dimensional
space, satisfying for all v, € 5;

(Aup + Ap, Avp)rz + (R J(un + ¢, Alun+ 9))s vn)rz = ((f2)s = (fi)ys va)r2, (23)

and calculate u, € C*) by smoothing of up. Then the linearized operator at u, is
represented as

Lu= A%+ R {J(us + ¢, Au) + J(u, Alus + @)},
and £ is considerd as the operator from HZ(Q) to H™%(Q) in weak sense. We will verify

the existence of the inverse £~! : H~%(Q) — HE(Q) and formulate the infinite dimensional

Newton’s method.

3 Invertibility of the linearized operator

By direct computations, we find that for any g € H ~2(£)) there exists a unique solution
v € HZ(R) satisfying

A = in £,
{ v __ i (31)
v=7% = 0 on o0,

For g € H%(Q), let Kq be the unique solution v € HF(Q) of the equation (3.1) then K
is a compact operator from H™1(Q) to H3(Q). Using the following compact operator on
H§ ()

Fi(u) = —R- K{J(us + ¢, Au) + J(u, Alus + 9))

the equation Lu = 0 is equivalent to the fixed point equation

u = Fi(u). (3.2)
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In order to show the invertibility of the linearized operator £, by the Fredholm alternative,
we only have to show the uniqueness of the solution of the equation Lu = 0.

Now let Py : H3(Q) — S, denote the HE-projection defined by
(A(u — Pyu), Avg)pz =0 for all vy, € Si,

and we derive some error estimations for P,. In what follows, we restrict ourselves to that
the domain € is a unit square (0,1) x (0,1), and that Sj is the set of piecewise bicubic
Hermite functions with uniform mesh on § (e.g., [5]). However, our verification principle
can also be applied to more general domains and approximation subspaces, when the

appropriate a priori error estimates are obtained.
At first we derive the following interpolation error estimation.
Lemma 1. Let o denote the cubic Hermite interpolation on ) = (0,1)2. Foru €
H(Q) N H3(Q) we have
R .,
lu ~ Toul gz < — 1A%z (3.3)
Proof. At first, we have
ulgey = |A%]|z2 for u € HY(Q) N HE(Q)

where |- |g¢(q) denotes the H* seminorm on {2 defined by

2
&

Oz Pym2

ufe = )3

ny+ny=4, n1,ne€NU{0}

L2

Actually, by expanding as u = 327, _; amn sinmnz sinnay, noting the convergence of the
Fourier series, we have

N

e = 3 3 () + (vm)Y ok = A%

Denoting Zy the Hermite interpolation on I = (0, 1), we have by [5]

IN

”fu, — IH’”’“H& ”u"”Lz foru e Hg(I),

IN

v — Zaul g

h2
—lu iz for w e HYI) N HF(D),



Representing Ty as Ip, and Ip, for x and y direction respectively, we have

lu — Zoul mz

IN A

A

IA

lv—Zru+Irw— I, Ia,ullge
I — Zar, ull oz + 170, (v — Za, ) | a2
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[l — IHxUIlm + HIHz (u— Tp,w) — (u—Ta,u)llm + v — Zn,ullaz

h? (u T + E @

7?2 5:1:4 L2 Hyt 12 w2 ay4 L

h2 o*u h? || 0%u
Bzt 12 7r2 6$23y 2 w2 53/_4

h2 2

—5lulne = 21|A2uHL2

Using the estimation (3.3) and the relation

llu = Paulimg = jnf llu =€l < llu — Zoufag,

we have the following error estimatinos for Pj.

In what follows, we will discuss under the assumption that the error estimation (3.3) is
valid for all w € H4(Q)NHZ(Q). Of course, as this assumption is not yet assured, we have
to validate it in another paper or to decide a correct constant, which might be greater

than ;’:3;, for further study:.

Lemma 2. Foru € H*(Q) N HZ(Q) we have

lu — Paullz
llw — Pauflay
lu— Paull2

IA

AN

21IA ulz2,

Proof. The first estimation (3.4) is trivial by Lemma 1.

(3.4)
(3.5)

(3.6)
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For e = u— Pyu we denote ¢ € H*(Q)NHE () as the solution of the following equations:

A2y =
P g

Then we have

lu — Paull%s

e

0

IA

AN

IA

(

= (e, A%p)1e
(
(

in 2

3.7
on 6Q2. ( )

u— Pyu,u— Pyu)re

Ae, Ad) 1

Ae, A(¢— Prop)r2

k1A - pr) 1z
2

Aclzs - 25 1A%]zs

I8l - lelze

Therefore ||u — Pyul/gz < Z—i”u — Pyul{gz holds and the third estimation (3.6) is proved.
Finally using (3.4) and (3.6) we can prove the second estimation (3.5) as follows:

lu— Poul3

IN

(V(u— Pu), V(v — Pyu))2
(—A(u - P}{U), U — Ph’tl,)Lz
[A(u ~ Pyu)|r2llu — Paul|z2

h? h4
;l]AZHHLz : ;rzliA2U|lL2~

Now, as in [1] or [3], we decompose (3.2) into the finite and infinite dimensional parts:

{ e

PhFl(’U,),

(I — Po)Fi(u). (3:8)

Since we apply a Newton-like method only for the former part of (3.8), we define the

following operator:

N;}(’U,) = Pou -~ [I — Fl],:l(Phu - PhFl(u)),
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where I is the identity map on HZ(£2). And we assume that the restriction to S of the
operator Py|I — Fi] : S, — Sy, has the inverse [I ~ )71, The validity of this assumption
can be numerically confirmed in actual computations.

We next define the operator Ty : HZ(2) — HZ(Q) by
Ty(u) = Ny(w) + (I - Pa) Fi(w).
Then Ty becomes a compact map on HZ(£)) and we have the following equivalence relation
u=Ti(u) < u=F(u).

Our purpose is to find a unique fixed point of T} in a certain set U C HE(?), which is
called a ‘candidate set’. Given positive real numbers -y and « we define the corresponding
candidate set U by

U= U, 9 lel, (3.9)

where Uy = {¢s € Su | [Ignllgz < 7}, o] ={¢L € S1 | #Lllmz < @} and S1 means the
orthogonal complement of Sy, in HZ(Q). If the relation

T (U) C int{U) (3.10)

holds, by Schauder’s fixed point theorem and the linearity of 71, there exists a fixed point
u of Ty in U and the fixed point is unique, i.e., v = 0, which implies that the operator
L is invertible. Decomposing (3.10) into finite and infinite dimensional parts we have a

sufficient condition for (3.10) as follows:

subyep INZ(9)mg < 7
{SupueU (I — Ph)Fl(U)HHg‘ < a. (3.11)

We now derive the following theorem in which the verification condition (3.11) is nu-

merically and simply described.

Theorem 1. Let {¢;} be the basis of Sy and define the jollowing constatns:

o = 1 opmTios e = o2 )] L Jodesral]
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Ci = 19+ Py G = ==, M1 = |L7G L s

N

K, = C{+CiCs,
Ky, = Of-l—OgG;Cp,
Ks = 205 + C,(Cs + CyC3),

where |[Volleo = (| V]2, + HVvyHgo)%, | - |z denotes the matriz norm corresponding to
the Buclidian vector norm, C, is the Poincaré constant, the matriz G = (Gi;) is defined
by

Gji = R(J(us + @, Ads) + T (¢, Dus + 9)), $5) 12 + (Adi, Adj) 1z,
and D = LL7 is a Cholesky decomposition for the matriz D = (D;;) defined by
Di; = (Adi, Agy) 2.
For these constants, if the inequality
RCo(K1 + Ko K3 M1 RCh) < 1 (3.12)

holds then the operator L is invertible.

Proof. We show sufficient conditions for (3.11). Denoting v = uy + ug, uy € Uy, ug €
[a], by some simple calculations we have NiH(u) = [I — Fy]; ' P, Fi(uz), and thus

IV (Wl < M| PuFi(us)llm (3.13)

holds. (See [1] or [3] for details to such estimation.) Using error estimation in Lemma 2,

we can estimate || P, F1(uz)|| gz as follows:
”P},,Fl(u‘z)ugg S RC()K;;O(. (314)
Thus we derive a sufficient condition for the first inequality in (3.11) as

MiRCyK3a < . (3.15)
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Now we estimate the left hand side of the second inequality in (3.11). Noting that

[(I- PRl < Rl - P)EJ(us + ¢, Au) gz
+ R|(I — P)KJ(u, Alus + ¢)) | mz
S RCUKz")/ + RCoKlol,

we obtain the sufficient condition for the second inequality in (3.11) as
RCo(Ky + Ko) < a. | (3.16)

Combining the conditions (3.15) and (3.16) we finally obtain the sufficient condition for
(3.11) as RCQ(Kl + KszMlRCo) < 1.

4 Verification procedure for nonlinear problem

In what follows we assume that the invertibility of the linearized operator £ is confirmed
by the method described in the previous section. We will verify the existence of solutions
for (2.2) in the neighborhood of ux € C*(f) satisfying for all v, € Si

(Aux + Ap, Avp)pz + (B J(us + @, Aus + 9)), vn) 12 = ((f2)z = (f1)ys vr)r2- (4.1)

Considering the function % satisfying

1

A%y ‘“AZCP -R- J(us + ¢, A(us + ‘10)) + (f2)z - (fl)y in Q’ (4 2)
__ & 0 on 0f), .

U= on
and writing w =4 — 4, vp = U — ux, U — Ux Can be represented as w + vo.

Noting that ux = PnZ, we see that vp € S and, by Lemma 2 and its proof, the error

estimates for vg can be derived:

loollmg < 5l = A% = R Jlus + 0, A+ 0)) + (f2)s = (Bolzn
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h

lvollzy < —llvollag,

h2
fvollze < —llvoll -

Now we can rewrite (2.2) as

Aw = —R-J(w+ux+vo+ e, A(w+ux +v+ @)
+R- J(us+ ¢, Alus +¢)) in £, (4.3)
w=5% = 0 ondf.
Thus defining the following compact map on HE(£2)
Fy(w) = RK{J(us + ¢, Alus +¢)) — J(w+ux +vo + ¢, Alw+ux +vo +¢)) },(4.4)
we have the fixed point equation
Now we formulate the infinite dimensional Newton method for the equation (4.5). Note
that w — [I — Fi(~vg—ux +u,)] "1 (I — F2)(w) can be equivalently represented as L™ g(w),
where Fj(—vo — ux + us) stands for Fréchet derivative of F; at —vp — ux + u, and
g(w) = R{J(us + ¢, Alus + ¢)) — J(w+ux +vo+ @, Alw +ux +vo + 9))
+ J(us + @, Aw) + J{w, Alus + ¢))}.
Then we have the relation

w = Fy(w) <> w = Th(w), (4.6)

where To(w) = L71g(w) is a compact map on HZ(Q).

We intend to find a fixed point of 75 in a set W defined by

W= {we Hj(Q) | wlam <a}, (4.7)
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where « is a positive number. If the relation
TL(W)c W (4.8)

holds, by Schauder’s fixed point theorem there exists a fixed point of T5 in W. Since a
sufficient condition for (4.8) is

sup | To(w) g < o (49)

weEW

by estimating the left hand side of (4.8), we can derive the following theorem.

Theorem 2. Assume that the invertibility condition (3.12) holds. Using the same

constants in Theorem 1, we define the following constants:

K = CQR(K1+K2K3M100R),

CoRM, K, 1
T = -, Ty = y
1—r 11—k
T3 = M](CORK371+1), T4:M100RK3TQ,
1
b = HUOHHg, 043;3

where Cy is an embedding constant satisfying | Vullpe < CallAul|ge for u € HF(Q) and we
have used the optimal embedding estimates Cy = % which can be derived by the result in

2 2 1

6/. Moreover for a matriz § = .
6] f (7'17'2 +rary  TEHTE

following constants:

o 0ux+ ) O(ux + ¢)

CF = IVt Pl OF = [vAEED o2t
Cg( = “VA('U'X + ‘P)”om D'lg = ]lV(ux - US)”LZ:

Di = |[J(ux — s, A(us + 9)) |22, D§ = [1A{ux —us)l| 22, -

If there ezists a real number o > 0 satisfying
MyR{C3(ax + b)? + C2aD§ + CF CpCob + aD{C,p

+ Cob(VECX + C,C¥) + C2D§ + G,0X Di} < o, (4.10)
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then there exists a fized point of Ty in W.

Proof. For g(w) € H~%(Q) consider the solution ¢ € HZ(Q) of the problem

Lo = g(w) inQ,
¢ = 2=0 onof

Then writing ¢ = ¢p + ¢1, ¢n € Sk, ¢1 € 51, we have

#nllme < MiRCGoKs|igo|lmz + MillPaKq(w)limz,
oLl <

Noting that & < 1 holds because of the invertibility of £, we have

Ignllaz < 7sll PKq(w)lmg + mall(I — Fa) Kq(w)lm,
Iécllzz < mlPaKa(w)|gz + l(I - P)Kq(w)| mz-

Therefore we obtain
¢llaz < Mal|Kq(w)llmg < Mallg(w)l|z-2.

Furthermore, we have the estimations

lg@)|p2=  sup  |<q(w),8 >
BGH&’, ][9||H§=1

< R{C¥a +b)? + C2aDj + C C,Cob + aDiC,
+ Cob(V2C + C,C5) + C2D§ + C,0{ D}
Thus we obtain

L7 q(w)laz <

0

M R{||C(a + b)* + CfaD} + C3C,Cob + aDiC,

RCu(KillgLllmp + Kol PaKq(w)ll z) + (I — o) K g(w)]|az-

(4.11)

(4.12)

(4.13)

(4.14)
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+ Cob(V2CF + C,C5) + C2D§ + C,C D}

This means that the inequality (4.10) is a sufficlent condition for T5(W) C W and the
desired assertion is proved.

5 Numerical examples

Particularly, we consider the two dimensional driven cavity problem with f = 0 and
g = (py, —¢2) in (1.1), where ¢(z,y) = 2%(1 — 2)’*(1 - 9).

In calculations, we used interval arithmetic in order to avoid the effects of rounding er-
rors in the floating-point computations. The computations were carried out on the DELL
Precision WorkStation 650 (Intel Xeon 3.2GHz) using MATLAB (Ver. 6.5.1) and the
interval arithmetic toolbox INTLAB (Ver. 4.2.1) coded by Prof. Rump in TU Hamburg-
Harburg ([4]). The verification results are shown in Table 1, in which 'smallest o’ means
the smallest bound « satisfing the verification condition (4.9) and the solution u in (2.2)

is enclosed as [[u — ux || g2i0) < [[vollmz() + @

# 1: Verification Results for Driven Cavity Problem (h = 1/22)

R M1 Mz “’Uo H H? Dg (o4
100 1.0183 1.4511 9.2855e-4 1.2940e-4 1.1199e-3
200 1.0355 2.4945 1.0094e-3 1.3666e-4 7.5815e-3

It seems that Wieners’ method would not be able to apply to the Reynolds number
higher than 20 in [7]. On the other hand, we enclosed the stationary solution for the
Reynolds number over 100, and our method can be applied, in principle, to more higher
Reynolds numbers by using more accurate approximation subspaces, i.e., smaller mesh

sizes.
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